create a website

A neural network-based predictive decision model for customer retention in the telecommunication sector. (2024). Majhi, Ritanjali ; Thangeda, Rahul ; Kumar, Niraj.
In: Technological Forecasting and Social Change.
RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524000465.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 85

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. .

    Full description at Econpapers || Download paper

  2. Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach. (2024). Cagliyor, Sendi ; Kirgiz, Omer Bugra ; Kiygi-Calli, Meltem ; el Oraiby, Maryam.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:48:y:2024:i:8:s0308596124001137.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Adebiyi, S.O. ; Oyatoye, E.O. ; Amole, B.B. Relevant drivers for Customers’ churn and retention decision in the Nigerian Mobile telecommunication industry. 2016 Journal of Competitiveness. 8 1-12
    Paper not yet in RePEc: Add citation now
  2. Ahmad, A.K. ; Jafar, A. ; Aljoumaa, K. Customer churn prediction in telecom using machine learning in big data platform. 2019 Journal of Big Data. 6 1-24
    Paper not yet in RePEc: Add citation now
  3. Ahmed, A.A. ; Maheswari, D. Churn prediction on huge telecom data using hybrid firefly based classification. 2017 Egyptian Informatics Journal. 18 215-220
    Paper not yet in RePEc: Add citation now
  4. Al-Refaie, A. ; Al-Tarawneh, M. ; Bata, N. Study of customer churn in the telecom industry using structural equation modelling. 2018 Economy & Business Journal. 12 393-411

  5. Amin, A. ; Al-Obeidat, F. ; Shah, B. ; Adnan, A. ; Loo, J. ; Anwar, S. Customer churn prediction in telecommunication industry using data certainty. 2019 J. Bus. Res.. 94 290-301

  6. Anderson, E.W. Cross-category variation in customer satisfaction and retention. 1994 Mark. Lett.. 5 19-30
    Paper not yet in RePEc: Add citation now
  7. APEDB, 2023. India overview of Telecom Sector. Available at: https://apedb.gov.in/telecom.html.
    Paper not yet in RePEc: Add citation now
  8. Ascarza, E. Retention futility: targeting high-risk customers might be ineffective. 2018 J. Market. Res.. 55 80-98
    Paper not yet in RePEc: Add citation now
  9. Ascarza, E. ; Iyengar, R. ; Schleicher, M. The perils of proactive churn prevention using plan recommendations: evidence from a field experiment. 2016 J. Market. Res.. 53 46-60
    Paper not yet in RePEc: Add citation now
  10. Ascarza, E. ; Neslin, S.A. ; Netzer, O. ; Anderson, Z. ; Fader, P.S. ; Gupta, S. ; Hardie, B.G. ; Lemmens, A. ; Libai, B. ; Neal, D. ; Provost, F. In pursuit of enhanced customer retention management: review, key issues, and future directions. 2018 Cust. Needs Solut.. 5 65-81

  11. Azadeh, A. ; Darivandi Shoushtari, K. ; Saberi, M. ; Teimoury, E. An integrated artificial neural network and system dynamics approach in support of the viable system model to enhance industrial intelligence: the case of a large broiler industry. 2014 Syst. Res. Behav. Sci.. 31 236-257

  12. Babu, S. ; Ananthanarayanan, D.N. ; Ramesh, V. A survey on factors impacting churn in telecommunication using data mining techniques. 2014 International Journal of Engineering Research & Technology. 3 1745-1748
    Paper not yet in RePEc: Add citation now
  13. Baeke, P. ; Van den Poel, D. Improving purchasing behaviour predictions by data augmentation with situational variables. 2010 International Journal of Information Technology & Decision Making. 9 853-872

  14. Basaran, A.A. ; Cetinkaya, M. ; Bagdadioglu, N. Operator choice in the mobile telecommunications market: evidence from Turkish urban population. 2014 Telecommunications Policy. 38 1-13

  15. Bin, L. ; Shao, P. ; Liu, J. Customer churn prediction based on the decision tree in personal handy phone system service. 2007 Proceedings of the IEEE International conference on service systems and service management. 1-5
    Paper not yet in RePEc: Add citation now
  16. Bolton, R.N. A dynamic model of the duration of the customer’s relationship with a continuous service provider: the role of satisfaction. 1998 Mark. Sci.. 17 45-65

  17. Bolton, R.N. ; Kannan, P.K. ; Bramlett, M.D. Implications of loyalty program membership and service experiences for customer retention and value. 2000 J. Acad. Mark. Sci.. 28 95-108
    Paper not yet in RePEc: Add citation now
  18. Bolton, R.N. ; Lemon, K.N. A dynamic model of customers’ usage of services: usage as an antecedent and consequence of satisfaction. 1999 J. Market. Res.. 36 171-186
    Paper not yet in RePEc: Add citation now
  19. Burez, J. ; Van den Poel, D. CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. 2007 Expert Systems with Applications. 32 277-288
    Paper not yet in RePEc: Add citation now
  20. Chen, C.P. ; Weng, J.Y. ; Yang, C.S. ; Tseng, F.M. Employing a data mining approach for identification of mobile opinion leaders and their content usage patterns in large telecommunications datasets. 2018 Technological Forecasting and Social Change. 130 88-98

  21. Coussement, K. ; Lessmann, S. ; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry. 2017 Decis. Support. Syst.. 95 27-36
    Paper not yet in RePEc: Add citation now
  22. Díaz, G.R. The influence of satisfaction on customer retention in mobile phone market. 2017 J. Retail. Consum. Serv.. 36 75-85
    Paper not yet in RePEc: Add citation now
  23. Ferreira, P. ; Telang, R. ; De Matos, M.G. Effect of friends’ churn on consumer behavior in mobile networks. 2019 J. Manag. Inf. Syst.. 36 355-390
    Paper not yet in RePEc: Add citation now
  24. Gerpott, T.J. ; Rams, W. ; Schindler, A. Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market. 2001 Telecommun. Policy. 25 249-269

  25. Gijón, C. ; Garín-Muñoz, T. ; Pérez-Amaral, T. ; López-Zorzano, R. Satisfaction of individual mobile phone users in Spain. 2013 Telecommun. Policy. 37 940-954

  26. Guidolin, M. ; Guseo, R. Technological change in the US music industry: within-product, cross-product and churn effects between competing blockbusters. 2015 Technological Forecasting and Social Change. 99 35-46

  27. Gustafsson, A. ; Johnson, M.D. ; Roos, I. The effects of customer satisfaction, relationship commitment dimensions, and triggers on customer retention. 2005 Journal of marketing. 69 210-218
    Paper not yet in RePEc: Add citation now
  28. Hadden, J. ; Ashutosh, T. ; Rajkumar, R. ; Dymitr, R. Computer assisted customer churn management: state-of the art and future trends. 2007 Comput. Oper. Res.. 34 2902-2917
    Paper not yet in RePEc: Add citation now
  29. Hatcher, L. ; O’Rourke, N. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling. 2013 SAS Institute, Inc: Cary, N.C
    Paper not yet in RePEc: Add citation now
  30. Hochstein, B. ; Rangarajan, D. ; Mehta, N. ; Kocher, D. An industry/academic perspective on customer success management. 2020 J. Serv. Res.. 23 3-7
    Paper not yet in RePEc: Add citation now
  31. Huang, B. ; Mohand, T.K. ; Brian, B. Customer churn prediction in telecommunications. 2012 Expert Syst. Appl.. 39 1414-1425
    Paper not yet in RePEc: Add citation now
  32. Hung, S.Y. ; Yen, D.C. ; Wang, H.-Y. Applying data mining to telecom churn management. 2006 Expert Systems with Applications. 31 515-524
    Paper not yet in RePEc: Add citation now
  33. Hwang, H. ; Jung, T. ; Suh, E. An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry. 2004 Expert Systems with Applications. 26 181-188
    Paper not yet in RePEc: Add citation now
  34. Idris, A. ; Muhammad, R. ; Khan, A. Churn prediction in telecom using random Forest and PSO based data balancing in combination with various feature selection strategies. 2012 Computers & Electrical Engineering. 38 1808-1819
    Paper not yet in RePEc: Add citation now
  35. Ismail, M.R. ; Awang, M.K. ; Rahman, M.N.A. ; Makhtar, M. A multi-layer perceptron approach for customer churn prediction. 2015 International Journal of Multimedia and Ubiquitous Engineering. 10 213-222
    Paper not yet in RePEc: Add citation now
  36. Jaiswal, A.K. ; Niraj, R. ; Park, C.H. ; Agarwal, M.K. The effect of relationship and transactional characteristics on customer retention in emerging online markets. 2018 J. Bus. Res.. 92 25-35

  37. Jiang, P. ; Liu, Z. ; Zhang, L. ; Wang, J. Hybrid model for profit-driven churn prediction based on cost minimization and return maximization. 2023 Expert Systems with Applications. 228 -
    Paper not yet in RePEc: Add citation now
  38. Keaveney, S.M. Customer switching behavior in service industries: An exploratory study. 1995 J. Mark.. 59 71-82
    Paper not yet in RePEc: Add citation now
  39. Keramati, A. ; Ardabili, S.M. Churn analysis for an Iranian mobile operator. 2011 Telecommunications Policy. 35 344-356

  40. Keramati, A. ; Jafari-Marandi, R. ; Aliannejadi, M. ; Ahmadian, I. ; Mozaffari, M. ; Abbasi, U. Improved churn prediction in telecommunication industry using data mining techniques. 2014 Appl. Soft Comput.. 24 994-1012
    Paper not yet in RePEc: Add citation now
  41. Khatri, H. 2022. India already has a large addressable market for 5G. Available at: https://www.opensignal.com/2022/09/07/india-already-has-a-large-addressable-market-for-5g.
    Paper not yet in RePEc: Add citation now
  42. Khodabandehlou, S. ; Zivari Rahman, M. Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior. 2017 J. Syst. Inf. Technol.. 19 65-93
    Paper not yet in RePEc: Add citation now
  43. Kim, H.S. ; Yoon, C.H. Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. 2004 Telecommunications policy. 28 751-765
    Paper not yet in RePEc: Add citation now
  44. Kim, M.K. ; Park, M.C. ; Jeong, D.H. The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services. 2004 Telecommunications policy. 28 145-159

  45. Kim, M.K. ; Park, M.C. ; Lee, D.H. ; Park, J.H. Determinants of subscriptions to communications service bundles and their effects on customer retention in Korea. 2019 Telecommunications Policy. 43 -

  46. Kostić, S.M. ; Simić, M.I. ; Kostić, M.V. Social network analysis and churn prediction in telecommunications using graph theory. 2020 Entropy. 22 753-
    Paper not yet in RePEc: Add citation now
  47. Kumar, S. Customer Retention Versus Customer Acquisition. 2022 Forbes:
    Paper not yet in RePEc: Add citation now
  48. Lalwani, P. ; Mishra, M.K. ; Chadha, J.S. ; Sethi, P. Customer churn prediction system: a machine learning approach. 2022 Computing. 1-24
    Paper not yet in RePEc: Add citation now
  49. Lamrhari, S. ; El Ghazi, H. ; Oubrich, M. ; El Faker, A. A social CRM analytic framework for improving customer retention, acquisition, and conversion. 2022 Technological Forecasting and Social Change. 174 -

  50. Lariviere, B. ; Van den Poel, D. Predicting customer retention and profitability by using random forests and regression forests techniques. 2005 Expert Syst. Appl.. 29 472-484
    Paper not yet in RePEc: Add citation now
  51. Lee, J. ; Lee, J. ; Feick, L. The impact of switching costs on the customer satisfaction-loyalty link: mobile phone service in France. 2001 J. Serv. Mark.. 15 35-48
    Paper not yet in RePEc: Add citation now
  52. Lejeune, M.A. Measuring the impact of data mining on churn management. 2001 Internet Res.. 11 375-387
    Paper not yet in RePEc: Add citation now
  53. Lemmens, A. ; Gupta, S. Managing churn to maximize profits. 2020 Mark. Sci.. 39 956-973

  54. Leong, V.S. ; Ahady, D.M.H. ; Muhamad, N. Corporate image as an enabler of customer retention. 2022 Int. J. Qual. Serv. Sci.. 14 486-503
    Paper not yet in RePEc: Add citation now
  55. Levesque, T. ; McDougall, G.H. Determinants of customer satisfaction in retail banking. 1996 Int. J. Bank Mark.. 14 12-20
    Paper not yet in RePEc: Add citation now
  56. Lewis, M. Incorporating strategic consumer behavior into customer valuation. 2005 J. Mark.. 69 230-238
    Paper not yet in RePEc: Add citation now
  57. Majhi, R. ; Panda, G. ; Sahoo, G. Development and performance evaluation of FLANN based model for forecasting of stock markets. 2009 Expert systems with applications. 36 6800-6808
    Paper not yet in RePEc: Add citation now
  58. McCarty, J.A. ; Hastak, M. Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression. 2007 J. Bus. Res.. 60 656-662

  59. Mukhopadhyay, A. ; Bagchi, K.K. ; Udo, G.J. Exploring the main factors affecting mobile phone growth rates in Indian states. 2023 J. Knowl. Econ.. 1-23
    Paper not yet in RePEc: Add citation now
  60. Neslin, S.A. ; Gupta, S. ; Kamakura, W. ; Lu, J.X. ; Mason, C.H. Defection detection: measuring and understanding the predictive accuracy of customer churn models. 2006 J. Market. Res.. 43 204-211
    Paper not yet in RePEc: Add citation now
  61. Óskarsdóttir, M. ; Bravo, C. ; Verbeke, W. ; Sarraute, C. ; Baesens, B. ; Vanthienen, J. Social network analytics for churn prediction in telco: model building, evaluation and network architecture. 2017 Expert Systems with Applications. 85 204-220
    Paper not yet in RePEc: Add citation now
  62. Pakurár, M. ; Haddad, H. ; Nagy, J. ; Popp, J. ; Oláh, J. The service quality dimensions that affect customer satisfaction in the Jordanian banking sector. 2019 Sustainability. 11 1113-

  63. Pasape, L. Enhancement of customer retention of telecommunication companies in Tanzania through customer satisfaction. 2022 The Strategic Journal of Business & Change Management. 9 218-231
    Paper not yet in RePEc: Add citation now
  64. Reichheld, F.F. The one number you need to grow. 2003 Harv. Bus. Rev.. 81 46-55
    Paper not yet in RePEc: Add citation now
  65. Reichheld, F.F. ; Sasser, W.E. Zero defections: quality comes to services. 1990 Harv. Bus. Rev.. 68 105-111
    Paper not yet in RePEc: Add citation now
  66. Reinartz, W. ; Kumar, V. The mismanagement of customer loyalty. 2002 Harv. Bus. Rev.. 80 86-94
    Paper not yet in RePEc: Add citation now
  67. Rust, R.T. ; Lemon, K.N. ; Zeithaml, V.A. Return on marketing: using customer equity to focus marketing strategy. 2004 Journal of marketing. 68 109-127
    Paper not yet in RePEc: Add citation now
  68. Saleh, S. ; Saha, S. Customer retention and churn prediction in the telecommunication industry: a case study on a Danish university. 2023 SN Applied Sciences. 5 173-
    Paper not yet in RePEc: Add citation now
  69. Sharaf Addin, E.H. ; Admodisastro, N. ; Mohd Ashri, S.N.S. ; Kamaruddin, A. ; Chong, Y.C. Customer mobile behavioral segmentation and analysis in telecom using machine learning. 2022 Appl. Artif. Intell.. 36 -
    Paper not yet in RePEc: Add citation now
  70. Shieh, L.F. ; Chang, T.H. ; Fu, H.P. ; Lin, S.W. ; Chen, Y.Y. Analyzing the factors that affect the adoption of mobile services in Taiwan. 2014 Technol. Forecast. Soc. Chang.. 87 80-88

  71. Shin, D.H. ; Kim, W.Y. Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability. 2008 Technol. Forecast. Soc. Chang.. 75 854-874
    Paper not yet in RePEc: Add citation now
  72. Shin, H.J. ; Cho, S. Response modelling with support vector machines. 2006 Expert Systems with Applications.. 30 746-760
    Paper not yet in RePEc: Add citation now
  73. Sivadas, E. ; Baker-Prewitt, J.L. An examination of the relationship between service quality, customer satisfaction, and store loyalty. 2000 International Journal of Retail and Distribution Management. 28 73-82
    Paper not yet in RePEc: Add citation now
  74. Sohn, S.Y. ; Lee, J.K. Competing risk model for mobile phone service. 2008 Technological Forecasting and Social Change. 75 1416-1422
    Paper not yet in RePEc: Add citation now
  75. Sterman, J. ; Oliva, R. ; Linderman, K.W. ; Bendoly, E. System dynamics perspectives and modeling opportunities for research in operations management. 2015 J. Oper. Manag.. 39 40-
    Paper not yet in RePEc: Add citation now
  76. Sudharsan, R. ; Ganesh, E.N. A swish RNN based customer churn prediction for the telecom industry with a novel feature selection strategy. 2022 Connect. Sci.. 34 1855-1876
    Paper not yet in RePEc: Add citation now
  77. TRAI, 2023. Highlights of Telecom Subscription Data. Available at: https://www.trai.gov.in/sites/default/files/PR_No.05of2023_0.pdf.
    Paper not yet in RePEc: Add citation now
  78. Ullah, I. ; Raza, B. ; Malik, A.K. ; Imran, M. ; Islam, S.U. ; Kim, S.W. A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. 2019 IEEE access. 7 60134-60149
    Paper not yet in RePEc: Add citation now
  79. Venkatesan, R. ; Kumar, V. A customer lifetime value framework for customer selection and resource allocation strategy. 2004 Journal of marketing. 68 106-125
    Paper not yet in RePEc: Add citation now
  80. Verbeke, W. ; Dejaeger, K. ; Martens, D. ; Hur, J. ; Baesens, B. New insights into churn prediction in the telecommunication sector: a profit driven data mining approach. 2012 Eur. J. Oper. Res.. 218 211-229

  81. Verbeke, W. ; Martens, D. ; Mues, C. ; Baesens, B. Building comprehensible customer churn prediction models with advanced rule induction techniques. 2011 Expert Syst. Appl.. 38 2354-2364
    Paper not yet in RePEc: Add citation now
  82. Villanueva, J. ; Yoo, S. ; Hanssens, D.M. The impact of marketing-induced versus word-of-mouth customer acquisition on customer equity growth. 2008 J. Market. Res.. 45 48-59
    Paper not yet in RePEc: Add citation now
  83. Winer, R.S. A framework for customer relationship management. 2001 Calif. Manage. Rev.. 43 89-105
    Paper not yet in RePEc: Add citation now
  84. Yu, R. ; An, X. ; Jin, B. ; Shi, J. ; Move, O.A. ; Liu, Y. Particle classification optimization-based BP network for telecommunication customer churn prediction. 2018 Neural Comput. & Applic.. 29 707-720
    Paper not yet in RePEc: Add citation now
  85. Zahavi, J. ; Levin, N. Applying neural computing to target marketing. 1997 J. Direct Mark.. 11 5-22
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Profit-driven pre-processing in B2B customer churn modeling using fairness techniques. (2025). Bogaert, Matthias ; Janssens, Bram ; Rahman, Shimanto.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635.

    Full description at Econpapers || Download paper

  2. A closer look at customer experience with bundle telecommunication services and its impacts on satisfaction and switching intention. (2024). Rodrigues, Ricardo ; Moreira, Antonio C ; Barbosa, Belem ; Ribeiro, Hugo.
    In: Journal of Marketing Analytics.
    RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-023-00222-w.

    Full description at Econpapers || Download paper

  3. Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach. (2024). Cagliyor, Sendi ; Kirgiz, Omer Bugra ; Kiygi-Calli, Meltem ; el Oraiby, Maryam.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:48:y:2024:i:8:s0308596124001137.

    Full description at Econpapers || Download paper

  4. A neural network-based predictive decision model for customer retention in the telecommunication sector. (2024). Majhi, Ritanjali ; Thangeda, Rahul ; Kumar, Niraj.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524000465.

    Full description at Econpapers || Download paper

  5. Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. (2024). Guo, Yihan ; Feng, YI ; Marra, Marianna ; Ignatius, Joshua ; Wang, Dujuan ; Cheng, T. C. E., ; Yin, Yunqiang.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:184:y:2024:i:c:s014829632400376x.

    Full description at Econpapers || Download paper

  6. Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression. (2023). Imovi, Petra P ; Sun, Edward W.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-022-10275-1.

    Full description at Econpapers || Download paper

  7. Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

    Full description at Econpapers || Download paper

  8. Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art. (2023). Bogaert, Matthias ; Delaere, Lex.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1137-:d:1079547.

    Full description at Econpapers || Download paper

  9. Modelling bank customer behaviour using feature engineering and classification techniques. (2023). Sharif, Taimur ; Hajek, Petr ; Abedin, Mohammad Zoynul ; Satu, Md Shahriare ; Khan, Md Imran.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000399.

    Full description at Econpapers || Download paper

  10. A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

    Full description at Econpapers || Download paper

  11. Predicting individual event attendance with machine learning: a ‘step-forward’ approach. (2022). Valadkhani, Abbas ; Nguyen, Jeremy K ; McDonald, Heath ; Karg, Adam.
    In: Applied Economics.
    RePEc:taf:applec:v:54:y:2022:i:27:p:3138-3153.

    Full description at Econpapers || Download paper

  12. A New Churn Prediction Model Based on Deep Insight Features Transformation for Convolution Neural Network Architecture and Stacknet. (2022). Ridouani, Mohammed ; Hassouni, Larbi ; Frambach, Janneke M ; Rabbah, Jalal ; Abouzeid, Enjy ; Agarwal, Anshoo.
    In: International Journal of Web-Based Learning and Teaching Technologies (IJWLTT).
    RePEc:igg:jwltt0:v:17:y:2022:i:1:p:1-18.

    Full description at Econpapers || Download paper

  13. Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model. (2022). Liu, Yunjie ; Nedjah, Nadia ; Shengdong, MU ; Jijian, GU.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:24:p:4733-:d:1002045.

    Full description at Econpapers || Download paper

  14. A social CRM analytic framework for improving customer retention, acquisition, and conversion. (2022). Lamrhari, Soumaya ; Oubrich, Mourad ; el Ghazi, Hamid ; el Faker, Abdellatif.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:174:y:2022:i:c:s0040162521007095.

    Full description at Econpapers || Download paper

  15. Implementation of penalized survival models in churn prediction of vehicle insurance. (2022). Zhao, Yulu ; Chen, Yan ; Zhang, Lei ; Xu, Bing.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:153:y:2022:i:c:p:162-171.

    Full description at Econpapers || Download paper

  16. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. (2021). Nayak, Soumyaranjan ; Barsocchi, Paolo ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; Bhoi, Akash Kumar.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5279-:d:550856.

    Full description at Econpapers || Download paper

  17. Case based models of the relationship between consumer resistance to innovation and customer churn. (2021). Sun, Yang.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:61:y:2021:i:c:s0969698921000965.

    Full description at Econpapers || Download paper

  18. Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. (2021). Silipo, Rosaria ; Ordenes, Francisco Villarroel.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:137:y:2021:i:c:p:393-410.

    Full description at Econpapers || Download paper

  19. Leveraging non-respondent data in customer satisfaction modeling. (2021). Mengesha, Nigussie ; Zihayat, Morteza ; Kargar, Mehdi ; Davoudi, Heidar ; Ayanso, Anteneh.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:135:y:2021:i:c:p:112-126.

    Full description at Econpapers || Download paper

  20. A multi-period analysis of the integrated item-sharing and crowdshipping problem. (2021). Behrend, Moritz ; Fagerholt, Kjetil ; Andersson, Henrik ; Meisel, Frank.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:292:y:2021:i:2:p:483-499.

    Full description at Econpapers || Download paper

  21. Classifying variety of customers online engagement for churn prediction with mixed-penalty logistic regression. (2021). Sun, Edward ; Posedel Šimović, Petra ; Vsimovi, Petra Posedel ; Horvatic, Davor.
    In: Papers.
    RePEc:arx:papers:2105.07671.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 16:47:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.