3
Most read
6
Most read
9
Most read
Alignment In Road Design
Vertical alignment in road design
CONTENT
• What Is Vertical Alignment ?
• Basic Components Of Vertical Alignment
 Grade
 Vertical Curves
• Type Of Vertical Curves
 Sag Vertical Curves
 Crest Vertical Curves
 Unsymmetrical Vertical Curves
 Symmetrical Vertical Curves
• REFRENCES
WHAT SI VERTICAL ALIGNMENT?
• The alignment is the route of the road, defined as a series of horizontal tangents and curves.
The profile is the vertical aspect of the road, including crest and sag curves, and the straight
grade lines connecting them.
BASIC COMPONENTS OF VERTICAL ALIGNMENT
The two basic elements of vertical alignment are Grades and Vertical Curves.
 Grade
 Vertical Curves
 GRADE
The grade of a highway is a measure of its incline or slope. The amount of grade indicates
how much the highway is inclined from the horizontal. For example, if a section of road is perfectly
flat and level, then its grade along that section is zero. However, if the section is very steep, then the
grade along that section will be expressed as a number, usually a percentage, such as 10 percent.
GRADE CONTD.
The illustration below shows a highway in profile (from the side). Notice that a
right triangle has been constructed in the diagram. The elevation, or height, of the
highway increases in the sketch when moving from left to right. The bottom of the
triangle is the horizontal distance this section of highway covers. This horizontal
distance, sometimes called the "run" of the highway, indicates how far a vehicle
would travel on the road if it were level. However, it is apparent that the road is
not level but rises from left to right. This "rise" is a measure of how much higher a
vehicle is after driving from left to right along the road.
GRADE CONTD.
To calculate the grade of a section of highway, divide the rise (height increase) by the run
(horizontal distance). This equation, used to calculate the ratio of rise-to-run for highway grades, is
the same ratio as the slope "y /x " encountered in a Cartesian coordinate system . In the example
above, the rise of the highway section is 100 feet, while the run is 1,000 feet. The resulting grade is
thus 100 feet divided by 1,000 feet, or 0.1.
Highway grades are usually expressed as a percentage. Any number represented in decimal form
can be converted to a percentage by multiplying
that number by 100. Consequently, a highway grade of 0.1 is referred to as a "10 percent grade"
because 0.1 times 100 equals 10 percent. The highway grade for a section of highway that has a rise
of 1 kilometer and a run of 8 kilometers is ⅛, or 0.125. To convert the highway grade into a
percentage, multiply 0.125 by 100, which results in a grade of 12.5 percent.
EFFECT OF GRADE
The effects of rate and length of grade are more pronounced on the operating characteristics of
trucks than on passenger cars and thus may introduce undesirable speed differentials between the
vehicle types. The term “criticallengthof grade” is used to indicate the maximum length of a
specified ascending gradient upon which a loaded truck can operate without an unreasonable
reduction in speed (commonly 10 mph [15 km/h]). Figure 2-3 shows the relationship of percent
upgrade, length of grade, and truck speed reduction.
FUN FACT
The steepest roads in the world are Baldwin Street in Dunedin, New Zealand and Canton Avenue in Pittsburgh, Pennsylvania. The Guinness World
Record lists Baldwin Street as the steepest street in the world, with a 35% grade (19°) overall and disputed 38% grade (21°) at its steepest section.
25000 balls of chocolate are rolled down the 350 m-long street in an annual charity Cadbury Jaffa Race. In 2001, a student was killed when the
wheelie bin she rode down the street hit a trailer. The Pittsburgh Department of Engineering and Construction recorded a grade of 37% (20°) for
Canton Avenue. The street has formed part of a bicycle race since 1983.
VERTICAL CURVES
Vertical Curves are the second of the two important transition elements in geometric design for
highways, the first being Horizontal Curves. A vertical curve provides a transition between two
sloped roadways, allowing a vehicle to negotiate the elevation rate change at a gradual rate rather
than a sharp cut.
Dependencyof verticalcurves
The design of the curve is dependent
on the following factors:
 intended design speed for the roadway
 Drainage
 Slope
 acceptable rate of change
 Friction
These curves are parabolic and are assigned stationing based on a horizontal axis.
PARABOLIC FORMULATION
Two types of vertical curves exist: (1) Sag Curves and (2) Crest Curves. Sag curves are used where the
change in grade is positive, such as valleys, while crest curves are used when the change in grade is
negative, such as hills. Both types of curves have three defined points: PVC (Point of Vertical Curve), PVI
(Point of Vertical Intersection), and PVT (Point of Vertical Tangency). PVC is the start point of the curve
while the PVT is the end point. The elevation at either of these points can be computed as e_{PVC} and
e_{PVT} for PVC and PVT respectively. The roadway grade that approaches the PVC is defined as g1 and
the roadway grade that leaves the PVT is defined as g2. These grades are generally described as being in
units of (m/m) or (ft./ft.), depending on unit type chosen.
Both types of curves are in parabolic form. Parabolic functions have been found suitable for this case
because they provide a constant rate of change of slope and imply equal curve tangents, which will be
discussed shortly. The general form of the parabolic equation is defined below, where y is the elevation for
the parabola.
11/29/20152K13-CE-02
10
PARABOLIC FORMULATION CONTD.
At x = 0, which refers to the position along the curve that corresponds to the PVC, the elevation equals the elevation of the PVC. Thus, the value of c equals e_{PVC}. Similarly,
the slope of the curve at x = 0 equals the incoming slope at the PVC, or g_1. Thus, the value of b equals g_1. When looking at the second derivative, which equals the rate of slope
change, a value for a can be determined.
Thus, the parabolic formula for a vertical curve can be illustrated.
Where:
epvc =elevation of the PVC
g1 =Initial Roadway Grade (m/m)
g2 =Final Roadway Grade (m/m)
L =Length of Curve (m)
Most vertical curves are designed to be Equal Tangent Curves. For an Equal Tangent Curve, the horizontal length between the PVC and PVI equals the horizontal length
between the PVI and the PVT. These curves are generally easier to design.
TYPE OF VERTICAL CURVES
 SagVerticalCurves
Vertical curves at the bottom of a hill are called sag curves. Sag vertical curves are used to connect two descending grades which form an upside
down parabola, or a sag. Similar to crest vertical curves, the sight distance is the primary parameter needed to find the length of the curve. When
designing sag curves however, you must take into account the positive change in grade which accounts for increased acceleration, or inertia. Using a
dip in the road for example, sag vertical curves offer drivers a view of the roadway during daylight hours, but shorten the headlight views at night.
For this reason, when calculating sag curves, an upward deviation of one degree is automatically assumed.
TYPE OF VERTICAL CURVES CONTD.
 Crest VerticalCurves
Vertical curves at a crest or at the top of a hill are called also called summit curves. Crest vertical curves are used to
connect two separate inclined sections. In calculating crest curves, you only need to find a correct length for the curve
that will match the correct sight distance. The sight distance as well as the distance of the curve can be compared to
each other in two different ways. The first is that the sight distance is less than the length of the curve and the second
is that the length of the curve could be less than the sight distance.
TYPE OF VERTICAL CURVES CONTD.
 UnsymmetricalVerticalCurves
Unsymmetrical curves are sometimes have unequal tangents and are called dog-legs. The process for solving an unsymmetrical curve problem is
almost the same as that used in solving a symmetrical curve. However, you use a different formula for the calculation of the middle vertical offset
at the PVI. Be aware that an unsymmetrical curve is made up of two different parabolas, one on each side of the PVI, having a common POVC
opposite the PVI.
 SymmetricalVerticalCurves
A symmetrical vertical curve occurs when the horizontal distance from the VPC to VPI is equal to the tangent length from VPI to VPT. A
symmetrical vertical curve is useful when developing a freeway entrance when the ramp alignment is on a curve. The symmetrical vertical curve
allows you to compensate for the changing skew between horizontal alignments.
GRADE CHANGE WITHOUT VERTICAL CURVES
Designing a sag or crest vertical point of intersection without a vertical curve is generally acceptable where the
grade difference (A) is:
• 1.0 percent or less for design speeds equal to or less than 45 mph [70 km/h]
• 0.5 percent or less for design speeds greater than 45 mph [70 km/h].
• When a grade change without vertical curve is specified, the construction process typically results in a short
vertical curve being built (i.e., the actual point of intersection is “smoothed” in the field). Conditions where
grade changes without vertical curves are not recommended include:
• Bridges (including bridge ends)
• Direct-traffic culverts
• Other locations requiring carefully detailed grades.
11/29/20152K13-CE-02
16
REFRENCES
http://onlinemanuals.txdot.gov/txdotmanuals/rdw/vertical
_alignment.htm
https://en.wikipedia.org/wiki/Grade_(slope)
http://www.encyclopedia.com/doc/1G2-3407500138.html
https://en.wikibooks.org/wiki/Fundamentals_of_Transporta
tion/Vertical_Curves
http://www.ehow.com/info_8640336_types-vertical-
curves.html
Images from google search engine
11/29/20152K13-CE-02
17

More Related Content

PPT
Vertical Alignment
PPT
2 Superelevation and Spiral Curve ( by Malyar Talash, Highway Design Manager/...
PPTX
Widening of curve
PPTX
Alighnment & horizontal alignment of highway (transportation engineering)
PPT
Horizontal alignment of Roads
PPT
Vertical alignment
PPT
Designing the highway
PPTX
Vertical Alignment
2 Superelevation and Spiral Curve ( by Malyar Talash, Highway Design Manager/...
Widening of curve
Alighnment & horizontal alignment of highway (transportation engineering)
Horizontal alignment of Roads
Vertical alignment
Designing the highway

What's hot (20)

PPTX
Geometrical design of highways
PPTX
Highway Horizontal Alignment
PPTX
Surveys & alignment of Railway Engineering
PPT
Geometric Design - Horizontal and vertical curves
PPTX
Permanent Way of Railway & Components ?(part -1,2,3,4,5)
PPTX
DESIGN OF HILL ROADS AND ITS ALIGNMENT.pptx
PDF
Highway engineering section 1
PPTX
Railway engg geometric design
PPTX
Geometric Design of highway
PPTX
Historical development of road construction
PPTX
Vertical alignment of highway (transportation engineering)
PPT
Railway track construction, drainage & maintenence
PPTX
Introduction to highway engineering
PDF
Station and Yards in Indian Railway
PPTX
Earthwork & track formation Railway Engineering
PDF
Highway Development & Planning
PPTX
Left hand turnout
PDF
Geometric design
PPTX
Airpot design
Geometrical design of highways
Highway Horizontal Alignment
Surveys & alignment of Railway Engineering
Geometric Design - Horizontal and vertical curves
Permanent Way of Railway & Components ?(part -1,2,3,4,5)
DESIGN OF HILL ROADS AND ITS ALIGNMENT.pptx
Highway engineering section 1
Railway engg geometric design
Geometric Design of highway
Historical development of road construction
Vertical alignment of highway (transportation engineering)
Railway track construction, drainage & maintenence
Introduction to highway engineering
Station and Yards in Indian Railway
Earthwork & track formation Railway Engineering
Highway Development & Planning
Left hand turnout
Geometric design
Airpot design
Ad

Similar to Vertical Alignment in road design (20)

PPTX
Presentation2.pptx vertical alignment
PPT
3 vertical alignment of road by Malyar Talash
PPTX
Design of vertical alignment
DOCX
Geometric design of roads - Highways.docx
DOCX
Geometric design of roads - Highways - Copy.docx
PPTX
Geometric design
PDF
Ce3201 l3-06
PPTX
Sight distance and road allignment
PPTX
Lec 1&2
PDF
Curves in Civil Survey
PDF
Vertical alignment.pdf
DOCX
Avance 1
PPTX
Highway Vertical Alignment
PDF
11 Geometric Design of Railway Track [Vertical Alignment] (Railway Engineerin...
PPTX
Vertical alignment by Ayisha Irshad
PPTX
CURVES.pptx surveying engineerings based on survey
PDF
6. f Geometric Vertical 2.pdf
PPTX
Road geometrics 2
PPTX
Vertical Curves_Presentation_NR.pptx
PPT
Highway Ch3.2. And the principle of highwayppt
Presentation2.pptx vertical alignment
3 vertical alignment of road by Malyar Talash
Design of vertical alignment
Geometric design of roads - Highways.docx
Geometric design of roads - Highways - Copy.docx
Geometric design
Ce3201 l3-06
Sight distance and road allignment
Lec 1&2
Curves in Civil Survey
Vertical alignment.pdf
Avance 1
Highway Vertical Alignment
11 Geometric Design of Railway Track [Vertical Alignment] (Railway Engineerin...
Vertical alignment by Ayisha Irshad
CURVES.pptx surveying engineerings based on survey
6. f Geometric Vertical 2.pdf
Road geometrics 2
Vertical Curves_Presentation_NR.pptx
Highway Ch3.2. And the principle of highwayppt
Ad

Recently uploaded (20)

PDF
First part_B-Image Processing - 1 of 2).pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Design Guidelines and solutions for Plastics parts
PDF
Applications of Equal_Area_Criterion.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
Software Engineering and software moduleing
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
Java Basics-Introduction and program control
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
First part_B-Image Processing - 1 of 2).pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
August 2025 - Top 10 Read Articles in Network Security & Its Applications
CyberSecurity Mobile and Wireless Devices
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Design Guidelines and solutions for Plastics parts
Applications of Equal_Area_Criterion.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Information Storage and Retrieval Techniques Unit III
Software Engineering and software moduleing
Module 8- Technological and Communication Skills.pptx
MLpara ingenieira CIVIL, meca Y AMBIENTAL
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
August -2025_Top10 Read_Articles_ijait.pdf
Java Basics-Introduction and program control
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...

Vertical Alignment in road design

  • 1. Alignment In Road Design Vertical alignment in road design
  • 2. CONTENT • What Is Vertical Alignment ? • Basic Components Of Vertical Alignment  Grade  Vertical Curves • Type Of Vertical Curves  Sag Vertical Curves  Crest Vertical Curves  Unsymmetrical Vertical Curves  Symmetrical Vertical Curves • REFRENCES
  • 3. WHAT SI VERTICAL ALIGNMENT? • The alignment is the route of the road, defined as a series of horizontal tangents and curves. The profile is the vertical aspect of the road, including crest and sag curves, and the straight grade lines connecting them.
  • 4. BASIC COMPONENTS OF VERTICAL ALIGNMENT The two basic elements of vertical alignment are Grades and Vertical Curves.  Grade  Vertical Curves  GRADE The grade of a highway is a measure of its incline or slope. The amount of grade indicates how much the highway is inclined from the horizontal. For example, if a section of road is perfectly flat and level, then its grade along that section is zero. However, if the section is very steep, then the grade along that section will be expressed as a number, usually a percentage, such as 10 percent.
  • 5. GRADE CONTD. The illustration below shows a highway in profile (from the side). Notice that a right triangle has been constructed in the diagram. The elevation, or height, of the highway increases in the sketch when moving from left to right. The bottom of the triangle is the horizontal distance this section of highway covers. This horizontal distance, sometimes called the "run" of the highway, indicates how far a vehicle would travel on the road if it were level. However, it is apparent that the road is not level but rises from left to right. This "rise" is a measure of how much higher a vehicle is after driving from left to right along the road.
  • 6. GRADE CONTD. To calculate the grade of a section of highway, divide the rise (height increase) by the run (horizontal distance). This equation, used to calculate the ratio of rise-to-run for highway grades, is the same ratio as the slope "y /x " encountered in a Cartesian coordinate system . In the example above, the rise of the highway section is 100 feet, while the run is 1,000 feet. The resulting grade is thus 100 feet divided by 1,000 feet, or 0.1. Highway grades are usually expressed as a percentage. Any number represented in decimal form can be converted to a percentage by multiplying that number by 100. Consequently, a highway grade of 0.1 is referred to as a "10 percent grade" because 0.1 times 100 equals 10 percent. The highway grade for a section of highway that has a rise of 1 kilometer and a run of 8 kilometers is ⅛, or 0.125. To convert the highway grade into a percentage, multiply 0.125 by 100, which results in a grade of 12.5 percent.
  • 7. EFFECT OF GRADE The effects of rate and length of grade are more pronounced on the operating characteristics of trucks than on passenger cars and thus may introduce undesirable speed differentials between the vehicle types. The term “criticallengthof grade” is used to indicate the maximum length of a specified ascending gradient upon which a loaded truck can operate without an unreasonable reduction in speed (commonly 10 mph [15 km/h]). Figure 2-3 shows the relationship of percent upgrade, length of grade, and truck speed reduction.
  • 8. FUN FACT The steepest roads in the world are Baldwin Street in Dunedin, New Zealand and Canton Avenue in Pittsburgh, Pennsylvania. The Guinness World Record lists Baldwin Street as the steepest street in the world, with a 35% grade (19°) overall and disputed 38% grade (21°) at its steepest section. 25000 balls of chocolate are rolled down the 350 m-long street in an annual charity Cadbury Jaffa Race. In 2001, a student was killed when the wheelie bin she rode down the street hit a trailer. The Pittsburgh Department of Engineering and Construction recorded a grade of 37% (20°) for Canton Avenue. The street has formed part of a bicycle race since 1983.
  • 9. VERTICAL CURVES Vertical Curves are the second of the two important transition elements in geometric design for highways, the first being Horizontal Curves. A vertical curve provides a transition between two sloped roadways, allowing a vehicle to negotiate the elevation rate change at a gradual rate rather than a sharp cut. Dependencyof verticalcurves The design of the curve is dependent on the following factors:  intended design speed for the roadway  Drainage  Slope  acceptable rate of change  Friction These curves are parabolic and are assigned stationing based on a horizontal axis.
  • 10. PARABOLIC FORMULATION Two types of vertical curves exist: (1) Sag Curves and (2) Crest Curves. Sag curves are used where the change in grade is positive, such as valleys, while crest curves are used when the change in grade is negative, such as hills. Both types of curves have three defined points: PVC (Point of Vertical Curve), PVI (Point of Vertical Intersection), and PVT (Point of Vertical Tangency). PVC is the start point of the curve while the PVT is the end point. The elevation at either of these points can be computed as e_{PVC} and e_{PVT} for PVC and PVT respectively. The roadway grade that approaches the PVC is defined as g1 and the roadway grade that leaves the PVT is defined as g2. These grades are generally described as being in units of (m/m) or (ft./ft.), depending on unit type chosen. Both types of curves are in parabolic form. Parabolic functions have been found suitable for this case because they provide a constant rate of change of slope and imply equal curve tangents, which will be discussed shortly. The general form of the parabolic equation is defined below, where y is the elevation for the parabola. 11/29/20152K13-CE-02 10
  • 11. PARABOLIC FORMULATION CONTD. At x = 0, which refers to the position along the curve that corresponds to the PVC, the elevation equals the elevation of the PVC. Thus, the value of c equals e_{PVC}. Similarly, the slope of the curve at x = 0 equals the incoming slope at the PVC, or g_1. Thus, the value of b equals g_1. When looking at the second derivative, which equals the rate of slope change, a value for a can be determined. Thus, the parabolic formula for a vertical curve can be illustrated. Where: epvc =elevation of the PVC g1 =Initial Roadway Grade (m/m) g2 =Final Roadway Grade (m/m) L =Length of Curve (m) Most vertical curves are designed to be Equal Tangent Curves. For an Equal Tangent Curve, the horizontal length between the PVC and PVI equals the horizontal length between the PVI and the PVT. These curves are generally easier to design.
  • 12. TYPE OF VERTICAL CURVES  SagVerticalCurves Vertical curves at the bottom of a hill are called sag curves. Sag vertical curves are used to connect two descending grades which form an upside down parabola, or a sag. Similar to crest vertical curves, the sight distance is the primary parameter needed to find the length of the curve. When designing sag curves however, you must take into account the positive change in grade which accounts for increased acceleration, or inertia. Using a dip in the road for example, sag vertical curves offer drivers a view of the roadway during daylight hours, but shorten the headlight views at night. For this reason, when calculating sag curves, an upward deviation of one degree is automatically assumed.
  • 13. TYPE OF VERTICAL CURVES CONTD.  Crest VerticalCurves Vertical curves at a crest or at the top of a hill are called also called summit curves. Crest vertical curves are used to connect two separate inclined sections. In calculating crest curves, you only need to find a correct length for the curve that will match the correct sight distance. The sight distance as well as the distance of the curve can be compared to each other in two different ways. The first is that the sight distance is less than the length of the curve and the second is that the length of the curve could be less than the sight distance.
  • 14. TYPE OF VERTICAL CURVES CONTD.  UnsymmetricalVerticalCurves Unsymmetrical curves are sometimes have unequal tangents and are called dog-legs. The process for solving an unsymmetrical curve problem is almost the same as that used in solving a symmetrical curve. However, you use a different formula for the calculation of the middle vertical offset at the PVI. Be aware that an unsymmetrical curve is made up of two different parabolas, one on each side of the PVI, having a common POVC opposite the PVI.  SymmetricalVerticalCurves A symmetrical vertical curve occurs when the horizontal distance from the VPC to VPI is equal to the tangent length from VPI to VPT. A symmetrical vertical curve is useful when developing a freeway entrance when the ramp alignment is on a curve. The symmetrical vertical curve allows you to compensate for the changing skew between horizontal alignments.
  • 15. GRADE CHANGE WITHOUT VERTICAL CURVES Designing a sag or crest vertical point of intersection without a vertical curve is generally acceptable where the grade difference (A) is: • 1.0 percent or less for design speeds equal to or less than 45 mph [70 km/h] • 0.5 percent or less for design speeds greater than 45 mph [70 km/h]. • When a grade change without vertical curve is specified, the construction process typically results in a short vertical curve being built (i.e., the actual point of intersection is “smoothed” in the field). Conditions where grade changes without vertical curves are not recommended include: • Bridges (including bridge ends) • Direct-traffic culverts • Other locations requiring carefully detailed grades.