SlideShare a Scribd company logo
What	
  Finance	
  can	
  learn	
  from	
  Dating	
  Sites

Max	
  De	
  Marzi

GOTO	
  Chicago
About	
  Me
• Max	
  De	
  Marzi	
  -­‐	
  Neo4j	
  Field	
  Engineer	
  	
  
• My	
  Blog:	
  http://maxdemarzi.com	
  
• Find	
  me	
  on	
  Twitter:	
  @maxdemarzi	
  
• Email	
  me:	
  maxdemarzi@gmail.com	
  
• GitHub:	
  http://github.com/maxdemarzi
TLDR:
http://www.gartner.com/id=2081316
Consumer	
  Web	
  Giants	
  Depend	
  on	
  Five	
  Graphs
Social

Graph
Mobile

Graph
Intent

Graph
Interest

Graph
Payment

Graph
Friends	
  of	
  Friends	
  Graph	
  
• Real	
  World	
  Basis	
  
• Its	
  Weighted	
  (BFF	
  vs	
  
Family)	
  
• Awesome	
  or	
  Awkward
The	
  Five	
  Graphs	
  of	
  Love
Location	
  Graph	
  
• Long	
  Distance	
  Sucks	
  
• Where	
  are	
  the	
  single	
  
people	
  
• Where	
  should	
  we	
  meet
Passion	
  Graph	
  
• Shared	
  Interests	
  
• Desired	
  Traits	
  
• Long	
  vs	
  Short	
  Term
Safety	
  Graph	
  
• True	
  Identity	
  
• Liers	
  and	
  Cheaters	
  
• Balancing	
  Privacy
SPAM	
  Graph	
  
• Click	
  Bait	
  
• Wanna	
  Cam?	
  
• Professionals
1 2 3
4 5
The	
  Five	
  Graphs	
  of	
  Love
1Friends
2Passion
3Location
4Safety
5SPAM
Meet	
  Jeremy
• Single	
  
• Handsome	
  
• Friendly	
  
• etc
Jeremy
Friends
Johan
Kerstin
Allison
Andreas
Michael
Madelene
JeremyPeter
Bang	
  With	
  Friends	
  =>	
  Down
Better	
  Idea
Friends	
  of	
  Friends
Joh
Kers
Allis
An
AdAndr
Mich
Madel
JerePet
Deeper
Friends	
  of	
  Friends	
  of	
  Friends
FOFOFs
MATCH	
  (:Person	
  {	
  name:“Dan”}	
  )	
  -­‐[:FRIENDS]-­‐>	
  (:Person	
  {	
  name:“Ann”}	
  )	
  
FRIENDS
Dan Ann
Label Property Label Property
Node Node
Cypher	
  Query	
  Language
MATCH	
  (boss)-­‐[:MANAGES*0..3]-­‐>(sub),	
  
	
  	
  	
  	
  	
  	
  (sub)-­‐[:MANAGES*1..3]-­‐>(report)	
  
WHERE	
  boss.name	
  =	
  “John	
  Doe”	
  
RETURN	
  sub.name	
  AS	
  Subordinate,	
  

	
  	
  count(report)	
  AS	
  Total
Express	
  Complex	
  Queries	
  Easily	
  with	
  Cypher
Find	
  all	
  direct	
  reports	
  and	
  

how	
  many	
  people	
  they	
  manage,	
  

up	
  to	
  3	
  levels	
  down
Cypher	
  QuerySQL	
  Query
The	
  Five	
  Graphs	
  of	
  Love
1Friends
2Passion
3Location
4Safety
5SPAM
2Passion

Graph
Interests
Jonathan
:REPORTED_INTEREST
Likes
Traits
The	
  Five	
  Graphs	
  of	
  Love
1Friends
2Passion
3Location
4Safety
5SPAM
3Location
Location
Three	
  Dots	
  and	
  a	
  Dash
Recommend	
  Love
Find	
  your	
  soulmate	
  in	
  the	
  graph	
  	
  
• Are	
  they	
  energetic?	
  
• Do	
  they	
  like	
  dogs?	
  
• Have	
  a	
  good	
  sense	
  of	
  humor?	
  
• Neat	
  and	
  tidy,	
  but	
  not	
  crazy	
  about	
  it?
What	
  are	
  the	
  Top	
  10	
  Potential	
  Mates	
  for	
  me	
  
• that	
  are	
  in	
  the	
  same	
  location	
  
• are	
  sexually	
  compatible	
  
• have	
  traits	
  I	
  want	
  	
  
• want	
  traits	
  I	
  have
Cypher	
  Query:	
  Love	
  Recommendation
Love	
  Recommendation	
  Results
The	
  Five	
  Graphs	
  of	
  Love
1Friends
2Passion
3Location
4Safety
5SPAM
4Safety
Awkward	
  Graph
:WANTS_TO_DATE :WANTS_TO_DATE
JakePeterAndreas
:WORKS_FOR:FRIENDS:FRIENDS
:NO_DATE
:NO_DATE
:WANTS_TO_DATE
:WANTS_TO_DATE
Jennifer
Liars
Cheaters	
  Graph
:WANTS_TO_DATE
JakeLucyAndreas
:LIKES
:MARRIED:FRIENDS
:NO_DATE
:WANTS_TO_DATE
:WANTS_TO_DATE
Jennifer
Let’s	
  take	
  a	
  closer	
  look	
  at	
  Jonathan
Jonathan
Follows
Tweets
Real	
  Interests
:DEMONSTRATED_INTEREST
Jonathan
The	
  Five	
  Graphs	
  of	
  Love
1Friends
2Passion
3Location
4Safety
5SPAM
5SPAM
Click	
  Bait
Cam	
  Girls/Boys
Professionals
Payment	
  Graph	
  
• Fraud	
  detection	
  
• Credit	
  risk	
  analysis	
  
• Chargebacks
Financial	
  Giants	
  Depend	
  on	
  Five	
  Graphs	
  As	
  Well	
  
Asset	
  Graph	
  
• Portfolio	
  analytics	
  
• Risk	
  management	
  
• Market/sentiment	
  analysis	
  
• Compliance
Customer	
  Graph	
  
• Org	
  drill-­‐through	
  
• Product	
  
recommendations	
  
• Mobile	
  payments
Entitlement	
  Graph	
  
• Identity	
  management	
  
• Access	
  management	
  
• Authorization
Master	
  Data	
  Graph	
  
• Enterprise	
  collaboration	
  
• Corporate	
  hierarchy	
  
• Data	
  governance
1 2 3
4 5
The	
  Five	
  Graphs	
  of	
  Finance
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
1Payment

Graph
Intuit	
  Payment	
  Graph
Discover	
  latent	
  network	
  from	
  multiple	
  

product	
  data	
  stores	
  
• Uniquely	
  identify	
  entities	
  and	
  their	
  
connections	
  
• Connections	
  scored	
  by	
  volume	
  of	
  trade	
  
Empower	
  business-­‐unit	
  teams	
  to	
  leverage	
  the	
  
Intuit	
  Payment	
  Graph	
  to	
  build	
  applications	
  
• Graph	
  to	
  be	
  available	
  for	
  real-­‐time	
  queries
1Payment
Consumer	
  Profile	
  Facets
Identity	
  
Name

Address

Phone

Email
Social	
  
Facebook

Yelp

Twitter

…
Demographics	
  
Age

Gender

…
Business	
  Profile	
  Facets
Identity	
  
Name

Address

Phone

Email

Social	
  
Facebook

Yelp

Twitter

…
Demographics	
  
Category

Revenue

Employees

…
1Payment
Payment	
  Graph	
  Depends	
  on	
  the	
  Customer	
  Graph
1Payment
Capturing	
  C2B	
  and	
  B2B	
  Transactions
BUSINESSBUSINESS
CONSUMER
June

1	
  purchase

$25.95 June

3	
  purchases

$650.25
PRODUCT	
  
Name:	
  Zeta

…
PRODUCT	
  
Name:	
  Payroll

…
COMPANY	
  
Name:	
  Viva	
  LLC

Zip:	
  94040

…
COMPANY	
  
Name:	
  Beta	
  LLC

Zip:	
  94043

…
COMPANY	
  
Name:	
  Acme,	
  Inc.

Zip:	
  95134

… Relationship

CUSTOMER	
  
Transactions:	
  467

Years:	
  	
  3Relationship

LICENSE

Years:	
  8
Relationship

CUSTOMER	
  
Transactions:	
  125

Years:	
  	
  1
Relationship

LICENSE

Years:	
  	
  3
#1:	
  Payment	
  Graph	
  Example
Streamlining	
  

credit	
  card

chargebacks
Cardholder	
  calls

card	
  issuer	
  to	
  dispute	
  
transaction
Cardholder	
  receives	
  

credit	
  card	
  statement
Card	
  issuer	
  returns	
  
transaction	
  through	
  
card	
  network
Acquirer	
  resolves	
  chargeback	
  

or	
  forwards	
  it	
  to	
  merchant
Merchant	
  receives	
  chargeback	
  

and	
  accepts	
  or	
  challenges	
  it
Acquirer	
  forwards	
  
representation	
  

to	
  card	
  network
Card	
  issuer	
  verifies	
  
representation	
  and	
  

credits	
  cardholder
Network	
  verifies	
  and	
  

forwards	
  representation	
  

to	
  card	
  issuer
#1:	
  Payment	
  Graph	
  Example
1Payment
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
The	
  Five	
  Graphs	
  of	
  Finance
2Customer

Graph
All	
  Companies	
  and	
  Customers	
  Are	
  Related
2Customer
The	
  Corporate	
  
Hierarchy	
  is	
  

really	
  a	
  graph
2Customer
Corporate	
  Hierarchy	
  is	
  Really	
  a	
  Graph
Name	
   Windsor	
  Press,	
  Inc.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Address	
   6	
  North	
  Third	
  St
	
  	
  	
  	
  	
  	
  
City	
   Hamburg	
  
State	
   PA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Zip	
   19526
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Phone	
   610-­‐562-­‐2267
Name	
   The	
  Windsor	
  Press
	
  	
  	
  	
  	
  	
  	
  	
  	
  
Address	
   6	
  North	
  3rd	
  Street

City	
   Hamburg	
  
State	
   PA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Zip	
   19526-­‐0465
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Phone	
   610-­‐562-­‐2267
ID	
   002114902
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Name	
   Windsor	
  Press,	
  Inc.	
  
Address	
   6	
  N	
  3rd	
  St
	
  	
  	
  	
  	
  	
  
City	
   Hamburg	
  
State	
   PA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Zip	
   19526-­‐1502
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Phone	
   610-­‐562-­‐2267
Both	
  of	
  the	
  records	
  
above	
  map	
  to	
  the	
  
same	
  record
2Customer
Cleaning	
  and	
  Matching	
  for	
  360-­‐Degree	
  Master	
  View
Synthetic	
  Identities	
  and	
  Fraud	
  Rings
145	
  Hickory	
  Rd

Pasadena,	
  CA
415	
  Hickory	
  St

Pasadena,	
  CA
626-­‐407-­‐1234
626-­‐814-­‐6532
Quickly	
  see	
  which	
  customers	
  share	
  the	
  
same	
  contact	
  information 2Customer
3	
  fake	
  addresses	
  and	
  

3	
  fake	
  phone	
  addresses

can	
  create	
  9	
  fake	
  customers
2Customer
Bank	
  Fraud	
  Using	
  False	
  Personas
High	
  Speed	
  Fraud	
  -­‐	
  1000	
  R/S
http://maxdemarzi.com/2014/02/12/online-­‐payment-­‐risk-­‐management-­‐with-­‐neo4j/	
  
High	
  Speed	
  Fraud	
  -­‐	
  8000	
  R/S
http://maxdemarzi.com/2014/02/27/neo4j-­‐at-­‐ludicrous-­‐speed/
High	
  Speed	
  Fraud	
  -­‐	
  28000	
  R/S
http://maxdemarzi.com/2014/03/10/its-­‐over-­‐9000-­‐neo4j-­‐on-­‐websockets/
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
The	
  Five	
  Graphs	
  of	
  Finance
3Entitlement

Graph
http://blogs.gartner.com/ian-­‐glazer/2013/02/08/killing-­‐iam-­‐in-­‐order-­‐to-­‐save-­‐it/
Killing	
  IAM	
  in	
  Order	
  to	
  Save	
  It
3Entitlement
Access	
  Control
Permission	
  Resolution
http://maxdemarzi.com/2013/03/18/permission-­‐resolution-­‐with-­‐neo4j-­‐part-­‐1/	
  
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
The	
  Five	
  Graphs	
  of	
  Finance
4Asset

Graph
Portfolio	
  Analytics
Asset	
  Graph	
  Examples
IT	
  Asset	
  Management Risk	
  Analysis
4Asset
Express	
  Complex	
  Relationship	
  Queries	
  Easily
For	
  a	
  given	
  fund,	
  return	
  all	
  assets	
  
that	
  are	
  made	
  up	
  of	
  other	
  assets,	
  
ordered	
  by	
  the	
  total	
  number	
  of	
  
included	
  assets
Cypher	
  Query
SQL	
  Query
MATCH	
  (fund)-­‐[:INCLUDES*0..n]-­‐>(sub),	
  
	
  	
  	
  	
  	
  	
  (sub)-­‐[:INCLUDES*1..n]-­‐>(asset)	
  
WHERE	
  fund.ticker	
  =	
  “TRLGX”	
  
RETURN	
  sub.ticker	
  AS	
  Asset_Group,	
  

	
  	
  	
  	
  	
  	
  count(asset)	
  AS	
  Total	
  
ORDER	
  BY	
  Total	
  DESC
The	
  Five	
  Graphs	
  of	
  Finance
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
5Master	
  Data

Graph
Research	
  Management
High	
  Frequency	
  Lies
Research	
  in	
  Context
Linked	
  Data
Connect	
  to	
  the	
  	
  
Semantic	
  Web
Technology	
  for	
  Managing

the	
  Five	
  Graphs	
  of	
  Finance
1Payment
2Customer
3Entitlement
4Asset
5Master	
  Data
Intercontinental	
  Exchange
Social	
  network

for	
  brokers
5Master

Data
Hello	
  World	
  Recommendation
Hello	
  World	
  Recommendation
Movie	
  Data	
  Model
Cypher	
  Query:	
  Movie	
  Recommendation
MATCH	
  (watched:Movie	
  {title:"Toy	
  Story”})	
  <-­‐[r1:RATED]-­‐	
  ()	
  -­‐[r2:RATED]-­‐>	
  (unseen:Movie)	
  
WHERE	
  r1.rating	
  >	
  7	
  AND	
  r2.rating	
  >	
  7	
  
AND	
  watched.genres	
  =	
  unseen.genres	
  
AND	
  NOT(	
  (:Person	
  {username:”maxdemarzi"})	
  -­‐[:RATED|WATCHED]-­‐>	
  (unseen)	
  )	
  
RETURN	
  unseen.title,	
  COUNT(*)	
  
ORDER	
  BY	
  COUNT(*)	
  DESC	
  
LIMIT	
  25
What	
  are	
  the	
  Top	
  25	
  Movies	
  
• that	
  I	
  haven't	
  seen	
  
• with	
  the	
  same	
  genres	
  as	
  Toy	
  Story	
  	
  
• given	
  high	
  ratings	
  
• by	
  people	
  who	
  liked	
  Toy	
  Story
Relational	
  Databases	
  Can’t	
  Handle	
  Relationships	
  Well
• Cannot	
  model	
  or	
  store	
  data	
  and	
  relationships	
  
without	
  complexity	
  
• Performance	
  degrades	
  with	
  number	
  &	
  levels	
  of	
  
relationships,	
  and	
  database	
  size	
  
• Query	
  complexity	
  grows	
  with	
  need	
  for	
  JOINs	
  
• Adding	
  new	
  types	
  of	
  	
  data	
  and	
  relationships	
  
requires	
  schema	
  redesign,	
  increasing	
  time	
  to	
  
market	
  
…	
  making	
  traditional	
  databases	
  inappropriate	
  when	
  
relationships	
  are	
  valuable	
  in	
  real-­‐time
Slow	
  development

Poor	
  performance

Low	
  scalability

Hard	
  to	
  maintain
NoSQL	
  Databases	
  Don’t	
  Handle	
  Relationships
• No	
  data	
  structures	
  to	
  model	
  or	
  store	
  
relationships	
  
• No	
  query	
  constructs	
  to	
  support	
  
relationships	
  
• Relating	
  data	
  requires	
  “JOIN	
  logic”	
  in	
  the	
  
application	
  
• No	
  ACID	
  support	
  for	
  transactions	
  
…	
  making	
  NoSQL	
  databases	
  inappropriate	
  when	
  
relationships	
  are	
  valuable	
  in	
  real-­‐time
Real-­‐Time	
  Query	
  Performance

Performance	
  must	
  hold	
  steady	
  with	
  scale
Connectedness	
  and	
  Size	
  of	
  Data	
  Set
Response	
  Time
0	
  to	
  2	
  hops

0	
  to	
  3	
  degrees

Thousands	
  of	
  connections
Tens	
  to	
  hundreds	
  of	
  hops

Thousands	
  of	
  degrees

Billions	
  	
  of	
  connections
Relational	
  and

Other	
  NoSQL

Databases
Neo4j
Neo4j	
  is	
  

1000x	
  faster

Reduces	
  minutes	
  

to	
  milliseconds
Re-­‐Imagine	
  Your	
  Data	
  as	
  a	
  Graph
Neo4j	
  is	
  an	
  enterprise-­‐grade	
  graph	
  
database	
  that	
  enables	
  you	
  to:	
  
• Model	
  and	
  store	
  your	
  data	
  as	
  a	
  
graph	
  
• Query	
  relationships	
  with	
  ease	
  
and	
  in	
  real-­‐time	
  
• Seamlessly	
  evolve	
  applications	
  
to	
  support	
  new	
  requirements	
  by	
  

adding	
  new	
  kinds	
  of	
  data	
  and	
  
relationships
Agile	
  development

High	
  performance

Vertical	
  and	
  horizontal	
  scale

Seamless	
  evolution
THANK	
  YOU

More Related Content

TXT
TXT
Ostatok 18242 accs
TXT
Maillist fresh free
PDF
How to Win Friends and Influence Bloggers
PDF
8 Secrets to Perfect Your Personal Brand Online
TXT
PPT
Pzyche pub con 2011
PDF
8 Paid Promotion Tactics That Will Get You To Quit Organic Traffic
Ostatok 18242 accs
Maillist fresh free
How to Win Friends and Influence Bloggers
8 Secrets to Perfect Your Personal Brand Online
Pzyche pub con 2011
8 Paid Promotion Tactics That Will Get You To Quit Organic Traffic

What's hot (17)

TXT
Emails validos
PDF
How to identify fake followers
PPT
Top 10 Social Media Advertising Hacks Of All Time
TXT
Money list
PDF
Parker's Big Adventure in the Land of Digital Data | Seattle Interactive 2019
PPTX
Jenn Lake - Integrated Marketing Team @ Towson University - Baltimore PR Coun...
PDF
Calgary Roughnecks Advertising Campaign
PDF
Shopping Goes Social - how our habits as consumers are changing
PPTX
Legal and ethical stuff
PDF
10 mind boggling points
PPTX
Double date.com
PPT
Video game questionnaire (1)
PPTX
Internet Scams, Identity Theft And
PDF
Red C email marketing report : Beauty
PPT
Internet Safety Jeopardy Game
PDF
7 Ridiculously Awesome Ways to Rule LinkedIn By Larry Kim
PDF
The 5 Graphs of Love
Emails validos
How to identify fake followers
Top 10 Social Media Advertising Hacks Of All Time
Money list
Parker's Big Adventure in the Land of Digital Data | Seattle Interactive 2019
Jenn Lake - Integrated Marketing Team @ Towson University - Baltimore PR Coun...
Calgary Roughnecks Advertising Campaign
Shopping Goes Social - how our habits as consumers are changing
Legal and ethical stuff
10 mind boggling points
Double date.com
Video game questionnaire (1)
Internet Scams, Identity Theft And
Red C email marketing report : Beauty
Internet Safety Jeopardy Game
7 Ridiculously Awesome Ways to Rule LinkedIn By Larry Kim
The 5 Graphs of Love
Ad

Viewers also liked (18)

PDF
Bootstrapping Recommendations OSCON 2015
PDF
Bootstrapping Recommendations with Neo4j
PDF
Neo4j in Depth
DOCX
40 questions to guarantee you’ll never have a boring date
PPT
Intro to Mutating Cypher
PDF
Data 2.0
PPTX
Visualizing your Graph
PPTX
Windy City DB - Recommendation Engine with Neo4j
PDF
Market Entry Strategy For A Dating App In India
PDF
Dating App Study
PDF
Comparison of Tinder, Match.com, Zoosk, Bumble and Other Dating Apps on Faceb...
PPTX
Online dating
PDF
Decoding Monetization Methods For Dating Apps
PDF
Tinder
PPTX
Neo4j Partner Tag Berlin - Potential für System-Integratoren und Berater
PDF
Fraud Detection Class Slides
PDF
Graph database Use Cases
PPTX
Introducing a presentation
Bootstrapping Recommendations OSCON 2015
Bootstrapping Recommendations with Neo4j
Neo4j in Depth
40 questions to guarantee you’ll never have a boring date
Intro to Mutating Cypher
Data 2.0
Visualizing your Graph
Windy City DB - Recommendation Engine with Neo4j
Market Entry Strategy For A Dating App In India
Dating App Study
Comparison of Tinder, Match.com, Zoosk, Bumble and Other Dating Apps on Faceb...
Online dating
Decoding Monetization Methods For Dating Apps
Tinder
Neo4j Partner Tag Berlin - Potential für System-Integratoren und Berater
Fraud Detection Class Slides
Graph database Use Cases
Introducing a presentation
Ad

Similar to What Finance can learn from Dating Sites (20)

PPTX
Neo4j graphs in the real world - graph days d.c. - april 14, 2015
PPTX
Neo4j gokuldaspillai-121018170144-phpapp01
PPTX
Graphs and innovative graph solutions for financial services
PPTX
Graphs in the Real World
PDF
The Connected Data Imperative: Why Graphs? at Neo4j GraphDay New York City
PDF
The Five Graphs of Finance - Philip Rathle and Emil Eifrem @ GraphConnect NY ...
PPTX
Graph all the things - PRathle
PDF
Graph All the Things: An Introduction to Graph Databases
PDF
UX STRAT USA 2017: Julie Mon, "How UX Is Showing the Business What’s Next at ...
PPTX
Where are We Getting the Online Hits? A Google Analytics Study on Personal Fi...
PDF
Kick start graph visualization projects
PPTX
Webinar: Fighting Fraud with Graph Databases
PDF
35 Useful Personal Finance Web Sites
PDF
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
PDF
An Overview of the Emerging Graph Landscape (Oct 2013)
PPTX
Ketnote: GraphTour Boston
PDF
GraphDay Stockholm - Graphs in the Real World: Top Use Cases for Graph Databases
PDF
Data Modeling & Metadata for Graph Databases
PDF
Advanced Analytics: Graph Database Use Cases
PPTX
Digital Transformation and the Journey to a Highly Connected Enterprise
Neo4j graphs in the real world - graph days d.c. - april 14, 2015
Neo4j gokuldaspillai-121018170144-phpapp01
Graphs and innovative graph solutions for financial services
Graphs in the Real World
The Connected Data Imperative: Why Graphs? at Neo4j GraphDay New York City
The Five Graphs of Finance - Philip Rathle and Emil Eifrem @ GraphConnect NY ...
Graph all the things - PRathle
Graph All the Things: An Introduction to Graph Databases
UX STRAT USA 2017: Julie Mon, "How UX Is Showing the Business What’s Next at ...
Where are We Getting the Online Hits? A Google Analytics Study on Personal Fi...
Kick start graph visualization projects
Webinar: Fighting Fraud with Graph Databases
35 Useful Personal Finance Web Sites
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
An Overview of the Emerging Graph Landscape (Oct 2013)
Ketnote: GraphTour Boston
GraphDay Stockholm - Graphs in the Real World: Top Use Cases for Graph Databases
Data Modeling & Metadata for Graph Databases
Advanced Analytics: Graph Database Use Cases
Digital Transformation and the Journey to a Highly Connected Enterprise

More from Max De Marzi (20)

PDF
AI, Tariffs and Supply Chains in Knowledge Graphs
PDF
DataDay 2023 Presentation
PDF
DataDay 2023 Presentation - Notes
PPTX
Developer Intro Deck-PowerPoint - Download for Speaker Notes
PDF
Outrageous Ideas for Graph Databases
PDF
Neo4j Training Cypher
PDF
Neo4j Training Modeling
PPTX
Neo4j Training Introduction
PDF
Detenga el fraude complejo con Neo4j
PDF
Data Modeling Tricks for Neo4j
PDF
Fraud Detection and Neo4j
PDF
Detecion de Fraude con Neo4j
PDF
Neo4j Data Science Presentation
PDF
Neo4j Stored Procedure Training Part 2
PDF
Neo4j Stored Procedure Training Part 1
PDF
Decision Trees in Neo4j
PDF
Neo4j y Fraude Spanish
PDF
Data modeling with neo4j tutorial
PDF
Neo4j Fundamentals
PDF
Neo4j Presentation
AI, Tariffs and Supply Chains in Knowledge Graphs
DataDay 2023 Presentation
DataDay 2023 Presentation - Notes
Developer Intro Deck-PowerPoint - Download for Speaker Notes
Outrageous Ideas for Graph Databases
Neo4j Training Cypher
Neo4j Training Modeling
Neo4j Training Introduction
Detenga el fraude complejo con Neo4j
Data Modeling Tricks for Neo4j
Fraud Detection and Neo4j
Detecion de Fraude con Neo4j
Neo4j Data Science Presentation
Neo4j Stored Procedure Training Part 2
Neo4j Stored Procedure Training Part 1
Decision Trees in Neo4j
Neo4j y Fraude Spanish
Data modeling with neo4j tutorial
Neo4j Fundamentals
Neo4j Presentation

Recently uploaded (20)

PPTX
IB Computer Science - Internal Assessment.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
1_Introduction to advance data techniques.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PDF
Introduction to Data Science and Data Analysis
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Mega Projects Data Mega Projects Data
PPTX
Database Infoormation System (DBIS).pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
Business Analytics and business intelligence.pdf
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
Introduction to machine learning and Linear Models
PDF
[EN] Industrial Machine Downtime Prediction
IB Computer Science - Internal Assessment.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
oil_refinery_comprehensive_20250804084928 (1).pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Galatica Smart Energy Infrastructure Startup Pitch Deck
1_Introduction to advance data techniques.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
Introduction to Data Science and Data Analysis
ISS -ESG Data flows What is ESG and HowHow
Mega Projects Data Mega Projects Data
Database Infoormation System (DBIS).pptx
Qualitative Qantitative and Mixed Methods.pptx
Business Analytics and business intelligence.pdf
Reliability_Chapter_ presentation 1221.5784
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Introduction to machine learning and Linear Models
[EN] Industrial Machine Downtime Prediction

What Finance can learn from Dating Sites

  • 1. What  Finance  can  learn  from  Dating  Sites
 Max  De  Marzi
 GOTO  Chicago
  • 2. About  Me • Max  De  Marzi  -­‐  Neo4j  Field  Engineer     • My  Blog:  http://maxdemarzi.com   • Find  me  on  Twitter:  @maxdemarzi   • Email  me:  maxdemarzi@gmail.com   • GitHub:  http://github.com/maxdemarzi
  • 4. http://www.gartner.com/id=2081316 Consumer  Web  Giants  Depend  on  Five  Graphs Social
 Graph Mobile
 Graph Intent
 Graph Interest
 Graph Payment
 Graph
  • 5. Friends  of  Friends  Graph   • Real  World  Basis   • Its  Weighted  (BFF  vs   Family)   • Awesome  or  Awkward The  Five  Graphs  of  Love Location  Graph   • Long  Distance  Sucks   • Where  are  the  single   people   • Where  should  we  meet Passion  Graph   • Shared  Interests   • Desired  Traits   • Long  vs  Short  Term Safety  Graph   • True  Identity   • Liers  and  Cheaters   • Balancing  Privacy SPAM  Graph   • Click  Bait   • Wanna  Cam?   • Professionals 1 2 3 4 5
  • 6. The  Five  Graphs  of  Love 1Friends 2Passion 3Location 4Safety 5SPAM
  • 7. Meet  Jeremy • Single   • Handsome   • Friendly   • etc Jeremy
  • 9. Bang  With  Friends  =>  Down
  • 13. Friends  of  Friends  of  Friends FOFOFs
  • 14. MATCH  (:Person  {  name:“Dan”}  )  -­‐[:FRIENDS]-­‐>  (:Person  {  name:“Ann”}  )   FRIENDS Dan Ann Label Property Label Property Node Node Cypher  Query  Language
  • 15. MATCH  (boss)-­‐[:MANAGES*0..3]-­‐>(sub),              (sub)-­‐[:MANAGES*1..3]-­‐>(report)   WHERE  boss.name  =  “John  Doe”   RETURN  sub.name  AS  Subordinate,  
    count(report)  AS  Total Express  Complex  Queries  Easily  with  Cypher Find  all  direct  reports  and  
 how  many  people  they  manage,  
 up  to  3  levels  down Cypher  QuerySQL  Query
  • 16. The  Five  Graphs  of  Love 1Friends 2Passion 3Location 4Safety 5SPAM 2Passion
 Graph
  • 18. Likes
  • 20. The  Five  Graphs  of  Love 1Friends 2Passion 3Location 4Safety 5SPAM 3Location
  • 22. Three  Dots  and  a  Dash
  • 23. Recommend  Love Find  your  soulmate  in  the  graph     • Are  they  energetic?   • Do  they  like  dogs?   • Have  a  good  sense  of  humor?   • Neat  and  tidy,  but  not  crazy  about  it? What  are  the  Top  10  Potential  Mates  for  me   • that  are  in  the  same  location   • are  sexually  compatible   • have  traits  I  want     • want  traits  I  have
  • 24. Cypher  Query:  Love  Recommendation
  • 26. The  Five  Graphs  of  Love 1Friends 2Passion 3Location 4Safety 5SPAM 4Safety
  • 28. Liars
  • 30. Let’s  take  a  closer  look  at  Jonathan Jonathan
  • 34. The  Five  Graphs  of  Love 1Friends 2Passion 3Location 4Safety 5SPAM 5SPAM
  • 38. Payment  Graph   • Fraud  detection   • Credit  risk  analysis   • Chargebacks Financial  Giants  Depend  on  Five  Graphs  As  Well   Asset  Graph   • Portfolio  analytics   • Risk  management   • Market/sentiment  analysis   • Compliance Customer  Graph   • Org  drill-­‐through   • Product   recommendations   • Mobile  payments Entitlement  Graph   • Identity  management   • Access  management   • Authorization Master  Data  Graph   • Enterprise  collaboration   • Corporate  hierarchy   • Data  governance 1 2 3 4 5
  • 39. The  Five  Graphs  of  Finance 1Payment 2Customer 3Entitlement 4Asset 5Master  Data 1Payment
 Graph
  • 40. Intuit  Payment  Graph Discover  latent  network  from  multiple  
 product  data  stores   • Uniquely  identify  entities  and  their   connections   • Connections  scored  by  volume  of  trade   Empower  business-­‐unit  teams  to  leverage  the   Intuit  Payment  Graph  to  build  applications   • Graph  to  be  available  for  real-­‐time  queries 1Payment
  • 41. Consumer  Profile  Facets Identity   Name
 Address
 Phone
 Email Social   Facebook
 Yelp
 Twitter
 … Demographics   Age
 Gender
 … Business  Profile  Facets Identity   Name
 Address
 Phone
 Email
 Social   Facebook
 Yelp
 Twitter
 … Demographics   Category
 Revenue
 Employees
 … 1Payment Payment  Graph  Depends  on  the  Customer  Graph
  • 42. 1Payment Capturing  C2B  and  B2B  Transactions BUSINESSBUSINESS CONSUMER June
 1  purchase
 $25.95 June
 3  purchases
 $650.25
  • 43. PRODUCT   Name:  Zeta
 … PRODUCT   Name:  Payroll
 … COMPANY   Name:  Viva  LLC
 Zip:  94040
 … COMPANY   Name:  Beta  LLC
 Zip:  94043
 … COMPANY   Name:  Acme,  Inc.
 Zip:  95134
 … Relationship
 CUSTOMER   Transactions:  467
 Years:    3Relationship
 LICENSE
 Years:  8 Relationship
 CUSTOMER   Transactions:  125
 Years:    1 Relationship
 LICENSE
 Years:    3 #1:  Payment  Graph  Example
  • 44. Streamlining  
 credit  card
 chargebacks Cardholder  calls
 card  issuer  to  dispute   transaction Cardholder  receives  
 credit  card  statement Card  issuer  returns   transaction  through   card  network Acquirer  resolves  chargeback  
 or  forwards  it  to  merchant Merchant  receives  chargeback  
 and  accepts  or  challenges  it Acquirer  forwards   representation  
 to  card  network Card  issuer  verifies   representation  and  
 credits  cardholder Network  verifies  and  
 forwards  representation  
 to  card  issuer #1:  Payment  Graph  Example 1Payment
  • 45. 1Payment 2Customer 3Entitlement 4Asset 5Master  Data The  Five  Graphs  of  Finance 2Customer
 Graph
  • 46. All  Companies  and  Customers  Are  Related 2Customer
  • 47. The  Corporate   Hierarchy  is  
 really  a  graph 2Customer Corporate  Hierarchy  is  Really  a  Graph
  • 48. Name   Windsor  Press,  Inc.                       Address   6  North  Third  St
             City   Hamburg   State   PA                     Zip   19526
                     Phone   610-­‐562-­‐2267 Name   The  Windsor  Press
                   Address   6  North  3rd  Street
 City   Hamburg   State   PA                     Zip   19526-­‐0465
                             Phone   610-­‐562-­‐2267 ID   002114902
                           Name   Windsor  Press,  Inc.   Address   6  N  3rd  St
             City   Hamburg   State   PA                     Zip   19526-­‐1502
                               Phone   610-­‐562-­‐2267 Both  of  the  records   above  map  to  the   same  record 2Customer Cleaning  and  Matching  for  360-­‐Degree  Master  View
  • 49. Synthetic  Identities  and  Fraud  Rings 145  Hickory  Rd
 Pasadena,  CA 415  Hickory  St
 Pasadena,  CA 626-­‐407-­‐1234 626-­‐814-­‐6532 Quickly  see  which  customers  share  the   same  contact  information 2Customer
  • 50. 3  fake  addresses  and  
 3  fake  phone  addresses
 can  create  9  fake  customers 2Customer Bank  Fraud  Using  False  Personas
  • 51. High  Speed  Fraud  -­‐  1000  R/S http://maxdemarzi.com/2014/02/12/online-­‐payment-­‐risk-­‐management-­‐with-­‐neo4j/  
  • 52. High  Speed  Fraud  -­‐  8000  R/S http://maxdemarzi.com/2014/02/27/neo4j-­‐at-­‐ludicrous-­‐speed/
  • 53. High  Speed  Fraud  -­‐  28000  R/S http://maxdemarzi.com/2014/03/10/its-­‐over-­‐9000-­‐neo4j-­‐on-­‐websockets/
  • 54. 1Payment 2Customer 3Entitlement 4Asset 5Master  Data The  Five  Graphs  of  Finance 3Entitlement
 Graph
  • 58. 1Payment 2Customer 3Entitlement 4Asset 5Master  Data The  Five  Graphs  of  Finance 4Asset
 Graph
  • 59. Portfolio  Analytics Asset  Graph  Examples IT  Asset  Management Risk  Analysis 4Asset
  • 60. Express  Complex  Relationship  Queries  Easily For  a  given  fund,  return  all  assets   that  are  made  up  of  other  assets,   ordered  by  the  total  number  of   included  assets Cypher  Query SQL  Query MATCH  (fund)-­‐[:INCLUDES*0..n]-­‐>(sub),              (sub)-­‐[:INCLUDES*1..n]-­‐>(asset)   WHERE  fund.ticker  =  “TRLGX”   RETURN  sub.ticker  AS  Asset_Group,  
            count(asset)  AS  Total   ORDER  BY  Total  DESC
  • 61. The  Five  Graphs  of  Finance 1Payment 2Customer 3Entitlement 4Asset 5Master  Data 5Master  Data
 Graph
  • 65. Linked  Data Connect  to  the     Semantic  Web
  • 66. Technology  for  Managing
 the  Five  Graphs  of  Finance 1Payment 2Customer 3Entitlement 4Asset 5Master  Data
  • 71. Cypher  Query:  Movie  Recommendation MATCH  (watched:Movie  {title:"Toy  Story”})  <-­‐[r1:RATED]-­‐  ()  -­‐[r2:RATED]-­‐>  (unseen:Movie)   WHERE  r1.rating  >  7  AND  r2.rating  >  7   AND  watched.genres  =  unseen.genres   AND  NOT(  (:Person  {username:”maxdemarzi"})  -­‐[:RATED|WATCHED]-­‐>  (unseen)  )   RETURN  unseen.title,  COUNT(*)   ORDER  BY  COUNT(*)  DESC   LIMIT  25 What  are  the  Top  25  Movies   • that  I  haven't  seen   • with  the  same  genres  as  Toy  Story     • given  high  ratings   • by  people  who  liked  Toy  Story
  • 72. Relational  Databases  Can’t  Handle  Relationships  Well • Cannot  model  or  store  data  and  relationships   without  complexity   • Performance  degrades  with  number  &  levels  of   relationships,  and  database  size   • Query  complexity  grows  with  need  for  JOINs   • Adding  new  types  of    data  and  relationships   requires  schema  redesign,  increasing  time  to   market   …  making  traditional  databases  inappropriate  when   relationships  are  valuable  in  real-­‐time Slow  development
 Poor  performance
 Low  scalability
 Hard  to  maintain
  • 73. NoSQL  Databases  Don’t  Handle  Relationships • No  data  structures  to  model  or  store   relationships   • No  query  constructs  to  support   relationships   • Relating  data  requires  “JOIN  logic”  in  the   application   • No  ACID  support  for  transactions   …  making  NoSQL  databases  inappropriate  when   relationships  are  valuable  in  real-­‐time
  • 74. Real-­‐Time  Query  Performance
 Performance  must  hold  steady  with  scale Connectedness  and  Size  of  Data  Set Response  Time 0  to  2  hops
 0  to  3  degrees
 Thousands  of  connections Tens  to  hundreds  of  hops
 Thousands  of  degrees
 Billions    of  connections Relational  and
 Other  NoSQL
 Databases Neo4j Neo4j  is  
 1000x  faster
 Reduces  minutes  
 to  milliseconds
  • 75. Re-­‐Imagine  Your  Data  as  a  Graph Neo4j  is  an  enterprise-­‐grade  graph   database  that  enables  you  to:   • Model  and  store  your  data  as  a   graph   • Query  relationships  with  ease   and  in  real-­‐time   • Seamlessly  evolve  applications   to  support  new  requirements  by  
 adding  new  kinds  of  data  and   relationships Agile  development
 High  performance
 Vertical  and  horizontal  scale
 Seamless  evolution