SlideShare a Scribd company logo
Sumcheck Arguments and
their Applications
Jonathan Bootle (IBM Research – Zurich)
Alessandro Chiesa (UC Berkeley)
Katerina Sotiraki (UC Berkeley)
https://ia.cr/2021/333
1
Succinct arguments
P V
⋮
10
Common
input
𝑥1 = 4
𝑥2 = 1
⋮
Witness
Completeness: if the
witness is valid, the
verifier accepts
Soundness: if the
witness is invalid, the
verifier rejects
Knowledge soundness:
(later)
Succinctness: the messages are much
smaller than the witness
2
The sumcheck protocol [LFKN92]
P V
Given a polynomial 𝑝(𝑋1, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) = 𝑢
𝑞1 ∈ 𝔽[𝑋1] Checks that
σ𝜔1∈𝐻 𝑞1 𝜔1 = 𝑢
σ𝜔2∈𝐻 𝑞2 𝜔2 = 𝑞1(𝑟1)
⋮
σ𝜔ℓ∈𝐻 𝑞ℓ 𝜔ℓ = 𝑞ℓ−1(𝑟ℓ−1)
⋮
Computes polynomials
𝑞𝑖 𝑋𝑖 =
σ𝜔∈𝐻ℓ−𝑖 𝑝(𝑟1, . . , 𝑟𝑖−1, 𝑋𝑖, 𝜔𝑖+1, . . , 𝜔ℓ)
Soundness: If σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) ≠ 𝑢 then V accepts with probability at most
ℓ⋅deg(𝑝)
|𝔽|
.
Communication
ℓ ⋅ deg 𝑝 elements of 𝔽
𝑟1 ← 𝔽
𝑞ℓ ∈ 𝔽[𝑋ℓ]
𝑟ℓ ← 𝔽
Evaluates 𝑝 to check that
𝑝(𝑟1, … , 𝑟ℓ) = 𝑞ℓ(𝑟ℓ)
3
The sumcheck protocol is everywhere!
Sumcheck
protocol
Probabilistic proofs
[BFL91,BFLS91,GKR08]
Sumcheck-based
succinct arguments
[Thaler13]
[CMT13], [VSBW13],
[W+17], [ZGKPP17],
[WTSTW18],
[XZZPS19], [Set20]
Univariate-sumcheck-
based arguments
[BCRSVS19]
[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]
Sumchecks for
tensor codes
[Meir13]
[RR20],
[BCG20],
[BCL20]
• Linear-time prover
[Thaler13,ZXZS20]
• Small space [CMT13]
(can be implemented with
streaming access)
• Strong soundness
properties [CCHLRR18]
(can make non-interactive
without random oracles)
Useful properties:
4
The sumcheck protocol is everywhere!
Sumcheck
protocol
Probabilistic proofs
[BFL91,BFLS91,GKR08]
Sumcheck-based
succinct arguments
[Thaler13]
[CMT13], [VSBW13],
[W+17], [ZGKPP17],
[WTSTW18],
[XZZPS19], [Set20]
Univariate-sumcheck-
based arguments
[BCRSVS19]
[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]
Sumchecks for
tensor codes
[Meir13]
[RR20],
[BCG20],
[BCL20]
• Linear-time prover
[Thaler13,ZXZS20]
• Small space [CMT13]
(can be implemented with
streaming access)
• Strong soundness
properties [CCHLRR18]
(can make non-interactive
without random oracles)
Useful properties:
https://zkproof.org/2020/03/16/sum-checkprotocol/
5
Pairing-group
arguments
[LMR19], [ZGKPP17],
[XZZPS19]
Split-and-fold techniques:
a separate body of work?
Discrete-log arguments
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]
Unknown-order-group
arguments
[BFS20],
[BHRRS21]
Lattice
arguments
[BLNS20],
[ACK21], [LA20]
Some unifying abstractions: [BMMTV19,AC20,BDFG21]
Split-and-fold
[BCCGP16] • Linear-time prover
• Streaming prover
[BHRRS20], [BHRRS21]
(can be implemented in
small space)
Useful properties:
6
Pairing-group
arguments
[LMR19], [ZGKPP17],
[XZZPS19]
Split-and-fold techniques:
a separate body of work?
Discrete-log arguments
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]
Unknown-order-group
arguments
[BFS20],
[BHRRS21]
Lattice
arguments
[BLNS20],
[ACK21], [LA20]
Some unifying abstractions: [BMMTV19,AC20,BDFG21]
Split-and-fold
[BCCGP16] • Linear-time prover
• Streaming prover
[BHRRS20], [BHRRS21]
(can be implemented in
small space)
Useful properties:
https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains
[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by
Blockstream, and in Monero, Mimblewimble and more…
7
Results
8
From two bodies of work…
…to a unified perspective
Sumchecks and
commitment schemes
[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],
[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]
Sumcheck arguments
(this work)
[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],
[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],
[LA21], [ACK21]
Folding techniques
Sumcheck
protocol
9
General goal:
succinct arguments for commitment openings
P V
Common input:
• commitment 𝐶
• commitment key 𝑐𝑘
Succinctness goal:
communication ≪ |𝑚|
⋮
Focus: commitments
with special structure
Claim: ∃ 𝑚 such that
𝐶 = Com 𝑐𝑘, 𝑚
10
A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if
Com 𝑐𝑘, 𝑚 = ෍
𝜔1,…,𝜔ℓ∈𝐻
𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ )
Example: Pedersen commitments 𝐶 = 𝑎1 ⋅ 𝑔1 + ⋯ + 𝑎𝑛 ⋅ 𝑔𝑛
𝐻 = −1,1
𝑅 = 𝔽𝑝
message
polynomial
in 𝕄[𝑋1, … , 𝑋ℓ],
𝕄 an 𝑅-module
evaluation
points from
𝐻 ⊆ 𝑅, 𝑅 a ring
key polynomial
in 𝕂[𝑋1, … , 𝑋ℓ],
𝕂 an 𝑅-module
combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ
𝕂 = 𝔾, 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ = σ 𝑔𝑖1,…,𝑖ℓ
𝑋1
𝑖1
… 𝑋ℓ
𝑖ℓ
ℂ = 𝔾
𝑓: 𝑎, 𝑔 → 𝑎 ⋅ 𝑔
commitment
space ℂ is an
𝑅-module
𝕄 = 𝔽𝑝, 𝑝𝑚 𝑋1, … , 𝑋ℓ = σ 𝑎𝑖1,…,𝑖ℓ
𝑋1
𝑖1
… 𝑋ℓ
𝑖ℓ
11
Main result: sumcheck arguments
Theorem 1:
Let CM be a commitment scheme which is sumcheck-friendly and
invertible. Given a commitment key 𝑐𝑘 and a commitment 𝐶, the
sumcheck protocol applied to
(with one extra verifier check) is a succinct argument of knowledge for
the claim ∃𝑚 such that 𝐶 = Com(𝑐𝑘, 𝑚), with
Sumcheck
works over
rings and
modules
Think 𝑂(log |𝑚|)
𝑝 𝑋1, … , 𝑋ℓ = 𝑓 𝑝𝑚 𝑋1, … , 𝑋ℓ , 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ ∈ ℂ[𝑋1, … , 𝑋ℓ]
• completeness • soundness • communication ℓ ⋅ deg 𝑝
12
Application: succinct arguments for NP
[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],
[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]
[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],
[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],
[LA21], [ACK21]
scalar-product
arguments
for bilinear modules
Step 1: reduce NP
statements to
scalar products
Step 2: use efficient
subroutine for
scalar-products
Sumcheck
protocol
Sumchecks and
commitment schemes
Folding techniques
Sumcheck arguments
(this work)
13
Application to R1CS over rings
R1CS problem over a ring 𝑹: given matrices 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑛×𝑛
, does there
exist 𝑧 ∈ 𝑅𝑛
satisfying 𝐴𝑧 ∘ 𝐵𝑧 = 𝐶𝑧?
Theorem 2: Let (𝑀𝐿, 𝑀𝑅, 𝑀𝑇, 𝑒) be a “secure” bilinear module where 𝑀𝐿 is a
ring. Let 𝐼 ⊆ 𝑀𝐿 be a suitable ideal. There is a ZK succinct argument of
knowledge for R1CS with
R1CS Ring Prover time Verifier time Proof size
𝑀𝐿/𝐼 𝑂 𝑛 ops
in 𝑀𝐿, 𝑀𝑅, 𝑀𝑇
𝑂 𝑛 ops
in 𝑀𝐿, 𝑀𝑅, 𝑀𝑇
𝑂 log 𝑛 elems of 𝑀𝑇
Has enough structure for Pedersen and Schnorr
Bilinear module: a triple of modules (𝑀𝐿, 𝑀𝑅, 𝑀𝑇) over the same ring
with a bilinear map 𝑒 ∶ 𝑀𝐿 × 𝑀𝑅 → 𝑀𝑇.
14
Lattice-based succinct arguments for R1CS
Corollary: Let 𝑑 be a power of 2, 𝑝 ≪ 𝑞 primes, 𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋𝑑
+ 1
and similarly for 𝑅𝑞. Then assuming SIS is hard over 𝑅𝑞, there is a zero-
knowledge succinct argument of knowledge for R1CS with
R1CS Ring Prover time Verifier time Proof size
𝑅𝑝 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 log 𝑛 elems of 𝑅𝑞
Concurrent work:
• [LA21] gives impossibility results and improvements for lattice POKs
• [ACK21] gives lattice-based succinct arguments for NP
15
Open questions
• Analyse the post-quantum
security of sumcheck arguments
• Investigate new lattice
instantiations [LA21] and concrete
performance improvements
• Give instantiations of
[BFS20,Lee21,BHHRS21] in our
framework (or a generalization)
16
Techniques
17
Sumcheck arguments for commitment schemes
Rings and
modules
Groups
Pedersen
commitments
Scalar-product
commitments
Sumcheck-friendly
commitments
Generalised
sumcheck-friendly
commitments
Today:
Many more details
and results in the
paper!
18
19
sumcheck protocol for
෍
𝜔 ∈ −1,1 log(𝑛)
𝑝𝑎 ഫ
𝜔 𝑝ഫ
𝐺 ഫ
𝜔 = 𝑛 𝐶
Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key ഫ
𝐺 ∈ 𝔾𝑛
Claim: ∃പ
𝑎 ∈ 𝔽𝑛 s.t. 𝐶 = പ
𝑎, ഫ
𝐺
V
𝑝ഫ
𝑎 പ
𝑟
𝑟 ← 𝔽log(𝑛)
𝑞1, … , 𝑞log 𝑛
𝑟
“split-and-fold technique”
[BCCGT16] is equivalent!
(See App. A in the paper)
P
Opening:
പ
𝑎 ∈ 𝔽𝑛
പ
𝑎
Communication: 3 log 𝑛 𝔾 + (log 𝑛 + 1) 𝔽
Verifier computation: O 𝑛 𝔾
𝑞1 1 + 𝑞1 −1 = 𝑛𝐶?
𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 =
𝑞log(𝑛)−1(𝑟log 𝑛 −1)?
⋮
Consistency check:
𝑝𝑎 𝑟 𝑝𝐺 𝑟 = 𝑞log 𝑛 (𝑟log 𝑛 )?
Claim: σഫ
𝜔∈ −1,1 log(𝑛) 𝑝ഫ
𝑎 ഫ
𝜔 𝑝ഫ
𝐺 ഫ
𝜔 = 𝑛 പ
𝑎, ഫ
𝐺 (recall 𝑝𝑟 ഫ
𝑋 = σ𝑖=1
𝑛
𝑟Ӊ
𝑖𝑋1
𝑖1
⋯ 𝑋log(𝑛)
𝑖log(𝑛)
)
Completeness (part 1)
Lemma: If പ
𝑎, ഫ
𝐺 = 𝐶, then the verifier accepts with probability 1.
It suffices to show the following claim.
Sumcheck argument: Pedersen
෍
ഫ
𝜔∈ −1,1 log(𝑛)
𝑝ഫ
𝑎 ഫ
𝜔 𝑝ഫ
𝐺 ഫ
𝜔 𝑛 പ
𝑎, ഫ
𝐺
hypothesis
what the sumcheck
protocol checks
𝑛𝐶
20
Completeness (part 2)
σ𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 cancels monomials of odd degree in any variable, e.g., 𝑋1𝑋2
2
𝑋3
2
𝑝𝑎 𝑋 𝑝𝐺 𝑋
Hence, σ𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 receives contributions from monomials 𝑋1
2𝑖1
⋯ 𝑋log(𝑛)
2𝑖log(𝑛)
Monomials of the form 𝑋1
2𝑖1
⋯ 𝑋log(𝑛)
2𝑖log(𝑛)
arise from 𝑎 Ӊ
𝑖𝑋1
𝑖1
⋯ 𝑋log 𝑛
𝑖log 𝑛
∙ 𝐺 Ӊ
𝑖𝑋1
𝑖1
⋯ 𝑋log 𝑛
𝑖log 𝑛
Sumcheck argument: Pedersen
Claim: σ𝜔∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 = 𝑛 𝑎, 𝐺 (recall 𝑝𝑟 𝑋 = σ𝑖=1
𝑛
𝑟Ӊ
𝑖𝑋1
𝑖1
⋯ 𝑋log(𝑛)
𝑖log(𝑛)
)
21
𝑖1, … , 𝑖log 𝑛 ∈ {0,1}
What kind of soundness? Knowledge soundness
Sumcheck argument: Pedersen
There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘, 𝑚).
Soundness (part 1)
⋮ ⋮ ⋮
𝑟1
(1)
𝑟1
(2)
𝑟1
(3)
𝑞1
𝑞2 𝑟1
(1)
𝑞2 𝑟1
(2)
𝑞2 𝑟1
(3)
P V
𝑞1
⋮
𝑟1
𝑞ℓ
𝑟ℓ
E
message
𝑚
22
Lemma: There exists an extractor that, given a 3-ary tree of accepting transcripts for
key ഫ
𝐺 and commitment 𝐶, finds an opening 𝑎 such that 𝐶 = 𝑎, 𝐺 .
⋮ ⋮ ⋮
𝑟1
(1)
𝑟1
(2)
𝑟1
(3)
𝑞1
𝑞2 𝑟1
(1)
𝑞2 𝑟1
(2)
𝑞2 𝑟1
(3)
𝟑𝐥𝐨𝐠 𝒏 −𝟏 openings of size 2 for 𝑞ℓ−1 𝑟ℓ −1 with key ഫ
𝐺ℓ−1 ∈ 𝔾2
𝟑𝐥𝐨𝐠 𝒏
openings of size 1 for 𝑞ℓ 𝑟ℓ with key 𝑝𝐺 പ
𝑟 ∈ 𝔾
𝟑𝒊−𝟏 openings of size 𝟐𝐥𝐨𝐠 𝒏 −𝒊+𝟏 for 𝑞𝑖−1 𝑟𝑖−1 with key ഫ
𝐺𝑖−1 ∈ 𝔾2log 𝑛 −𝑖+1
where ഫ
𝐺𝑖−1 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, ഫ
𝑋 .
1 opening of size 𝟐𝐥𝐨𝐠 𝒏
= 𝒏 for 𝑛𝐶 with key ഫ
𝐺 ∈ 𝔾𝑛
Round 1
Round 𝒊
Round 𝐥𝐨𝐠(𝐧)
Sumcheck argument: Pedersen
Soundness (part 2)
23
Soundness (part 3)
In the protocol, 𝑞𝑖 𝑋 = σഫ
𝜔∈{−1,1 }ℓ−𝑖 𝑝ഫ
𝑎 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ
𝜔 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ
𝜔 .
So, 𝑞𝑖 𝑋 is quadratic.
Claim: If ഫ
𝜋(𝑗)
∈ 𝔽2ℓ−𝑖
is opening for 𝑞𝑖(𝑟𝑖
(𝑗)
) for 𝑗 ∈ [3], we can find an opening
of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1).
Sumcheck argument: Pedersen
3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that
∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖
(𝑗)
= ഫ
𝜋(𝑗), ഫ
𝐺𝑖
Then we can find 𝑞𝑖−1 𝑟𝑖−1 = 𝑞𝑖 1 + 𝑞𝑖 −1 = ഫ
𝜋′, ഫ
𝐺𝑖−1
Verifier’s check
24
Goal: find ഫ
𝜋 such that 𝑞𝑖 𝑋 = ഫ
𝜋(Χ), ഫ
𝐺𝑖−1
Soundness (part 4)
ഫ
𝐺𝑘 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑘, ഫ
𝑋
= ഫ
𝜋(𝑗), (ഫ
𝐺𝑖−1,𝐿+ 𝑟𝑖
(𝑗)
ഫ
𝐺𝑖−1,𝑅)
= ഫ
𝜋 𝑗
, 𝑟𝑖
(𝑗)
ഫ
𝜋 𝑗
, ഫ
𝐺𝑖−1
Sumcheck argument: Pedersen
Claim: If ഫ
𝜋(𝑗)
∈ 𝔽2ℓ−𝑖
is opening for 𝑞𝑖(𝑟𝑖
(𝑗)
) for 𝑗 ∈ [3], we can find an opening
of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1).
3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that
∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖
(𝑗)
= ഫ
𝜋(𝑗)
, ഫ
𝐺𝑖
ഫ
𝜋 such that
𝑞𝑖 𝑋 = ഫ
𝜋(Χ), ഫ
𝐺𝑖−1
linear algebra
25
Pedersen commitment is invertible.
Sumcheck arguments for commitment schemes
Rings and
modules
Groups
Pedersen
commitments
Scalar-product
commitments
Sumcheck-friendly
commitments
Generalised
sumcheck-friendly
commitments
Today:
26
27
sumcheck protocol for
෍
𝜔 ∈ −1,1 log(𝑛)
𝑝𝑎 𝜔 𝑝ഫ
𝐺1
𝜔
𝑝𝑏 𝜔 𝑝ഫ
𝐺2
𝜔
𝑝𝑎 𝜔 𝑝𝑏 𝜔 𝑈
= 𝑛 𝐶
Common input:
• key ഫ
𝐺1, ഫ
𝐺2, 𝑈 ∈ 𝔾2𝑛+1
• commitment 𝐶 ∈ 𝔾3
Claim: ∃ പ
𝑎, പ
𝑏 ∈ 𝔽2𝑛 s.t. 𝐶 = പ
𝑎, ഫ
𝐺1 , പ
𝑏, ഫ
𝐺2 , പ
𝑎, പ
𝑏 𝑈
𝑝𝑎 പ
𝑟 , 𝑝𝑏(പ
𝑟)
Sumcheck argument for
scalar-product commitments
P
Opening:
പ
𝑎, പ
𝑏 ∈ 𝔽2𝑛
V
𝑟
Consistency check:
𝑝𝑎 𝑟 𝑝ഫ
𝐺1
𝑟
𝑝𝑏 𝑟 𝑝ഫ
𝐺2
𝑟
𝑝𝑎 𝑟 𝑝𝑏 𝑟 𝑈
= 𝑞ℓ(𝑟ℓ)?
𝑟 ← 𝔽log(𝑛)
പ
𝑎, പ
𝑏
Communication: succinct
Verifier computation: linear
𝑞1, … , 𝑞log 𝑛
𝑞1 1 + 𝑞1 −1 = 𝑛𝐶?
𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 =
𝑞log(𝑛)−1(𝑟log 𝑛 −1)?
⋮
Completeness and soundness
Lemma: The verifier accepts with probability 1.
𝐶 =
പ
𝑎, ഫ
𝐺1
പ
𝑏, ഫ
𝐺2
പ
𝑎, പ
𝑏 𝑈
𝑝ഫ
𝑎 ഫ
𝑋 𝑝ഫ
𝐺1
ഫ
𝑋
𝑝ഫ
𝑏 ഫ
𝑋 𝑝ഫ
𝐺2
ഫ
𝑋
𝑝𝑎 ഫ
𝑋 𝑝𝑏 ഫ
𝑋 𝑈
Follows from completeness for Pedersen
Lemma: If the commitment scheme is binding, there exists an extractor that, given a 4-ary
tree of accepting transcripts for key (ഫ
𝐺1, ഫ
𝐺2) and commitment 𝐶, finds an opening പ
𝑎, പ
𝑏
such that 𝐶 = 𝑎, 𝐺1 , 𝑏, 𝐺2 , 𝑎, 𝑏 𝑈 .
Similarly to Pedersen, we extract opening for each components. Using a computational
assumption and the larger tree, we show that third component is the scalar-product പ
𝑎, പ
𝑏 .
Scalar-product commitment is invertible.
Sumcheck argument:
Scalar-product commitment
28
Sumcheck arguments for commitment schemes
Rings and
modules
Groups
Pedersen
commitments
Scalar-product
commitments
Sumcheck-friendly
commitments
Generalised
sumcheck-friendly
commitments
Today:
29
Sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if
Com 𝑐𝑘, 𝑚 = ෍
𝜔1,…,𝜔ℓ∈𝐻
𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ )
message
polynomial
in 𝕄[𝑋1, … , 𝑋ℓ],
𝕄 an 𝑅-module
evaluation
points from
𝐻 ⊆ 𝑅, 𝑅 a ring
key polynomial
in 𝕂[𝑋1, … , 𝑋ℓ],
𝕂 an 𝑅-module
combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ
commitment
space ℂ is an
𝑅-module
Sumcheck arguments for sumcheck-friendly commitments?
30
31
𝑝𝑚(പ
𝑟)
Sumcheck argument for
sumcheck-friendly commitments
𝑟 ← 𝔽ℓ
𝑟
Common input:
• key 𝑐𝑘
• commitment 𝐶
Claim: ∃𝑚 s.t. 𝐶 = σഫ
𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫ
ω , 𝑝𝑐𝑘 ഫ
𝜔
P
Opening: 𝑚
V
Consistency check:
𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑞ℓ(𝑟ℓ)?
𝑚
Communication: sumcheck + |𝑝𝑚 പ
𝑟 |
Verifier computation: computation of 𝑝𝑐𝑘 𝑟 and 𝑓
𝑞1, … , 𝑞ℓ
σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶?
σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)?
⋮
sumcheck protocol for
σ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶
Extractor works inductively as in Pedersen using invertibility in each layer
Completeness and soundness
Lemma: The verifier accepts with probability 1.
Follows directly from definition of sumcheck-friendly commitments
Lemma: If commitment scheme is invertible, there exists an extractor that, given a
suitable tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚.
Sumcheck argument:
Sumcheck-friendly commitment
32
𝑟𝑖
(𝑲)
𝑟𝑖
(2)
Given polynomial 𝑞𝑖(𝑋) and “openings’’ 𝑝 1 ഫ
X , … , 𝑝(𝑲) ഫ
X such that
∀𝑗 ∈ 𝐾 ∶ 𝑞𝑖 𝑟(𝑗) = σഫ
𝜔∈𝐻ℓ−𝑖 𝑓 𝑝(𝑗)
ഫ
𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖
(𝑗)
, ഫ
𝜔)
We can find polynomial 𝑝 such that σ𝜔∈𝐻 𝑞𝑖 (𝜔) = σഫ
𝜔∈𝐻ℓ−𝑖+1 𝑓 𝑝 ഫ
𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖−1, ഫ
𝜔)
Invertibility
𝑟𝑖
(1)
𝑞𝑖
…
Property that allows to climb up the tree from layer to layer.
𝑝(1)
𝑝(2)
𝑝(𝐊)
K-
Invertible commitment schemes:
Pedersen commitments, scalar-product commitments, linear-function commitments
Extra variable 𝑋𝑖: 𝑝 “bigger” than 𝑝(𝑗)
Sumcheck argument:
Sumcheck-friendly commitment
33
Sumcheck arguments for commitment schemes
Rings and
modules
Groups
Pedersen
commitments
Scalar-product
commitments
Sumcheck-friendly
commitments
Generalised
sumcheck-friendly
commitments
Today:
34
From groups to rings
Goal: an abstraction for mathematical structures where folding techniques can work
Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].
Scalar-product commitments for bilinear groups: ഫ
𝒂, ഫ
𝑮𝟏 , ഫ
𝒃, ഫ
𝑮𝟐 , ഫ
𝒂, ഫ
𝒃 ∈ 𝔾𝑻
𝟑
𝔾1 𝔾2
Lattices and groups of unknown order?
35
Messages Keys Commitments Assumption
small 𝑀𝐿 𝑀𝑅 𝑀𝑇 Bilinear Relation Assumption
From groups to rings:
bilinear modules
Norm checks: only “short” elements are valid messages
e.g., for ring-SIS
𝑹-module 𝑴: generalization of vector space over rings
Bilinear module: 𝑀𝐿, 𝑀𝑅, 𝑀𝑇, 𝑒 such that • 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 are 𝑅-modules
• 𝑒 ∶ 𝑀𝐿 × 𝑀𝑅 → 𝑀𝑇 is 𝑅-bilinear
Pedersen example: 𝐶 = 𝑎1𝐺1 + ⋯ + 𝑎𝑛𝐺𝑛 = ⟨𝑎 , 𝐺⟩
‘Multiply’ message and key elements using 𝑒
Add the pieces together
Hard to find small 𝑎
such that 𝑎 , 𝐺 = 0
Can define polynomials over
message and key spaces
36
37
𝑝𝑚(പ
𝑟)
𝑟 ← 𝒞ℓ
𝑟
common input:
• key 𝑐𝑘
• commitment 𝐶
claim: ∃𝑚 with 𝒎 ≤ 𝑩 s.t. 𝐶 = σഫ
𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫ
𝜔 , 𝑝𝑐𝑘 ഫ
𝜔
P
Opening: 𝑚
with 𝒎 ≤ 𝑩
V
consistency check:
𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑣?
𝒑𝒎(പ
𝒓) ≤ 𝑩∗?
𝑚
From groups to rings:
sumcheck arguments
Natural bound for
evaluation of 𝒑𝒎 on 𝒞ℓ
𝑞1, … , 𝑞ℓ
⋮
Special challenge set ⊆ 𝑹!
(necessary even for
sumcheck protocol)
σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶?
σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)?
sumcheck protocol for
σ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶
Arithmetic over rings might cause slackness factors and increase in norm.
e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺:
𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ
𝑎 ≤ 𝑁ℓ ⋅ 𝐵∗
From groups to rings:
soundness
Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable
tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds a relaxed opening 𝑚.
Challenges:
1. Linear algebra different over rings and modules
2. Norm considerations arise
Ring 𝒞 𝜉 𝛮
ℤ𝑞 𝑋
< 𝑋𝑑 + 1 >
{𝑋𝑖: 0 ≤ 𝑖 ≤ 2𝑑 − 1 } 8 𝑂(𝑑7)
Parameters for lattices:
Tighter analysis in
[LA21], [ACK21]
Tighter analysis in
[LA21], [ACK21]
38
e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺:
𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ
𝑎 ≤ 𝑁ℓ ⋅ 𝐵
From groups to rings:
R1CS over rings
Lemma (soundness): There exists an extractor that finds an R1CS witness.
Without slackness!
𝐶 = 𝑎/𝝃ℓ, 𝐺 with പ
𝑎/𝝃ℓ ≤ 𝐵′
Issues:
1. 𝜉 might not be invertible
2. പ
𝑎/𝜉ℓ might not be small
Ideal 𝐼 such that 𝜉 (mod 𝐼) is invertible, 𝑥 (mod 𝐼) small for all 𝑥
𝐶 = 𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰), 𝐺 with പ
𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰) ≤ 𝐵′
A remark about our R1CS result:
39
Instantiations of bilinear modules
Assumption Messages Keys Commitments Ideal
BRA small 𝑀𝐿 𝑀𝑅 𝑀𝑇 𝐼
DLOG 𝔽𝑝 𝔾 𝔾 {0}
DPAIR[AFGHO10] 𝔾1 𝔾2 𝔾𝑇 {0}
UO [BFS20] small ℤ 𝔾 𝔾 𝑛ℤ for suitable small 𝑛
RSIS [Ajtai94] small 𝑅𝑞 𝑅𝑞
𝑑 𝑅𝑞
𝑑 𝑛ℤ for suitable small 𝑛
40
Conclusion
41
Summary of results
Theorem 1:
The sumcheck protocol applied to a sumcheck-friendly commitment scheme
is a succinct argument of knowledge of commitment openings.
Theorem 2: Let (𝑀𝐿, 𝑀𝑅, 𝑀𝑇) be a
secure bilinear module with 𝑀𝐿 a
ring and 𝐼 ⊆ 𝑀𝐿 an ideal. There is a
ZK succinct argument of knowledge
for R1CS with
Corollary: Let 𝑝 ≪ 𝑞 primes,
𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋𝑑
+ 1 and similarly
for 𝑅𝑞. Then assuming SIS is hard,
there is a ZK succinct argument of
knowledge for R1CS with
R1CS
Ring
Prover and verifier
time
Proof size
𝑀𝐿/𝐼 𝑂 𝑛 ops 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 𝑂 log 𝑛 elems
R1CS
Ring
Prover and verifier
time
Proof size
𝑅𝑝 𝑂 𝑛 ops 𝑅𝑝, 𝑅𝑞 𝑂 log 𝑛 elems 𝑅𝑞
42
Takeaways
• Many commitment schemes are
sumcheck friendly
• We can recast many different
cryptographic settings as bilinear modules
• In the paper: instantiations and
polynomial commitment schemes
43
Thanks!
[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],
[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]
[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],
[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],
[LA21], [ACK21]
Sumcheck
protocol
https://ia.cr/2021/333
Sumchecks and
commitment schemes
Folding techniques
Sumcheck arguments
(this work)
44

More Related Content

PDF
zkStudyClub - ProtoStar (Binyi Chen & Benedikt Bünz, Espresso Systems)
PDF
zkStudyClub: HyperPlonk (Binyi Chen, Benedikt Bünz)
PDF
Aide à la Décision Multicritère
PPTX
Raspberry Pi Basic Usage
PPTX
Cours éthique et droit liés aux données numériques
PDF
hypertension portale these medecine 14 11
PPT
accident exposition au sang
PDF
fichier_produit_2056.pdf
zkStudyClub - ProtoStar (Binyi Chen & Benedikt Bünz, Espresso Systems)
zkStudyClub: HyperPlonk (Binyi Chen, Benedikt Bünz)
Aide à la Décision Multicritère
Raspberry Pi Basic Usage
Cours éthique et droit liés aux données numériques
hypertension portale these medecine 14 11
accident exposition au sang
fichier_produit_2056.pdf

What's hot (20)

PPTX
Rétention aigue des urines
PPT
Clampagesvasculaireaucoursdesresectionshepatiquesdcherqui
PDF
La rédaction du certificat médical de décès en Algérie.pdf
PDF
ZK Study Club: Supernova (Srinath Setty - MS Research)
PPTX
cancerdu_pancreas[1] hazo.pptx
PPTX
IBODE et Chirurgie Biliaire - Rappels anatomiques et Indications
DOCX
Anemies du nouveau ne
PDF
Exercices vhdl
PPT
Gps localisation
PDF
Sémiologie radiologique de base appareile locomoteur 1
PDF
zkStudyClub - Lasso/Jolt (Justin Thaler, GWU/a16z)
PPT
Leucorrhées
PPT
Ostéomyélite et ostéoarthrites chez l'enfant 2014
PDF
Caulk: zkStudyClub: Caulk - Lookup Arguments in Sublinear Time (A. Zapico)
PPT
Paludisme et grossesse
PPT
Affections respiratoires et grossesse (dr kemfang)
PDF
Analyse de variance et correlation
PPTX
Pancréatite aigue
PPTX
Semiologi (1)
PPTX
Apprendre à programmer avec scratch
Rétention aigue des urines
Clampagesvasculaireaucoursdesresectionshepatiquesdcherqui
La rédaction du certificat médical de décès en Algérie.pdf
ZK Study Club: Supernova (Srinath Setty - MS Research)
cancerdu_pancreas[1] hazo.pptx
IBODE et Chirurgie Biliaire - Rappels anatomiques et Indications
Anemies du nouveau ne
Exercices vhdl
Gps localisation
Sémiologie radiologique de base appareile locomoteur 1
zkStudyClub - Lasso/Jolt (Justin Thaler, GWU/a16z)
Leucorrhées
Ostéomyélite et ostéoarthrites chez l'enfant 2014
Caulk: zkStudyClub: Caulk - Lookup Arguments in Sublinear Time (A. Zapico)
Paludisme et grossesse
Affections respiratoires et grossesse (dr kemfang)
Analyse de variance et correlation
Pancréatite aigue
Semiologi (1)
Apprendre à programmer avec scratch
Ad

Similar to ZK Study Club: Sumcheck Arguments and Their Applications (20)

PDF
Privacy Preserving State Transitions on Ethereum
PDF
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
PDF
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
PDF
chap3.pdf
PDF
Zksnarks in english
PDF
Interactive proof systems
PDF
A compact zero knowledge proof to restrict message space in homomorphic encry...
PDF
Attacks on signature schemes based on the FFI problem
PPTX
Certified Reasoning for Automated Verification
PDF
Unified Programming Theory
PDF
Verifying offchain computations using TrueBit. Sami Makela
PDF
Berlin sigma-2017
PDF
zkStudyClub - Improving performance of non-native arithmetic in SNARKs (Ivo K...
PDF
Verifiable secure computation of linear fractional programming using certific...
PDF
Modularity for Accurate Static Analysis of Smart Contracts
PDF
Post Quantum Cryptography - Emerging Frontiers
KEY
Pontificating quantification
PDF
Quantum Knowledge Proofs and Post Quantum Cryptography - A Primer
PPT
Signyourd digital signature certificate provider
ODP
Sigma Protocols and Zero Knowledge
Privacy Preserving State Transitions on Ethereum
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
chap3.pdf
Zksnarks in english
Interactive proof systems
A compact zero knowledge proof to restrict message space in homomorphic encry...
Attacks on signature schemes based on the FFI problem
Certified Reasoning for Automated Verification
Unified Programming Theory
Verifying offchain computations using TrueBit. Sami Makela
Berlin sigma-2017
zkStudyClub - Improving performance of non-native arithmetic in SNARKs (Ivo K...
Verifiable secure computation of linear fractional programming using certific...
Modularity for Accurate Static Analysis of Smart Contracts
Post Quantum Cryptography - Emerging Frontiers
Pontificating quantification
Quantum Knowledge Proofs and Post Quantum Cryptography - A Primer
Signyourd digital signature certificate provider
Sigma Protocols and Zero Knowledge
Ad

More from Alex Pruden (10)

PDF
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
PPTX
zkStudyClub - zkSaaS (Sruthi Sekar, UCB)
PDF
zkStudyClub - cqlin: Efficient linear operations on KZG commitments
PDF
Eos - Efficient Private Delegation of zkSNARK provers
PDF
zkStudyClub: Zero-Knowledge Proofs Security, in Practice [JP Aumasson, Taurus]
PDF
zkStudyClub: PLONKUP & Reinforced Concrete [Luke Pearson, Joshua Fitzgerald, ...
PDF
zkStudy Club: Subquadratic SNARGs in the Random Oracle Model
PDF
Ecfft zk studyclub 9.9
PDF
Quarks zk study-club
PDF
zkStudyClub: CirC and Compiling Programs to Circuits
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - zkSaaS (Sruthi Sekar, UCB)
zkStudyClub - cqlin: Efficient linear operations on KZG commitments
Eos - Efficient Private Delegation of zkSNARK provers
zkStudyClub: Zero-Knowledge Proofs Security, in Practice [JP Aumasson, Taurus]
zkStudyClub: PLONKUP & Reinforced Concrete [Luke Pearson, Joshua Fitzgerald, ...
zkStudy Club: Subquadratic SNARGs in the Random Oracle Model
Ecfft zk studyclub 9.9
Quarks zk study-club
zkStudyClub: CirC and Compiling Programs to Circuits

Recently uploaded (20)

PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
The various Industrial Revolutions .pptx
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
project resource management chapter-09.pdf
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Getting Started with Data Integration: FME Form 101
PPT
What is a Computer? Input Devices /output devices
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
STKI Israel Market Study 2025 version august
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
O2C Customer Invoices to Receipt V15A.pptx
The various Industrial Revolutions .pptx
Zenith AI: Advanced Artificial Intelligence
project resource management chapter-09.pdf
A contest of sentiment analysis: k-nearest neighbor versus neural network
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Getting Started with Data Integration: FME Form 101
What is a Computer? Input Devices /output devices
Developing a website for English-speaking practice to English as a foreign la...
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
Getting started with AI Agents and Multi-Agent Systems
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
STKI Israel Market Study 2025 version august
A novel scalable deep ensemble learning framework for big data classification...
NewMind AI Weekly Chronicles - August'25-Week II
1 - Historical Antecedents, Social Consideration.pdf
DP Operators-handbook-extract for the Mautical Institute

ZK Study Club: Sumcheck Arguments and Their Applications

  • 1. Sumcheck Arguments and their Applications Jonathan Bootle (IBM Research – Zurich) Alessandro Chiesa (UC Berkeley) Katerina Sotiraki (UC Berkeley) https://ia.cr/2021/333 1
  • 2. Succinct arguments P V ⋮ 10 Common input 𝑥1 = 4 𝑥2 = 1 ⋮ Witness Completeness: if the witness is valid, the verifier accepts Soundness: if the witness is invalid, the verifier rejects Knowledge soundness: (later) Succinctness: the messages are much smaller than the witness 2
  • 3. The sumcheck protocol [LFKN92] P V Given a polynomial 𝑝(𝑋1, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽, prove that σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) = 𝑢 𝑞1 ∈ 𝔽[𝑋1] Checks that σ𝜔1∈𝐻 𝑞1 𝜔1 = 𝑢 σ𝜔2∈𝐻 𝑞2 𝜔2 = 𝑞1(𝑟1) ⋮ σ𝜔ℓ∈𝐻 𝑞ℓ 𝜔ℓ = 𝑞ℓ−1(𝑟ℓ−1) ⋮ Computes polynomials 𝑞𝑖 𝑋𝑖 = σ𝜔∈𝐻ℓ−𝑖 𝑝(𝑟1, . . , 𝑟𝑖−1, 𝑋𝑖, 𝜔𝑖+1, . . , 𝜔ℓ) Soundness: If σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) ≠ 𝑢 then V accepts with probability at most ℓ⋅deg(𝑝) |𝔽| . Communication ℓ ⋅ deg 𝑝 elements of 𝔽 𝑟1 ← 𝔽 𝑞ℓ ∈ 𝔽[𝑋ℓ] 𝑟ℓ ← 𝔽 Evaluates 𝑝 to check that 𝑝(𝑟1, … , 𝑟ℓ) = 𝑞ℓ(𝑟ℓ) 3
  • 4. The sumcheck protocol is everywhere! Sumcheck protocol Probabilistic proofs [BFL91,BFLS91,GKR08] Sumcheck-based succinct arguments [Thaler13] [CMT13], [VSBW13], [W+17], [ZGKPP17], [WTSTW18], [XZZPS19], [Set20] Univariate-sumcheck- based arguments [BCRSVS19] [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20] Sumchecks for tensor codes [Meir13] [RR20], [BCG20], [BCL20] • Linear-time prover [Thaler13,ZXZS20] • Small space [CMT13] (can be implemented with streaming access) • Strong soundness properties [CCHLRR18] (can make non-interactive without random oracles) Useful properties: 4
  • 5. The sumcheck protocol is everywhere! Sumcheck protocol Probabilistic proofs [BFL91,BFLS91,GKR08] Sumcheck-based succinct arguments [Thaler13] [CMT13], [VSBW13], [W+17], [ZGKPP17], [WTSTW18], [XZZPS19], [Set20] Univariate-sumcheck- based arguments [BCRSVS19] [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20] Sumchecks for tensor codes [Meir13] [RR20], [BCG20], [BCL20] • Linear-time prover [Thaler13,ZXZS20] • Small space [CMT13] (can be implemented with streaming access) • Strong soundness properties [CCHLRR18] (can make non-interactive without random oracles) Useful properties: https://zkproof.org/2020/03/16/sum-checkprotocol/ 5
  • 6. Pairing-group arguments [LMR19], [ZGKPP17], [XZZPS19] Split-and-fold techniques: a separate body of work? Discrete-log arguments [BBBPWM18], [PLS19], [HKR19], [BHRRS20] Unknown-order-group arguments [BFS20], [BHRRS21] Lattice arguments [BLNS20], [ACK21], [LA20] Some unifying abstractions: [BMMTV19,AC20,BDFG21] Split-and-fold [BCCGP16] • Linear-time prover • Streaming prover [BHRRS20], [BHRRS21] (can be implemented in small space) Useful properties: 6
  • 7. Pairing-group arguments [LMR19], [ZGKPP17], [XZZPS19] Split-and-fold techniques: a separate body of work? Discrete-log arguments [BBBPWM18], [PLS19], [HKR19], [BHRRS20] Unknown-order-group arguments [BFS20], [BHRRS21] Lattice arguments [BLNS20], [ACK21], [LA20] Some unifying abstractions: [BMMTV19,AC20,BDFG21] Split-and-fold [BCCGP16] • Linear-time prover • Streaming prover [BHRRS20], [BHRRS21] (can be implemented in small space) Useful properties: https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains [BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by Blockstream, and in Monero, Mimblewimble and more… 7
  • 9. From two bodies of work… …to a unified perspective Sumchecks and commitment schemes [VSBW13], [Wah+17], [ZGKPP17], [WTSTW18], [XZZPS19], [BCRSVS19], [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20], [Set20] Sumcheck arguments (this work) [BCCGP16], [BBBPWM18], [LMR19], [BMMTV19], [PLS19], [HKR19], [BHRRS20], [ACR20], [ACF20], [BFS20], [BLNS20], [AC20], [BDFG21], [BHRRS21], [LA21], [ACK21] Folding techniques Sumcheck protocol 9
  • 10. General goal: succinct arguments for commitment openings P V Common input: • commitment 𝐶 • commitment key 𝑐𝑘 Succinctness goal: communication ≪ |𝑚| ⋮ Focus: commitments with special structure Claim: ∃ 𝑚 such that 𝐶 = Com 𝑐𝑘, 𝑚 10
  • 11. A new notion : sumcheck-friendly commitments Definition: A commitment scheme CM is sumcheck friendly if Com 𝑐𝑘, 𝑚 = ෍ 𝜔1,…,𝜔ℓ∈𝐻 𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ ) Example: Pedersen commitments 𝐶 = 𝑎1 ⋅ 𝑔1 + ⋯ + 𝑎𝑛 ⋅ 𝑔𝑛 𝐻 = −1,1 𝑅 = 𝔽𝑝 message polynomial in 𝕄[𝑋1, … , 𝑋ℓ], 𝕄 an 𝑅-module evaluation points from 𝐻 ⊆ 𝑅, 𝑅 a ring key polynomial in 𝕂[𝑋1, … , 𝑋ℓ], 𝕂 an 𝑅-module combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ 𝕂 = 𝔾, 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ = σ 𝑔𝑖1,…,𝑖ℓ 𝑋1 𝑖1 … 𝑋ℓ 𝑖ℓ ℂ = 𝔾 𝑓: 𝑎, 𝑔 → 𝑎 ⋅ 𝑔 commitment space ℂ is an 𝑅-module 𝕄 = 𝔽𝑝, 𝑝𝑚 𝑋1, … , 𝑋ℓ = σ 𝑎𝑖1,…,𝑖ℓ 𝑋1 𝑖1 … 𝑋ℓ 𝑖ℓ 11
  • 12. Main result: sumcheck arguments Theorem 1: Let CM be a commitment scheme which is sumcheck-friendly and invertible. Given a commitment key 𝑐𝑘 and a commitment 𝐶, the sumcheck protocol applied to (with one extra verifier check) is a succinct argument of knowledge for the claim ∃𝑚 such that 𝐶 = Com(𝑐𝑘, 𝑚), with Sumcheck works over rings and modules Think 𝑂(log |𝑚|) 𝑝 𝑋1, … , 𝑋ℓ = 𝑓 𝑝𝑚 𝑋1, … , 𝑋ℓ , 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ ∈ ℂ[𝑋1, … , 𝑋ℓ] • completeness • soundness • communication ℓ ⋅ deg 𝑝 12
  • 13. Application: succinct arguments for NP [VSBW13], [Wah+17], [ZGKPP17], [WTSTW18], [XZZPS19], [BCRSVS19], [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20], [Set20] [BCCGP16], [BBBPWM18], [LMR19], [BMMTV19], [PLS19], [HKR19], [BHRRS20], [ACR20], [ACF20], [BFS20], [BLNS20], [AC20], [BDFG21], [BHRRS21], [LA21], [ACK21] scalar-product arguments for bilinear modules Step 1: reduce NP statements to scalar products Step 2: use efficient subroutine for scalar-products Sumcheck protocol Sumchecks and commitment schemes Folding techniques Sumcheck arguments (this work) 13
  • 14. Application to R1CS over rings R1CS problem over a ring 𝑹: given matrices 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑛×𝑛 , does there exist 𝑧 ∈ 𝑅𝑛 satisfying 𝐴𝑧 ∘ 𝐵𝑧 = 𝐶𝑧? Theorem 2: Let (𝑀𝐿, 𝑀𝑅, 𝑀𝑇, 𝑒) be a “secure” bilinear module where 𝑀𝐿 is a ring. Let 𝐼 ⊆ 𝑀𝐿 be a suitable ideal. There is a ZK succinct argument of knowledge for R1CS with R1CS Ring Prover time Verifier time Proof size 𝑀𝐿/𝐼 𝑂 𝑛 ops in 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 𝑂 𝑛 ops in 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 𝑂 log 𝑛 elems of 𝑀𝑇 Has enough structure for Pedersen and Schnorr Bilinear module: a triple of modules (𝑀𝐿, 𝑀𝑅, 𝑀𝑇) over the same ring with a bilinear map 𝑒 ∶ 𝑀𝐿 × 𝑀𝑅 → 𝑀𝑇. 14
  • 15. Lattice-based succinct arguments for R1CS Corollary: Let 𝑑 be a power of 2, 𝑝 ≪ 𝑞 primes, 𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋𝑑 + 1 and similarly for 𝑅𝑞. Then assuming SIS is hard over 𝑅𝑞, there is a zero- knowledge succinct argument of knowledge for R1CS with R1CS Ring Prover time Verifier time Proof size 𝑅𝑝 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 log 𝑛 elems of 𝑅𝑞 Concurrent work: • [LA21] gives impossibility results and improvements for lattice POKs • [ACK21] gives lattice-based succinct arguments for NP 15
  • 16. Open questions • Analyse the post-quantum security of sumcheck arguments • Investigate new lattice instantiations [LA21] and concrete performance improvements • Give instantiations of [BFS20,Lee21,BHHRS21] in our framework (or a generalization) 16
  • 18. Sumcheck arguments for commitment schemes Rings and modules Groups Pedersen commitments Scalar-product commitments Sumcheck-friendly commitments Generalised sumcheck-friendly commitments Today: Many more details and results in the paper! 18
  • 19. 19 sumcheck protocol for ෍ 𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 ഫ 𝜔 𝑝ഫ 𝐺 ഫ 𝜔 = 𝑛 𝐶 Sumcheck argument for Pedersen Common input: • commitment 𝐶 ∈ 𝔾 • key ഫ 𝐺 ∈ 𝔾𝑛 Claim: ∃പ 𝑎 ∈ 𝔽𝑛 s.t. 𝐶 = പ 𝑎, ഫ 𝐺 V 𝑝ഫ 𝑎 പ 𝑟 𝑟 ← 𝔽log(𝑛) 𝑞1, … , 𝑞log 𝑛 𝑟 “split-and-fold technique” [BCCGT16] is equivalent! (See App. A in the paper) P Opening: പ 𝑎 ∈ 𝔽𝑛 പ 𝑎 Communication: 3 log 𝑛 𝔾 + (log 𝑛 + 1) 𝔽 Verifier computation: O 𝑛 𝔾 𝑞1 1 + 𝑞1 −1 = 𝑛𝐶? 𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 = 𝑞log(𝑛)−1(𝑟log 𝑛 −1)? ⋮ Consistency check: 𝑝𝑎 𝑟 𝑝𝐺 𝑟 = 𝑞log 𝑛 (𝑟log 𝑛 )?
  • 20. Claim: σഫ 𝜔∈ −1,1 log(𝑛) 𝑝ഫ 𝑎 ഫ 𝜔 𝑝ഫ 𝐺 ഫ 𝜔 = 𝑛 പ 𝑎, ഫ 𝐺 (recall 𝑝𝑟 ഫ 𝑋 = σ𝑖=1 𝑛 𝑟Ӊ 𝑖𝑋1 𝑖1 ⋯ 𝑋log(𝑛) 𝑖log(𝑛) ) Completeness (part 1) Lemma: If പ 𝑎, ഫ 𝐺 = 𝐶, then the verifier accepts with probability 1. It suffices to show the following claim. Sumcheck argument: Pedersen ෍ ഫ 𝜔∈ −1,1 log(𝑛) 𝑝ഫ 𝑎 ഫ 𝜔 𝑝ഫ 𝐺 ഫ 𝜔 𝑛 പ 𝑎, ഫ 𝐺 hypothesis what the sumcheck protocol checks 𝑛𝐶 20
  • 21. Completeness (part 2) σ𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 cancels monomials of odd degree in any variable, e.g., 𝑋1𝑋2 2 𝑋3 2 𝑝𝑎 𝑋 𝑝𝐺 𝑋 Hence, σ𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 receives contributions from monomials 𝑋1 2𝑖1 ⋯ 𝑋log(𝑛) 2𝑖log(𝑛) Monomials of the form 𝑋1 2𝑖1 ⋯ 𝑋log(𝑛) 2𝑖log(𝑛) arise from 𝑎 Ӊ 𝑖𝑋1 𝑖1 ⋯ 𝑋log 𝑛 𝑖log 𝑛 ∙ 𝐺 Ӊ 𝑖𝑋1 𝑖1 ⋯ 𝑋log 𝑛 𝑖log 𝑛 Sumcheck argument: Pedersen Claim: σ𝜔∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 = 𝑛 𝑎, 𝐺 (recall 𝑝𝑟 𝑋 = σ𝑖=1 𝑛 𝑟Ӊ 𝑖𝑋1 𝑖1 ⋯ 𝑋log(𝑛) 𝑖log(𝑛) ) 21 𝑖1, … , 𝑖log 𝑛 ∈ {0,1}
  • 22. What kind of soundness? Knowledge soundness Sumcheck argument: Pedersen There exists an extractor that given a suitable tree of accepting transcripts for a commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘, 𝑚). Soundness (part 1) ⋮ ⋮ ⋮ 𝑟1 (1) 𝑟1 (2) 𝑟1 (3) 𝑞1 𝑞2 𝑟1 (1) 𝑞2 𝑟1 (2) 𝑞2 𝑟1 (3) P V 𝑞1 ⋮ 𝑟1 𝑞ℓ 𝑟ℓ E message 𝑚 22
  • 23. Lemma: There exists an extractor that, given a 3-ary tree of accepting transcripts for key ഫ 𝐺 and commitment 𝐶, finds an opening 𝑎 such that 𝐶 = 𝑎, 𝐺 . ⋮ ⋮ ⋮ 𝑟1 (1) 𝑟1 (2) 𝑟1 (3) 𝑞1 𝑞2 𝑟1 (1) 𝑞2 𝑟1 (2) 𝑞2 𝑟1 (3) 𝟑𝐥𝐨𝐠 𝒏 −𝟏 openings of size 2 for 𝑞ℓ−1 𝑟ℓ −1 with key ഫ 𝐺ℓ−1 ∈ 𝔾2 𝟑𝐥𝐨𝐠 𝒏 openings of size 1 for 𝑞ℓ 𝑟ℓ with key 𝑝𝐺 പ 𝑟 ∈ 𝔾 𝟑𝒊−𝟏 openings of size 𝟐𝐥𝐨𝐠 𝒏 −𝒊+𝟏 for 𝑞𝑖−1 𝑟𝑖−1 with key ഫ 𝐺𝑖−1 ∈ 𝔾2log 𝑛 −𝑖+1 where ഫ 𝐺𝑖−1 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, ഫ 𝑋 . 1 opening of size 𝟐𝐥𝐨𝐠 𝒏 = 𝒏 for 𝑛𝐶 with key ഫ 𝐺 ∈ 𝔾𝑛 Round 1 Round 𝒊 Round 𝐥𝐨𝐠(𝐧) Sumcheck argument: Pedersen Soundness (part 2) 23
  • 24. Soundness (part 3) In the protocol, 𝑞𝑖 𝑋 = σഫ 𝜔∈{−1,1 }ℓ−𝑖 𝑝ഫ 𝑎 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ 𝜔 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ 𝜔 . So, 𝑞𝑖 𝑋 is quadratic. Claim: If ഫ 𝜋(𝑗) ∈ 𝔽2ℓ−𝑖 is opening for 𝑞𝑖(𝑟𝑖 (𝑗) ) for 𝑗 ∈ [3], we can find an opening of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1). Sumcheck argument: Pedersen 3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that ∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖 (𝑗) = ഫ 𝜋(𝑗), ഫ 𝐺𝑖 Then we can find 𝑞𝑖−1 𝑟𝑖−1 = 𝑞𝑖 1 + 𝑞𝑖 −1 = ഫ 𝜋′, ഫ 𝐺𝑖−1 Verifier’s check 24 Goal: find ഫ 𝜋 such that 𝑞𝑖 𝑋 = ഫ 𝜋(Χ), ഫ 𝐺𝑖−1
  • 25. Soundness (part 4) ഫ 𝐺𝑘 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑘, ഫ 𝑋 = ഫ 𝜋(𝑗), (ഫ 𝐺𝑖−1,𝐿+ 𝑟𝑖 (𝑗) ഫ 𝐺𝑖−1,𝑅) = ഫ 𝜋 𝑗 , 𝑟𝑖 (𝑗) ഫ 𝜋 𝑗 , ഫ 𝐺𝑖−1 Sumcheck argument: Pedersen Claim: If ഫ 𝜋(𝑗) ∈ 𝔽2ℓ−𝑖 is opening for 𝑞𝑖(𝑟𝑖 (𝑗) ) for 𝑗 ∈ [3], we can find an opening of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1). 3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that ∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖 (𝑗) = ഫ 𝜋(𝑗) , ഫ 𝐺𝑖 ഫ 𝜋 such that 𝑞𝑖 𝑋 = ഫ 𝜋(Χ), ഫ 𝐺𝑖−1 linear algebra 25 Pedersen commitment is invertible.
  • 26. Sumcheck arguments for commitment schemes Rings and modules Groups Pedersen commitments Scalar-product commitments Sumcheck-friendly commitments Generalised sumcheck-friendly commitments Today: 26
  • 27. 27 sumcheck protocol for ෍ 𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝ഫ 𝐺1 𝜔 𝑝𝑏 𝜔 𝑝ഫ 𝐺2 𝜔 𝑝𝑎 𝜔 𝑝𝑏 𝜔 𝑈 = 𝑛 𝐶 Common input: • key ഫ 𝐺1, ഫ 𝐺2, 𝑈 ∈ 𝔾2𝑛+1 • commitment 𝐶 ∈ 𝔾3 Claim: ∃ പ 𝑎, പ 𝑏 ∈ 𝔽2𝑛 s.t. 𝐶 = പ 𝑎, ഫ 𝐺1 , പ 𝑏, ഫ 𝐺2 , പ 𝑎, പ 𝑏 𝑈 𝑝𝑎 പ 𝑟 , 𝑝𝑏(പ 𝑟) Sumcheck argument for scalar-product commitments P Opening: പ 𝑎, പ 𝑏 ∈ 𝔽2𝑛 V 𝑟 Consistency check: 𝑝𝑎 𝑟 𝑝ഫ 𝐺1 𝑟 𝑝𝑏 𝑟 𝑝ഫ 𝐺2 𝑟 𝑝𝑎 𝑟 𝑝𝑏 𝑟 𝑈 = 𝑞ℓ(𝑟ℓ)? 𝑟 ← 𝔽log(𝑛) പ 𝑎, പ 𝑏 Communication: succinct Verifier computation: linear 𝑞1, … , 𝑞log 𝑛 𝑞1 1 + 𝑞1 −1 = 𝑛𝐶? 𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 = 𝑞log(𝑛)−1(𝑟log 𝑛 −1)? ⋮
  • 28. Completeness and soundness Lemma: The verifier accepts with probability 1. 𝐶 = പ 𝑎, ഫ 𝐺1 പ 𝑏, ഫ 𝐺2 പ 𝑎, പ 𝑏 𝑈 𝑝ഫ 𝑎 ഫ 𝑋 𝑝ഫ 𝐺1 ഫ 𝑋 𝑝ഫ 𝑏 ഫ 𝑋 𝑝ഫ 𝐺2 ഫ 𝑋 𝑝𝑎 ഫ 𝑋 𝑝𝑏 ഫ 𝑋 𝑈 Follows from completeness for Pedersen Lemma: If the commitment scheme is binding, there exists an extractor that, given a 4-ary tree of accepting transcripts for key (ഫ 𝐺1, ഫ 𝐺2) and commitment 𝐶, finds an opening പ 𝑎, പ 𝑏 such that 𝐶 = 𝑎, 𝐺1 , 𝑏, 𝐺2 , 𝑎, 𝑏 𝑈 . Similarly to Pedersen, we extract opening for each components. Using a computational assumption and the larger tree, we show that third component is the scalar-product പ 𝑎, പ 𝑏 . Scalar-product commitment is invertible. Sumcheck argument: Scalar-product commitment 28
  • 29. Sumcheck arguments for commitment schemes Rings and modules Groups Pedersen commitments Scalar-product commitments Sumcheck-friendly commitments Generalised sumcheck-friendly commitments Today: 29
  • 30. Sumcheck-friendly commitments Definition: A commitment scheme CM is sumcheck friendly if Com 𝑐𝑘, 𝑚 = ෍ 𝜔1,…,𝜔ℓ∈𝐻 𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ ) message polynomial in 𝕄[𝑋1, … , 𝑋ℓ], 𝕄 an 𝑅-module evaluation points from 𝐻 ⊆ 𝑅, 𝑅 a ring key polynomial in 𝕂[𝑋1, … , 𝑋ℓ], 𝕂 an 𝑅-module combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ commitment space ℂ is an 𝑅-module Sumcheck arguments for sumcheck-friendly commitments? 30
  • 31. 31 𝑝𝑚(പ 𝑟) Sumcheck argument for sumcheck-friendly commitments 𝑟 ← 𝔽ℓ 𝑟 Common input: • key 𝑐𝑘 • commitment 𝐶 Claim: ∃𝑚 s.t. 𝐶 = σഫ 𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫ ω , 𝑝𝑐𝑘 ഫ 𝜔 P Opening: 𝑚 V Consistency check: 𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑞ℓ(𝑟ℓ)? 𝑚 Communication: sumcheck + |𝑝𝑚 പ 𝑟 | Verifier computation: computation of 𝑝𝑐𝑘 𝑟 and 𝑓 𝑞1, … , 𝑞ℓ σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶? σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)? ⋮ sumcheck protocol for σ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶
  • 32. Extractor works inductively as in Pedersen using invertibility in each layer Completeness and soundness Lemma: The verifier accepts with probability 1. Follows directly from definition of sumcheck-friendly commitments Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚. Sumcheck argument: Sumcheck-friendly commitment 32
  • 33. 𝑟𝑖 (𝑲) 𝑟𝑖 (2) Given polynomial 𝑞𝑖(𝑋) and “openings’’ 𝑝 1 ഫ X , … , 𝑝(𝑲) ഫ X such that ∀𝑗 ∈ 𝐾 ∶ 𝑞𝑖 𝑟(𝑗) = σഫ 𝜔∈𝐻ℓ−𝑖 𝑓 𝑝(𝑗) ഫ 𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖 (𝑗) , ഫ 𝜔) We can find polynomial 𝑝 such that σ𝜔∈𝐻 𝑞𝑖 (𝜔) = σഫ 𝜔∈𝐻ℓ−𝑖+1 𝑓 𝑝 ഫ 𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖−1, ഫ 𝜔) Invertibility 𝑟𝑖 (1) 𝑞𝑖 … Property that allows to climb up the tree from layer to layer. 𝑝(1) 𝑝(2) 𝑝(𝐊) K- Invertible commitment schemes: Pedersen commitments, scalar-product commitments, linear-function commitments Extra variable 𝑋𝑖: 𝑝 “bigger” than 𝑝(𝑗) Sumcheck argument: Sumcheck-friendly commitment 33
  • 34. Sumcheck arguments for commitment schemes Rings and modules Groups Pedersen commitments Scalar-product commitments Sumcheck-friendly commitments Generalised sumcheck-friendly commitments Today: 34
  • 35. From groups to rings Goal: an abstraction for mathematical structures where folding techniques can work Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19]. Scalar-product commitments for bilinear groups: ഫ 𝒂, ഫ 𝑮𝟏 , ഫ 𝒃, ഫ 𝑮𝟐 , ഫ 𝒂, ഫ 𝒃 ∈ 𝔾𝑻 𝟑 𝔾1 𝔾2 Lattices and groups of unknown order? 35
  • 36. Messages Keys Commitments Assumption small 𝑀𝐿 𝑀𝑅 𝑀𝑇 Bilinear Relation Assumption From groups to rings: bilinear modules Norm checks: only “short” elements are valid messages e.g., for ring-SIS 𝑹-module 𝑴: generalization of vector space over rings Bilinear module: 𝑀𝐿, 𝑀𝑅, 𝑀𝑇, 𝑒 such that • 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 are 𝑅-modules • 𝑒 ∶ 𝑀𝐿 × 𝑀𝑅 → 𝑀𝑇 is 𝑅-bilinear Pedersen example: 𝐶 = 𝑎1𝐺1 + ⋯ + 𝑎𝑛𝐺𝑛 = ⟨𝑎 , 𝐺⟩ ‘Multiply’ message and key elements using 𝑒 Add the pieces together Hard to find small 𝑎 such that 𝑎 , 𝐺 = 0 Can define polynomials over message and key spaces 36
  • 37. 37 𝑝𝑚(പ 𝑟) 𝑟 ← 𝒞ℓ 𝑟 common input: • key 𝑐𝑘 • commitment 𝐶 claim: ∃𝑚 with 𝒎 ≤ 𝑩 s.t. 𝐶 = σഫ 𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫ 𝜔 , 𝑝𝑐𝑘 ഫ 𝜔 P Opening: 𝑚 with 𝒎 ≤ 𝑩 V consistency check: 𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑣? 𝒑𝒎(പ 𝒓) ≤ 𝑩∗? 𝑚 From groups to rings: sumcheck arguments Natural bound for evaluation of 𝒑𝒎 on 𝒞ℓ 𝑞1, … , 𝑞ℓ ⋮ Special challenge set ⊆ 𝑹! (necessary even for sumcheck protocol) σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶? σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)? sumcheck protocol for σ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶
  • 38. Arithmetic over rings might cause slackness factors and increase in norm. e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺: 𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ 𝑎 ≤ 𝑁ℓ ⋅ 𝐵∗ From groups to rings: soundness Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds a relaxed opening 𝑚. Challenges: 1. Linear algebra different over rings and modules 2. Norm considerations arise Ring 𝒞 𝜉 𝛮 ℤ𝑞 𝑋 < 𝑋𝑑 + 1 > {𝑋𝑖: 0 ≤ 𝑖 ≤ 2𝑑 − 1 } 8 𝑂(𝑑7) Parameters for lattices: Tighter analysis in [LA21], [ACK21] Tighter analysis in [LA21], [ACK21] 38
  • 39. e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺: 𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ 𝑎 ≤ 𝑁ℓ ⋅ 𝐵 From groups to rings: R1CS over rings Lemma (soundness): There exists an extractor that finds an R1CS witness. Without slackness! 𝐶 = 𝑎/𝝃ℓ, 𝐺 with പ 𝑎/𝝃ℓ ≤ 𝐵′ Issues: 1. 𝜉 might not be invertible 2. പ 𝑎/𝜉ℓ might not be small Ideal 𝐼 such that 𝜉 (mod 𝐼) is invertible, 𝑥 (mod 𝐼) small for all 𝑥 𝐶 = 𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰), 𝐺 with പ 𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰) ≤ 𝐵′ A remark about our R1CS result: 39
  • 40. Instantiations of bilinear modules Assumption Messages Keys Commitments Ideal BRA small 𝑀𝐿 𝑀𝑅 𝑀𝑇 𝐼 DLOG 𝔽𝑝 𝔾 𝔾 {0} DPAIR[AFGHO10] 𝔾1 𝔾2 𝔾𝑇 {0} UO [BFS20] small ℤ 𝔾 𝔾 𝑛ℤ for suitable small 𝑛 RSIS [Ajtai94] small 𝑅𝑞 𝑅𝑞 𝑑 𝑅𝑞 𝑑 𝑛ℤ for suitable small 𝑛 40
  • 42. Summary of results Theorem 1: The sumcheck protocol applied to a sumcheck-friendly commitment scheme is a succinct argument of knowledge of commitment openings. Theorem 2: Let (𝑀𝐿, 𝑀𝑅, 𝑀𝑇) be a secure bilinear module with 𝑀𝐿 a ring and 𝐼 ⊆ 𝑀𝐿 an ideal. There is a ZK succinct argument of knowledge for R1CS with Corollary: Let 𝑝 ≪ 𝑞 primes, 𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋𝑑 + 1 and similarly for 𝑅𝑞. Then assuming SIS is hard, there is a ZK succinct argument of knowledge for R1CS with R1CS Ring Prover and verifier time Proof size 𝑀𝐿/𝐼 𝑂 𝑛 ops 𝑀𝐿, 𝑀𝑅, 𝑀𝑇 𝑂 log 𝑛 elems R1CS Ring Prover and verifier time Proof size 𝑅𝑝 𝑂 𝑛 ops 𝑅𝑝, 𝑅𝑞 𝑂 log 𝑛 elems 𝑅𝑞 42
  • 43. Takeaways • Many commitment schemes are sumcheck friendly • We can recast many different cryptographic settings as bilinear modules • In the paper: instantiations and polynomial commitment schemes 43
  • 44. Thanks! [VSBW13], [Wah+17], [ZGKPP17], [WTSTW18], [XZZPS19], [BCRSVS19], [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20], [Set20] [BCCGP16], [BBBPWM18], [LMR19], [BMMTV19], [PLS19], [HKR19], [BHRRS20], [ACR20], [ACF20], [BFS20], [BLNS20], [AC20], [BDFG21], [BHRRS21], [LA21], [ACK21] Sumcheck protocol https://ia.cr/2021/333 Sumchecks and commitment schemes Folding techniques Sumcheck arguments (this work) 44