SlideShare a Scribd company logo
Fall 2006 Costas Busch - RPI 1
Turing’s Thesis
Fall 2006 Costas Busch - RPI 2
Turing’s thesis (1930):
Any computation carried out
by mechanical means
can be performed by a Turing Machine
Fall 2006 Costas Busch - RPI 3
Algorithm:
An algorithm for a problem is a
Turing Machine which solves the problem
The algorithm describes the steps of
the mechanical means
This is easily translated to computation steps
of a Turing machine
Fall 2006 Costas Busch - RPI 4
When we say: There exists an algorithm
We mean: There exists a Turing Machine
that executes the algorithm
Fall 2006 Costas Busch - RPI 5
Variations
of the
Turing Machine
Fall 2006 Costas Busch - RPI 6
Read-Write Head
Control Unit
◊◊ a a c ◊◊ ◊b a cb b a a
Deterministic
The Standard Model
Infinite Tape
(Left or Right)
Fall 2006 Costas Busch - RPI 7
Variations of the Standard Model
• Stay-Option
• Semi-Infinite Tape
• Off-Line
• Multitape
• Multidimensional
• Nondeterministic
Turing machines with:
Different Turing Machine Classes
Fall 2006 Costas Busch - RPI 8
We will prove:
each new class has the same power
with Standard Turing Machine
Same Power of two machine classes:
both classes accept the
same set of languages
(accept Turing-Recognizable Languages)
Fall 2006 Costas Busch - RPI 9
Same Power of two classes means:
for any machine of first class1M
there is a machine of second class2M
such that: )()( 21 MLML =
and vice-versa
Fall 2006 Costas Busch - RPI 10
A technique to prove same power.Simulation:
Simulate the machine of one class
with a machine of the other class
First Class
Original Machine
1M 1M
2M
Second Class
Simulation Machine
simulates 1M
Fall 2006 Costas Busch - RPI 11
Configurations in the Original Machine
have corresponding configurations
in the Simulation Machine
nddd  10Original Machine:
Simulation Machine: nddd ′′′
∗∗∗
 10
1M
2M
1M
2M
Fall 2006 Costas Busch - RPI 12
the Simulation Machine
and the Original Machine
accept the same strings
fdOriginal Machine:
Simulation Machine: fd′
Accepting Configuration
)()( 21 MLML =
Fall 2006 Costas Busch - RPI 13
Turing Machines with Stay-Option
The head can stay in the same position
◊◊ a a c ◊◊ ◊b a cb b a a
Left, Right, Stay
L,R,S: possible head moves
Fall 2006 Costas Busch - RPI 14
Example:
◊◊ a a c ◊◊ ◊b a cb b a a
Time 1
◊◊ b a c ◊◊ ◊b a cb b a a
Time 2
1q 2q
1q
2q
Sba ,→
Fall 2006 Costas Busch - RPI 15
Stay-Option machines
have the same power with
Standard Turing machines
Theorem:
Proof: 1. Stay-Option Machines
simulate Standard Turing machines
2. Standard Turing machines
simulate Stay-Option machines
Fall 2006 Costas Busch - RPI 16
1. Stay-Option Machines
simulate Standard Turing machines
Trivial: any standard Turing machine
is also a Stay-Option machine
Fall 2006 Costas Busch - RPI 17
2. Standard Turing machines
simulate Stay-Option machines
We need to simulate the stay head option
with two head moves, one left and one right
Fall 2006 Costas Busch - RPI 18
1q 2q
Sba ,→
1q
Lba ,→
2q
Rxx ,→
Stay-Option Machine
Simulation in Standard Machine
For every possible tape symbol x
Fall 2006 Costas Busch - RPI 19
1q 2q
Lba ,→
1q 2q
Lba ,→
Stay-Option Machine
Simulation in Standard Machine
Similar for Right moves
For other transitions nothing changes
Fall 2006 Costas Busch - RPI 20
example of simulation
◊ ◊a a b a
1q
Stay-Option Machine:
1
◊ ◊b a b a
2q
2
1q 2qSba ,→
Simulation in Standard Machine:
◊ ◊a a b a
1q
1
◊ ◊b a b a
2q
2
◊ ◊b a b a
3q
3
END OF PROOF
Fall 2006 Costas Busch - RPI 21
Multiple Track Tape
◊
◊
◊
◊
◊
◊
b
d
a
b
b
a
a
c
track 1
track 2
One symbol ),( ba
One head
A useful trick to perform more
complicated simulations
One Tape
Fall 2006 Costas Busch - RPI 22
◊
◊
◊
◊
◊
◊
b
d
a
b
b
a
a
c
track 1
track 2
1q 2q
Ldcab ),,(),( →
1q
◊
◊
◊
◊
◊
◊
b
d
a
b
c
d
a
c
track 1
track 2
2q
Fall 2006 Costas Busch - RPI 23
Semi-Infinite Tape
.........a b a c ◊ ◊
• When the head moves left from the border,
it returns to the same position
The head extends infinitely only to the right
• Initial position is the leftmost cell
Fall 2006 Costas Busch - RPI 24
Semi-Infinite machines
have the same power with
Standard Turing machines
Theorem:
Proof:
2. Semi-Infinite Machines
simulate Standard Turing machines
1. Standard Turing machines
simulate Semi-Infinite machines
Fall 2006 Costas Busch - RPI 25
1. Standard Turing machines simulate
Semi-Infinite machines:
a. insert special symbol
at left of input string
#
a b a c ◊ ◊#
b. Add a self-loop
to every state
(except states with no
outgoing transitions)
R,##→
Standard Turing Machine
◊◊
Fall 2006 Costas Busch - RPI 26
2. Semi-Infinite tape machines simulate
Standard Turing machines:
Standard machine
.........
Semi-Infinite tape machine
..................
Squeeze infinity of both directions
in one direction
Fall 2006 Costas Busch - RPI 27
Standard machine
.........
Semi-Infinite tape machine with two tracks
..................
reference point
#
#
Right part
Left part
◊ ◊ ◊a b c d e
ac b
d e ◊ ◊
◊
◊
◊
Fall 2006 Costas Busch - RPI 28
1q
2q
R
q2
L
q1
L
q2 R
q1
Left part Right part
Standard machine
Semi-Infinite tape machine
Fall 2006 Costas Busch - RPI 29
1q 2q
Rga ,→
Standard machine
L
q1
L
q2
Lgxax ),,(),( →
R
q1
R
q2
Rxgxa ),,(),( →
Semi-Infinite tape machine
Left part
Right part
For all tape symbols x
Fall 2006 Costas Busch - RPI 30
Standard machine
.................. ◊ ◊ ◊a b c d e
1q
.........
Semi-Infinite tape machine
#
#
Right part
Left part ac b
d e ◊ ◊
◊
◊
◊
L
q1
Time 1
Fall 2006 Costas Busch - RPI 31
Time 2
◊ ◊ ◊g b c d e
2q
#
#
Right part
Left part gc b
d e ◊ ◊
◊
◊
◊
L
q2
Standard machine
..................
.........
Semi-Infinite tape machine
Fall 2006 Costas Busch - RPI 32
L
q1
R
q1
R),#,(#)#,(# →
Semi-Infinite tape machine
Left part
At the border:
R
q1
L
q1
R),#,(#)#,(# →
Right part
Fall 2006 Costas Busch - RPI 33
.........
Semi-Infinite tape machine
#
#
Right part
Left part gc b
d e ◊ ◊
◊
◊
◊
L
q1
.........#
#
Right part
Left part gc b
d e ◊ ◊
◊
◊
◊
R
q1
Time 1
Time 2
END OF PROOF
Fall 2006 Costas Busch - RPI 34
The Off-Line Machine
Control Unit
Input File
Tape
read-only (once)
a b c
d eg ◊ ◊◊◊
read-write
Input string
Appears on
input file only
(state machine)
Input string
Fall 2006 Costas Busch - RPI 35
Off-Line machines
have the same power with
Standard Turing machines
Theorem:
Proof: 1. Off-Line machines
simulate Standard Turing machines
2. Standard Turing machines
simulate Off-Line machines
Fall 2006 Costas Busch - RPI 36
1. Off-line machines simulate
Standard Turing Machines
Off-line machine:
1. Copy input file to tape
2. Continue computation as in
Standard Turing machine
Fall 2006 Costas Busch - RPI 37
1. Copy input file to tape
Input File
a b c ◊◊ ◊
Tape
a b c◊ ◊ ◊
Standard machine
Off-line machine
a b c
Fall 2006 Costas Busch - RPI 38
2. Do computations as in Turing machine
Input File
a b c ◊◊ ◊
Tape
a b c◊ ◊ ◊
a b c
1q
1q
Standard machine
Off-line machine
Fall 2006 Costas Busch - RPI 39
2. Standard Turing machines simulate
Off-Line machines:
Use a Standard machine with
a four-track tape to keep track of
the Off-line input file and tape contents
Fall 2006 Costas Busch - RPI 40
Input File
a b c ◊◊ ◊
Tape
Off-line Machine
e f gd
Standard Machine -- Four track tape
a b c d
e f g
0 0 0
0 0
1
1
Input File
head position
Tape
head position
#
#
Fall 2006 Costas Busch - RPI 41
a b c d
e f g
0 0 0
0 0
1
1
Input File
head position
Tape
head position
#
#
Repeat for each state transition:
1. Return to reference point
2. Find current input file symbol
3. Find current tape symbol
4. Make transition
Reference point (uses special symbol # )
#
#
END OF PROOF
Fall 2006 Costas Busch - RPI 42
Multi-tape Turing Machines
◊◊ a b c ◊◊ e f g
Control unit
Tape 1 Tape 2
Input string
Input string appears on Tape 1
(state machine)
Fall 2006 Costas Busch - RPI 43
◊◊ a b c ◊◊ e f g
1q 1q
◊◊ a g c ◊◊ e d g
2q 2q
Time 1
Time 2
RLdgfb ,),,(),( →
1q 2q
Tape 1 Tape 2
Tape 1 Tape 2
Fall 2006 Costas Busch - RPI 44
Multi-tape machines
have the same power with
Standard Turing machines
Theorem:
Proof: 1. Multi-tape machines
simulate Standard Turing machines
2. Standard Turing machines
simulate Multi-tape machines
Fall 2006 Costas Busch - RPI 45
1. Multi-tape machines simulate
Standard Turing Machines:
Trivial: Use just one tape
Fall 2006 Costas Busch - RPI 46
2. Standard Turing machines simulate
Multi-tape machines:
• Uses a multi-track tape to simulate
the multiple tapes
• A tape of the Multi-tape machine
corresponds to a pair of tracks
Standard machine:
Fall 2006 Costas Busch - RPI 47
◊◊ a b c h◊ e f g ◊
Multi-tape Machine
Tape 1 Tape 2
Standard machine with four track tape
a b c
e f g
0 0
0 0
1
1
Tape 1
head position
Tape 2
head position
h
0
Fall 2006 Costas Busch - RPI 48
Repeat for each state transition:
1. Return to reference point
2. Find current symbol in Tape 1
3. Find current symbol in Tape 2
4. Make transition
a b c
e f g
0 0
0 0
1
1
Tape 1
head position
Tape 2
head position
h
0
#
#
#
#
Reference point
END OF PROOF
Fall 2006 Costas Busch - RPI 49
( steps)
}{ nn
baL =
Standard Turing machine:
Go back and forth times)( 2
nO
2-tape machine:
1. Copy to tape 2n
b
2. Compare on tape 1
and tape 2
)(nO
n
b
n
a
to match the a’s with the b’s
( steps))(nO
)( 2
nO time
)(nO time
Same power doesn’t imply same speed:
Fall 2006 Costas Busch - RPI 50
Multidimensional Turing Machines
x
y
a
b
c
2-dimensional tape
HEAD
Position: +2, -1
MOVES: L,R,U,D
U: up D: down
◊
◊
◊
◊
Fall 2006 Costas Busch - RPI 51
Multidimensional machines
have the same power with
Standard Turing machines
Theorem:
Proof: 1. Multidimensional machines
simulate Standard Turing machines
2. Standard Turing machines
simulate Multi-Dimensional machines
Fall 2006 Costas Busch - RPI 52
1. Multidimensional machines simulate
Standard Turing machines
Trivial: Use one dimension
Fall 2006 Costas Busch - RPI 53
2. Standard Turing machines simulate
Multidimensional machines
Standard machine:
• Use a two track tape
• Store symbols in track 1
• Store coordinates in track 2
Fall 2006 Costas Busch - RPI 54
x
y
a
b
c◊
◊
◊
◊
a
1
b
#
symbols
coordinates
2-dimensional machine
Standard Machine
1 # 2 # 1−
c
# − 1
1q
1q
Fall 2006 Costas Busch - RPI 55
Repeat for each transition followed
in the 2-dimensional machine:
1. Update current symbol
2. Compute coordinates of next position
3. Go to new position
Standard machine:
END OF PROOF
Fall 2006 Costas Busch - RPI 56
Nondeterministic Turing Machines
Lba ,→
Rca ,→
1q
2q
3q
Allows Non Deterministic Choices
Choice 1
Choice 2
Fall 2006 Costas Busch - RPI 57
a b c◊ ◊
1q
Lba ,→
Rca ,→
1q
2q
3q
Time 0
Time 1
b b c◊ ◊
2q
c b c◊ ◊
3q
Choice 1
Choice 2
Fall 2006 Costas Busch - RPI 58
Input string is accepted if
there is a computation:
w
yqxwq f
∗
0
Initial configuration Final Configuration
Any accept state
There is a computation:
Fall 2006 Costas Busch - RPI 59
Nondeterministic machines
have the same power with
Standard Turing machines
Theorem:
Proof: 1. Nondeterministic machines
simulate Standard Turing machines
2. Standard Turing machines
simulate Nondeterministic machines
Fall 2006 Costas Busch - RPI 60
1. Nondeterministic Machines simulate
Standard (deterministic) Turing Machines
Trivial: every deterministic machine
is also nondeterministic
Fall 2006 Costas Busch - RPI 61
2. Standard (deterministic) Turing machines
simulate Nondeterministic machines:
• Stores all possible computations
of the non-deterministic machine
on the 2-dimensional tape
Deterministic machine:
• Uses a 2-dimensional tape
(which is equivalent to 1-dimensional tape)
Fall 2006 Costas Busch - RPI 62
All possible computation paths
Initial state
Step 1
Step 2
Step i
Step i+1
acceptreject
infinite
path
Fall 2006 Costas Busch - RPI 63
The Deterministic Turing machine
simulates all possible computation paths:
•in a breadth-first search fashion
•simultaneously
•step-by-step
Fall 2006 Costas Busch - RPI 64
a b c◊ ◊
1q
Lba ,→
Rca ,→
1q
2q
3q
Time 0
NonDeterministic machine
Deterministic machine
a b c
1q
# # # # ##
#
#
# # #
#
#
# #
current
configuration
Fall 2006 Costas Busch - RPI 65
Lba ,→
Rca ,→
1q
2q
3q
b b c
2q
# # # # ##
#
# #
#
# #
Computation 1
b b c◊ ◊
2q
Choice 1
c b c◊ ◊
3q
Choice 2
c b c
3q ## Computation 2
NonDeterministic machine
Deterministic machine
Time 1
Fall 2006 Costas Busch - RPI 66
Repeat
For each configuration in current step
of non-deterministic machine,
if there are two or more choices:
1. Replicate configuration
2. Change the state in the replicas
END OF PROOF
Deterministic Turing machine
Until either the input string is accepted
or rejected in all configurations
Fall 2006 Costas Busch - RPI 67
The simulation takes in the worst case
exponential time compared to the shortest
accepting path length of the
nondeterministic machine
Remark:

More Related Content

PPT
Turing Machine
PPTX
Pumping lemma Theory Of Automata
PPT
Variants of Turing Machine
PPTX
Universal turing coastus
PPTX
Moore Mealy Machine Conversion
PDF
Finite automata
PPTX
Simplification of cfg ppt
PPTX
Turing machine
Turing Machine
Pumping lemma Theory Of Automata
Variants of Turing Machine
Universal turing coastus
Moore Mealy Machine Conversion
Finite automata
Simplification of cfg ppt
Turing machine

What's hot (20)

PPTX
Push down automata
PPTX
Mealy and moore machine
PPTX
LINEAR BOUNDED AUTOMATA (LBA).pptx
PPTX
Chomsky Normal Form
PPTX
Context free grammar
PDF
TOC 7 | CFG in Chomsky Normal Form
PPTX
2.8 normal forms gnf & problems
PPTX
Turing Machine
PPTX
Chomsky Normal Form
PPTX
CFG to CNF
PDF
Daa notes 3
PDF
TOC 5 | Regular Expressions
PPTX
Finite state Transducers and mealy Machine
ODP
PPT
Mealy moore machine model
PPT
context free language
PPTX
Turing machine-TOC
PPTX
Automata theory - Push Down Automata (PDA)
PPT
Moore and Mealy machines
PPTX
Introduction TO Finite Automata
Push down automata
Mealy and moore machine
LINEAR BOUNDED AUTOMATA (LBA).pptx
Chomsky Normal Form
Context free grammar
TOC 7 | CFG in Chomsky Normal Form
2.8 normal forms gnf & problems
Turing Machine
Chomsky Normal Form
CFG to CNF
Daa notes 3
TOC 5 | Regular Expressions
Finite state Transducers and mealy Machine
Mealy moore machine model
context free language
Turing machine-TOC
Automata theory - Push Down Automata (PDA)
Moore and Mealy machines
Introduction TO Finite Automata
Ad

More from Rajendran (20)

PPT
Element distinctness lower bounds
PPT
Scheduling with Startup and Holding Costs
PPT
Divide and conquer surfing lower bounds
PPT
Red black tree
PPT
Hash table
PPT
Medians and order statistics
PPT
Proof master theorem
PPT
Recursion tree method
PPT
Recurrence theorem
PPT
Master method
PPT
Master method theorem
PPT
Hash tables
PPT
Lower bound
PPT
Master method theorem
PPT
Greedy algorithms
PPT
Longest common subsequences in Algorithm Analysis
PPT
Dynamic programming in Algorithm Analysis
PPT
Average case Analysis of Quicksort
PPT
Np completeness
PPT
computer languages
Element distinctness lower bounds
Scheduling with Startup and Holding Costs
Divide and conquer surfing lower bounds
Red black tree
Hash table
Medians and order statistics
Proof master theorem
Recursion tree method
Recurrence theorem
Master method
Master method theorem
Hash tables
Lower bound
Master method theorem
Greedy algorithms
Longest common subsequences in Algorithm Analysis
Dynamic programming in Algorithm Analysis
Average case Analysis of Quicksort
Np completeness
computer languages
Ad

Recently uploaded (20)

PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
Cell Types and Its function , kingdom of life
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
advance database management system book.pdf
PDF
RMMM.pdf make it easy to upload and study
Chinmaya Tiranga quiz Grand Finale.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Unit 4 Skeletal System.ppt.pptxopresentatiom
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Hazard Identification & Risk Assessment .pdf
What if we spent less time fighting change, and more time building what’s rig...
LDMMIA Reiki Yoga Finals Review Spring Summer
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Cell Types and Its function , kingdom of life
202450812 BayCHI UCSC-SV 20250812 v17.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
advance database management system book.pdf
RMMM.pdf make it easy to upload and study

Variants of Turing Machine

  • 1. Fall 2006 Costas Busch - RPI 1 Turing’s Thesis
  • 2. Fall 2006 Costas Busch - RPI 2 Turing’s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine
  • 3. Fall 2006 Costas Busch - RPI 3 Algorithm: An algorithm for a problem is a Turing Machine which solves the problem The algorithm describes the steps of the mechanical means This is easily translated to computation steps of a Turing machine
  • 4. Fall 2006 Costas Busch - RPI 4 When we say: There exists an algorithm We mean: There exists a Turing Machine that executes the algorithm
  • 5. Fall 2006 Costas Busch - RPI 5 Variations of the Turing Machine
  • 6. Fall 2006 Costas Busch - RPI 6 Read-Write Head Control Unit ◊◊ a a c ◊◊ ◊b a cb b a a Deterministic The Standard Model Infinite Tape (Left or Right)
  • 7. Fall 2006 Costas Busch - RPI 7 Variations of the Standard Model • Stay-Option • Semi-Infinite Tape • Off-Line • Multitape • Multidimensional • Nondeterministic Turing machines with: Different Turing Machine Classes
  • 8. Fall 2006 Costas Busch - RPI 8 We will prove: each new class has the same power with Standard Turing Machine Same Power of two machine classes: both classes accept the same set of languages (accept Turing-Recognizable Languages)
  • 9. Fall 2006 Costas Busch - RPI 9 Same Power of two classes means: for any machine of first class1M there is a machine of second class2M such that: )()( 21 MLML = and vice-versa
  • 10. Fall 2006 Costas Busch - RPI 10 A technique to prove same power.Simulation: Simulate the machine of one class with a machine of the other class First Class Original Machine 1M 1M 2M Second Class Simulation Machine simulates 1M
  • 11. Fall 2006 Costas Busch - RPI 11 Configurations in the Original Machine have corresponding configurations in the Simulation Machine nddd  10Original Machine: Simulation Machine: nddd ′′′ ∗∗∗  10 1M 2M 1M 2M
  • 12. Fall 2006 Costas Busch - RPI 12 the Simulation Machine and the Original Machine accept the same strings fdOriginal Machine: Simulation Machine: fd′ Accepting Configuration )()( 21 MLML =
  • 13. Fall 2006 Costas Busch - RPI 13 Turing Machines with Stay-Option The head can stay in the same position ◊◊ a a c ◊◊ ◊b a cb b a a Left, Right, Stay L,R,S: possible head moves
  • 14. Fall 2006 Costas Busch - RPI 14 Example: ◊◊ a a c ◊◊ ◊b a cb b a a Time 1 ◊◊ b a c ◊◊ ◊b a cb b a a Time 2 1q 2q 1q 2q Sba ,→
  • 15. Fall 2006 Costas Busch - RPI 15 Stay-Option machines have the same power with Standard Turing machines Theorem: Proof: 1. Stay-Option Machines simulate Standard Turing machines 2. Standard Turing machines simulate Stay-Option machines
  • 16. Fall 2006 Costas Busch - RPI 16 1. Stay-Option Machines simulate Standard Turing machines Trivial: any standard Turing machine is also a Stay-Option machine
  • 17. Fall 2006 Costas Busch - RPI 17 2. Standard Turing machines simulate Stay-Option machines We need to simulate the stay head option with two head moves, one left and one right
  • 18. Fall 2006 Costas Busch - RPI 18 1q 2q Sba ,→ 1q Lba ,→ 2q Rxx ,→ Stay-Option Machine Simulation in Standard Machine For every possible tape symbol x
  • 19. Fall 2006 Costas Busch - RPI 19 1q 2q Lba ,→ 1q 2q Lba ,→ Stay-Option Machine Simulation in Standard Machine Similar for Right moves For other transitions nothing changes
  • 20. Fall 2006 Costas Busch - RPI 20 example of simulation ◊ ◊a a b a 1q Stay-Option Machine: 1 ◊ ◊b a b a 2q 2 1q 2qSba ,→ Simulation in Standard Machine: ◊ ◊a a b a 1q 1 ◊ ◊b a b a 2q 2 ◊ ◊b a b a 3q 3 END OF PROOF
  • 21. Fall 2006 Costas Busch - RPI 21 Multiple Track Tape ◊ ◊ ◊ ◊ ◊ ◊ b d a b b a a c track 1 track 2 One symbol ),( ba One head A useful trick to perform more complicated simulations One Tape
  • 22. Fall 2006 Costas Busch - RPI 22 ◊ ◊ ◊ ◊ ◊ ◊ b d a b b a a c track 1 track 2 1q 2q Ldcab ),,(),( → 1q ◊ ◊ ◊ ◊ ◊ ◊ b d a b c d a c track 1 track 2 2q
  • 23. Fall 2006 Costas Busch - RPI 23 Semi-Infinite Tape .........a b a c ◊ ◊ • When the head moves left from the border, it returns to the same position The head extends infinitely only to the right • Initial position is the leftmost cell
  • 24. Fall 2006 Costas Busch - RPI 24 Semi-Infinite machines have the same power with Standard Turing machines Theorem: Proof: 2. Semi-Infinite Machines simulate Standard Turing machines 1. Standard Turing machines simulate Semi-Infinite machines
  • 25. Fall 2006 Costas Busch - RPI 25 1. Standard Turing machines simulate Semi-Infinite machines: a. insert special symbol at left of input string # a b a c ◊ ◊# b. Add a self-loop to every state (except states with no outgoing transitions) R,##→ Standard Turing Machine ◊◊
  • 26. Fall 2006 Costas Busch - RPI 26 2. Semi-Infinite tape machines simulate Standard Turing machines: Standard machine ......... Semi-Infinite tape machine .................. Squeeze infinity of both directions in one direction
  • 27. Fall 2006 Costas Busch - RPI 27 Standard machine ......... Semi-Infinite tape machine with two tracks .................. reference point # # Right part Left part ◊ ◊ ◊a b c d e ac b d e ◊ ◊ ◊ ◊ ◊
  • 28. Fall 2006 Costas Busch - RPI 28 1q 2q R q2 L q1 L q2 R q1 Left part Right part Standard machine Semi-Infinite tape machine
  • 29. Fall 2006 Costas Busch - RPI 29 1q 2q Rga ,→ Standard machine L q1 L q2 Lgxax ),,(),( → R q1 R q2 Rxgxa ),,(),( → Semi-Infinite tape machine Left part Right part For all tape symbols x
  • 30. Fall 2006 Costas Busch - RPI 30 Standard machine .................. ◊ ◊ ◊a b c d e 1q ......... Semi-Infinite tape machine # # Right part Left part ac b d e ◊ ◊ ◊ ◊ ◊ L q1 Time 1
  • 31. Fall 2006 Costas Busch - RPI 31 Time 2 ◊ ◊ ◊g b c d e 2q # # Right part Left part gc b d e ◊ ◊ ◊ ◊ ◊ L q2 Standard machine .................. ......... Semi-Infinite tape machine
  • 32. Fall 2006 Costas Busch - RPI 32 L q1 R q1 R),#,(#)#,(# → Semi-Infinite tape machine Left part At the border: R q1 L q1 R),#,(#)#,(# → Right part
  • 33. Fall 2006 Costas Busch - RPI 33 ......... Semi-Infinite tape machine # # Right part Left part gc b d e ◊ ◊ ◊ ◊ ◊ L q1 .........# # Right part Left part gc b d e ◊ ◊ ◊ ◊ ◊ R q1 Time 1 Time 2 END OF PROOF
  • 34. Fall 2006 Costas Busch - RPI 34 The Off-Line Machine Control Unit Input File Tape read-only (once) a b c d eg ◊ ◊◊◊ read-write Input string Appears on input file only (state machine) Input string
  • 35. Fall 2006 Costas Busch - RPI 35 Off-Line machines have the same power with Standard Turing machines Theorem: Proof: 1. Off-Line machines simulate Standard Turing machines 2. Standard Turing machines simulate Off-Line machines
  • 36. Fall 2006 Costas Busch - RPI 36 1. Off-line machines simulate Standard Turing Machines Off-line machine: 1. Copy input file to tape 2. Continue computation as in Standard Turing machine
  • 37. Fall 2006 Costas Busch - RPI 37 1. Copy input file to tape Input File a b c ◊◊ ◊ Tape a b c◊ ◊ ◊ Standard machine Off-line machine a b c
  • 38. Fall 2006 Costas Busch - RPI 38 2. Do computations as in Turing machine Input File a b c ◊◊ ◊ Tape a b c◊ ◊ ◊ a b c 1q 1q Standard machine Off-line machine
  • 39. Fall 2006 Costas Busch - RPI 39 2. Standard Turing machines simulate Off-Line machines: Use a Standard machine with a four-track tape to keep track of the Off-line input file and tape contents
  • 40. Fall 2006 Costas Busch - RPI 40 Input File a b c ◊◊ ◊ Tape Off-line Machine e f gd Standard Machine -- Four track tape a b c d e f g 0 0 0 0 0 1 1 Input File head position Tape head position # #
  • 41. Fall 2006 Costas Busch - RPI 41 a b c d e f g 0 0 0 0 0 1 1 Input File head position Tape head position # # Repeat for each state transition: 1. Return to reference point 2. Find current input file symbol 3. Find current tape symbol 4. Make transition Reference point (uses special symbol # ) # # END OF PROOF
  • 42. Fall 2006 Costas Busch - RPI 42 Multi-tape Turing Machines ◊◊ a b c ◊◊ e f g Control unit Tape 1 Tape 2 Input string Input string appears on Tape 1 (state machine)
  • 43. Fall 2006 Costas Busch - RPI 43 ◊◊ a b c ◊◊ e f g 1q 1q ◊◊ a g c ◊◊ e d g 2q 2q Time 1 Time 2 RLdgfb ,),,(),( → 1q 2q Tape 1 Tape 2 Tape 1 Tape 2
  • 44. Fall 2006 Costas Busch - RPI 44 Multi-tape machines have the same power with Standard Turing machines Theorem: Proof: 1. Multi-tape machines simulate Standard Turing machines 2. Standard Turing machines simulate Multi-tape machines
  • 45. Fall 2006 Costas Busch - RPI 45 1. Multi-tape machines simulate Standard Turing Machines: Trivial: Use just one tape
  • 46. Fall 2006 Costas Busch - RPI 46 2. Standard Turing machines simulate Multi-tape machines: • Uses a multi-track tape to simulate the multiple tapes • A tape of the Multi-tape machine corresponds to a pair of tracks Standard machine:
  • 47. Fall 2006 Costas Busch - RPI 47 ◊◊ a b c h◊ e f g ◊ Multi-tape Machine Tape 1 Tape 2 Standard machine with four track tape a b c e f g 0 0 0 0 1 1 Tape 1 head position Tape 2 head position h 0
  • 48. Fall 2006 Costas Busch - RPI 48 Repeat for each state transition: 1. Return to reference point 2. Find current symbol in Tape 1 3. Find current symbol in Tape 2 4. Make transition a b c e f g 0 0 0 0 1 1 Tape 1 head position Tape 2 head position h 0 # # # # Reference point END OF PROOF
  • 49. Fall 2006 Costas Busch - RPI 49 ( steps) }{ nn baL = Standard Turing machine: Go back and forth times)( 2 nO 2-tape machine: 1. Copy to tape 2n b 2. Compare on tape 1 and tape 2 )(nO n b n a to match the a’s with the b’s ( steps))(nO )( 2 nO time )(nO time Same power doesn’t imply same speed:
  • 50. Fall 2006 Costas Busch - RPI 50 Multidimensional Turing Machines x y a b c 2-dimensional tape HEAD Position: +2, -1 MOVES: L,R,U,D U: up D: down ◊ ◊ ◊ ◊
  • 51. Fall 2006 Costas Busch - RPI 51 Multidimensional machines have the same power with Standard Turing machines Theorem: Proof: 1. Multidimensional machines simulate Standard Turing machines 2. Standard Turing machines simulate Multi-Dimensional machines
  • 52. Fall 2006 Costas Busch - RPI 52 1. Multidimensional machines simulate Standard Turing machines Trivial: Use one dimension
  • 53. Fall 2006 Costas Busch - RPI 53 2. Standard Turing machines simulate Multidimensional machines Standard machine: • Use a two track tape • Store symbols in track 1 • Store coordinates in track 2
  • 54. Fall 2006 Costas Busch - RPI 54 x y a b c◊ ◊ ◊ ◊ a 1 b # symbols coordinates 2-dimensional machine Standard Machine 1 # 2 # 1− c # − 1 1q 1q
  • 55. Fall 2006 Costas Busch - RPI 55 Repeat for each transition followed in the 2-dimensional machine: 1. Update current symbol 2. Compute coordinates of next position 3. Go to new position Standard machine: END OF PROOF
  • 56. Fall 2006 Costas Busch - RPI 56 Nondeterministic Turing Machines Lba ,→ Rca ,→ 1q 2q 3q Allows Non Deterministic Choices Choice 1 Choice 2
  • 57. Fall 2006 Costas Busch - RPI 57 a b c◊ ◊ 1q Lba ,→ Rca ,→ 1q 2q 3q Time 0 Time 1 b b c◊ ◊ 2q c b c◊ ◊ 3q Choice 1 Choice 2
  • 58. Fall 2006 Costas Busch - RPI 58 Input string is accepted if there is a computation: w yqxwq f ∗ 0 Initial configuration Final Configuration Any accept state There is a computation:
  • 59. Fall 2006 Costas Busch - RPI 59 Nondeterministic machines have the same power with Standard Turing machines Theorem: Proof: 1. Nondeterministic machines simulate Standard Turing machines 2. Standard Turing machines simulate Nondeterministic machines
  • 60. Fall 2006 Costas Busch - RPI 60 1. Nondeterministic Machines simulate Standard (deterministic) Turing Machines Trivial: every deterministic machine is also nondeterministic
  • 61. Fall 2006 Costas Busch - RPI 61 2. Standard (deterministic) Turing machines simulate Nondeterministic machines: • Stores all possible computations of the non-deterministic machine on the 2-dimensional tape Deterministic machine: • Uses a 2-dimensional tape (which is equivalent to 1-dimensional tape)
  • 62. Fall 2006 Costas Busch - RPI 62 All possible computation paths Initial state Step 1 Step 2 Step i Step i+1 acceptreject infinite path
  • 63. Fall 2006 Costas Busch - RPI 63 The Deterministic Turing machine simulates all possible computation paths: •in a breadth-first search fashion •simultaneously •step-by-step
  • 64. Fall 2006 Costas Busch - RPI 64 a b c◊ ◊ 1q Lba ,→ Rca ,→ 1q 2q 3q Time 0 NonDeterministic machine Deterministic machine a b c 1q # # # # ## # # # # # # # # # current configuration
  • 65. Fall 2006 Costas Busch - RPI 65 Lba ,→ Rca ,→ 1q 2q 3q b b c 2q # # # # ## # # # # # # Computation 1 b b c◊ ◊ 2q Choice 1 c b c◊ ◊ 3q Choice 2 c b c 3q ## Computation 2 NonDeterministic machine Deterministic machine Time 1
  • 66. Fall 2006 Costas Busch - RPI 66 Repeat For each configuration in current step of non-deterministic machine, if there are two or more choices: 1. Replicate configuration 2. Change the state in the replicas END OF PROOF Deterministic Turing machine Until either the input string is accepted or rejected in all configurations
  • 67. Fall 2006 Costas Busch - RPI 67 The simulation takes in the worst case exponential time compared to the shortest accepting path length of the nondeterministic machine Remark: