create a website

Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
In: Sustainability.
RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 51

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Customer Experience, Loyalty, and Churn in Bundled Telecommunications Services. (2024). Rodrigues, Ricardo ; Ribeiro, Hugo ; Barbosa, Belem ; Moreira, Antonio C.
    In: SAGE Open.
    RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241245191.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abiyev, R.; Arslan, M.; Bush Idoko, J.; Sekeroglu, B.; Ilhan, A. Identification of epileptic EEG signals using convolutional neural networks. Appl. Sci. 2020, 10, 4089. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Adhikary, D.D.; Gupta, D. Applying over 100 classifiers for churn prediction in telecom companies. Multimed. Tools Appl. 2021, 80, 35123–35144. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  3. Ahmad, A.K.; Jafar, A.; Aljoumaa, K. Customer churn prediction in telecom using machine learning in big data platform. J. Big Data 2019, 6, 28. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Alboukaey, N.; Joukhadar, A.; Ghneim, N. Dynamic behavior based churn prediction in mobile telecom. Expert Syst. Appl. 2020, 162, 113779. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Alsouda, Y.; Pllana, S.; Kurti, A. Iot-based urban noise identification using machine learning: Performance of SVM, KNN, bagging, and random forest. In Proceedings of the International Conference on Omni-Layer Intelligent Systems, Heraklion, Crete, Greece, 5–7 May 2019; pp. 62–67.
    Paper not yet in RePEc: Add citation now
  6. American Telecom Market Dataset. Available online: https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets (accessed on 18 February 2020).
    Paper not yet in RePEc: Add citation now
  7. Amin, A.; Al-Obeidat, F.; Shah, B.; Adnan, A.; Loo, J.; Anwar, S. Customer churn prediction in telecommunication industry using data certainty. J. Bus. Res. 2019, 94, 290–301. [CrossRef]

  8. Amin, A.; Anwar, S.; Adnan, A.; Nawaz, M.; Alawfi, K.; Hussain, A.; Huang, K. Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing 2017, 237, 242–254. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Amin, A.; Shah, B.; Khattak, A.M.; Moreira, F.J.L.; Ali, G.; Rocha, .; Anwar, S. Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods. Int. J. Inf. Manag. 2019, 46, 304–319. [CrossRef]

  10. Arifin, S.; Samopa, F. Analysis of Churn Rate Significantly Factors in Telecommunication Industry Using Support Vector Machines Method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1108, p. 012018.
    Paper not yet in RePEc: Add citation now
  11. Óskarsdóttir, M.; Van Calster, T.; Baesens, B.; Lemahieu, W.; Vanthienen, J. Time series for early churn detection: Using similarity based classification for dynamic networks. Expert Syst. Appl. 2018, 106, 55–65. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Beygelzimer, A.; Hazan, E.; Kale, S.; Luo, H. Online gradient boosting. arXiv 2015, arXiv:1506.04820.
    Paper not yet in RePEc: Add citation now
  13. Bhattacharyya, J.; Dash, M.K. Investigation of customer churn insights and intelligence from social media: A netnographic research. Online Inf. Rev. 2020, 45, 174–206. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A channel independent generalized seizure detection method for pediatric epileptic seizures. Comput. Methods Programs Biomed. 2021, 209, 106335. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  15. Chakrabarti, S.; Swetapadma, A.; Ranjan, A.; Pattnaik, P.K. Time domain implementation of pediatric epileptic seizure detection system for enhancing the performance of detection and easy monitoring of pediatric patients. Biomed. Signal Process. Control 2020, 59, 101930. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Coussement, K.; Lessmann, S.; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Support Syst. 2017, 95, 27–36. [CrossRef]

  17. De Bock, K.W.; De Caigny, A. Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling. Decis. Support Syst. 2021, 150, 113523. [CrossRef]

  18. De Caigny, A.; Coussement, K.; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. Eur. J. Oper. Res. 2018, 269, 760–772. [CrossRef]

  19. De Caigny, A.; Coussement, K.; De Bock, K.W.; Lessmann, S. Incorporating textual information in customer churn prediction models based on a convolutional neural network. Int. J. Forecast. 2020, 36, 1563–1578. [CrossRef] Sustainability 2023, 15, 4543 21 of 21

  20. Drucker, H.; Schapire, R.; Simard, P. Improving performance in neural networks using a boosting algorithm. Adv. Neural Inf. Process. Syst. 1993, 5, 42–49.
    Paper not yet in RePEc: Add citation now
  21. El-Gohary, H. E-Marketing: Towards a conceptualization of a new marketing philosophy e book chapter. In E-Business Issues, Challenges and Opportunities for SMEs: Driving Competitiveness; IGI Global: Hershey, PA, USA, 2010.
    Paper not yet in RePEc: Add citation now
  22. El-Gohary, H.; Trueman, M.; Fukukawa, K. Understanding the factors affecting the adoption of E-Marketing by small business enterprises. In E-Commerce Adoption and Small Business in the Global Marketplace; Thomas, B., Simmons, G., Eds.; IGI Global: Hershey, PA, USA, 2009; pp. 237–258.
    Paper not yet in RePEc: Add citation now
  23. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In ICML; ACM Digital Library: New York City, NY, USA, 1996; Volume 96, pp. 148–156.
    Paper not yet in RePEc: Add citation now
  24. Fujo, S.W.; Subramanian, S.; Khder, M.A. Customer Churn Prediction in Telecommunication Industry Using Deep Learning. Inf. Sci. Lett. 2022, 11, 24.
    Paper not yet in RePEc: Add citation now
  25. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Ghasemi Darehnaei, Z.; Shokouhifar, M.; Yazdanjouei, H.; Rastegar Fatemi, S.M.J. SI-EDTL: Swarm intelligence ensemble deep transfer learning for multiple vehicle detection in UAV images. Concurr. Comput. Pract. Exp. 2022, 34, e6726. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Höppner, S.; Stripling, E.; Baesens, B.; vanden Broucke, S.; Verdonck, T. Profit driven decision trees for churn prediction. Eur. J. Oper. Res. 2020, 284, 920–933. [CrossRef]

  28. Indian and Southeast Asian Telecom Industry Dataset Which Is. Available online: https://www.kaggle.com/datasets/ priyankanavgire/telecom-churn (accessed on 22 March 2021).
    Paper not yet in RePEc: Add citation now
  29. Jain, H.; Khunteta, A.; Srivastava, S. Churn prediction in telecommunication using logistic regression and logit boost. Procedia Comput. Sci. 2020, 167, 101–112. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Jain, N.; Tomar, A.; Jana, P.K. A novel scheme for employee churn problem using multi-attribute decision making approach and machine learning. J. Intell. Inf. Syst. 2021, 56, 279–302. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Karuppaiah, K.S.; Palanisamy, N.G. Heterogeneous ensemble stacking with minority upliftment (HESMU) for churn prediction on imbalanced telecom data. In Materials Today: Proceedings; Elsevier: London, UK, 2021.
    Paper not yet in RePEc: Add citation now
  32. Liao, Y.; Vemuri, V.R. Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 2002, 21, 439–448. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Ly, T.V.; Son, D.V.T. Churn prediction in telecommunication industry using kernel Support Vector Machines. PLoS ONE 2022, 17, e0267935.
    Paper not yet in RePEc: Add citation now
  34. Ma, B.; Meng, F.; Yan, G.; Yan, H.; Chai, B.; Song, F. Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput. Biol. Med. 2020, 121, 103761. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Mishra, A.; Reddy, U.S. A comparative study of customer churn prediction in telecom industry using ensemble-based classifiers. In Proceedings of the 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 721–725.
    Paper not yet in RePEc: Add citation now
  36. Mitrović, S.; Baesens, B.; Lemahieu, W.; De Weerdt, J. On the operational efficiency of different feature types for telco Churn prediction. Eur. J. Oper. Res. 2018, 267, 1141–1155. [CrossRef]

  37. Saha, L.; Tripathy, H.K.; Masmoudi, F.; Gaber, T. A Machine Learning Model for Personalized Tariff Plan based on Customer’s Behavior in the Telecom Industry. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2022, 13, 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Saha, L.; Tripathy, H.K.; Nayak, S.R.; Bhoi, A.K.; Barsocchi, P. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. Sustainability 2021, 13, 5279. [CrossRef]

  39. Saha, L.; Tripathy, H.K.; Sahoo, L. Business Intelligence Influenced Customer Relationship Management in Telecommunication Industry and Its Security Challenges. In Privacy and Security Issues in Big Data; Springer: Singapore, 2021; pp. 175–188.
    Paper not yet in RePEc: Add citation now
  40. Sana, J.K.; Abedin, M.Z.; Rahman, M.S.; Rahman, M.S. A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection. PLoS ONE 2022, 17, e0278095. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Savkovic, B.; Kovac, P.; Dudic, B.; Gregus, M.; Rodic, D.; Strbac, B.; Ducic, N. Comparative Characteristics of Ductile Iron and Austempered Ductile Iron Modeled by Neural Network. Materials 2019, 12, 2864. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme gradient boosting as a method for quantitative structure– activity relationships. J. Chem. Inf. Model. 2016, 56, 2353–2360. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Shirazi, F.; Mohammadi, M. A big data analytics model for customer churn prediction in the retiree segment. Int. J. Inf. Manag. 2019, 48, 238–253. [CrossRef]

  44. Sreng, S.; Maneerat, N.; Hamamoto, K.; Panjaphongse, R. Automated diabetic retinopathy screening system using hybrid simulated annealing and ensemble bagging classifier. Appl. Sci. 2018, 8, 1198. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Stripling, E.; vanden Broucke, S.; Antonio, K.; Baesens, B.; Snoeck, M. Profit maximizing logistic regression modeling for customer churn prediction. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–10.
    Paper not yet in RePEc: Add citation now
  46. Sudharsan, R.; Ganesh, E.N. A Swish RNN based customer churn prediction for the telecom industry with a novel feature selection strategy. Connect. Sci. 2022, 34, 1855–1876. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533–1543. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Vo, N.N.; Liu, S.; Li, X.; Xu, G. Leveraging unstructured call log data for customer churn prediction. Knowl.-Based Syst. 2021, 212, 106586. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Wang, F.; Jiang, D.; Wen, H.; Song, H. Adaboost-based security level classification of mobile intelligent terminals. J. Supercomput. 2019, 75, 7460–7478. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Xu, T.; Ma, Y.; Kim, K. Telecom Churn Prediction System Based on Ensemble Learning Using Feature Grouping. Appl. Sci. 2021, 11, 4742. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Zdravevski, E.; Lameski, P.; Apanowicz, C.; Ślȩzak, D. From Big Data to business analytics: The case study of churn prediction. Appl. Soft Comput. 2020, 90, 106164. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Profit-driven pre-processing in B2B customer churn modeling using fairness techniques. (2025). Bogaert, Matthias ; Janssens, Bram ; Rahman, Shimanto.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635.

    Full description at Econpapers || Download paper

  2. A closer look at customer experience with bundle telecommunication services and its impacts on satisfaction and switching intention. (2024). Rodrigues, Ricardo ; Moreira, Antonio C ; Barbosa, Belem ; Ribeiro, Hugo.
    In: Journal of Marketing Analytics.
    RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-023-00222-w.

    Full description at Econpapers || Download paper

  3. Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach. (2024). Cagliyor, Sendi ; Kirgiz, Omer Bugra ; Kiygi-Calli, Meltem ; el Oraiby, Maryam.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:48:y:2024:i:8:s0308596124001137.

    Full description at Econpapers || Download paper

  4. A neural network-based predictive decision model for customer retention in the telecommunication sector. (2024). Majhi, Ritanjali ; Thangeda, Rahul ; Kumar, Niraj.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524000465.

    Full description at Econpapers || Download paper

  5. Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. (2024). Guo, Yihan ; Feng, YI ; Marra, Marianna ; Ignatius, Joshua ; Wang, Dujuan ; Cheng, T. C. E., ; Yin, Yunqiang.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:184:y:2024:i:c:s014829632400376x.

    Full description at Econpapers || Download paper

  6. Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression. (2023). Imovi, Petra P ; Sun, Edward W.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-022-10275-1.

    Full description at Econpapers || Download paper

  7. Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

    Full description at Econpapers || Download paper

  8. Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art. (2023). Bogaert, Matthias ; Delaere, Lex.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1137-:d:1079547.

    Full description at Econpapers || Download paper

  9. Modelling bank customer behaviour using feature engineering and classification techniques. (2023). Sharif, Taimur ; Hajek, Petr ; Abedin, Mohammad Zoynul ; Satu, Md Shahriare ; Khan, Md Imran.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000399.

    Full description at Econpapers || Download paper

  10. A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

    Full description at Econpapers || Download paper

  11. Predicting individual event attendance with machine learning: a ‘step-forward’ approach. (2022). Valadkhani, Abbas ; Nguyen, Jeremy K ; McDonald, Heath ; Karg, Adam.
    In: Applied Economics.
    RePEc:taf:applec:v:54:y:2022:i:27:p:3138-3153.

    Full description at Econpapers || Download paper

  12. A New Churn Prediction Model Based on Deep Insight Features Transformation for Convolution Neural Network Architecture and Stacknet. (2022). Ridouani, Mohammed ; Hassouni, Larbi ; Frambach, Janneke M ; Rabbah, Jalal ; Abouzeid, Enjy ; Agarwal, Anshoo.
    In: International Journal of Web-Based Learning and Teaching Technologies (IJWLTT).
    RePEc:igg:jwltt0:v:17:y:2022:i:1:p:1-18.

    Full description at Econpapers || Download paper

  13. Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model. (2022). Liu, Yunjie ; Nedjah, Nadia ; Shengdong, MU ; Jijian, GU.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:24:p:4733-:d:1002045.

    Full description at Econpapers || Download paper

  14. A social CRM analytic framework for improving customer retention, acquisition, and conversion. (2022). Lamrhari, Soumaya ; Oubrich, Mourad ; el Ghazi, Hamid ; el Faker, Abdellatif.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:174:y:2022:i:c:s0040162521007095.

    Full description at Econpapers || Download paper

  15. Implementation of penalized survival models in churn prediction of vehicle insurance. (2022). Zhao, Yulu ; Chen, Yan ; Zhang, Lei ; Xu, Bing.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:153:y:2022:i:c:p:162-171.

    Full description at Econpapers || Download paper

  16. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. (2021). Nayak, Soumyaranjan ; Barsocchi, Paolo ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; Bhoi, Akash Kumar.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5279-:d:550856.

    Full description at Econpapers || Download paper

  17. Case based models of the relationship between consumer resistance to innovation and customer churn. (2021). Sun, Yang.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:61:y:2021:i:c:s0969698921000965.

    Full description at Econpapers || Download paper

  18. Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. (2021). Silipo, Rosaria ; Ordenes, Francisco Villarroel.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:137:y:2021:i:c:p:393-410.

    Full description at Econpapers || Download paper

  19. Leveraging non-respondent data in customer satisfaction modeling. (2021). Mengesha, Nigussie ; Zihayat, Morteza ; Kargar, Mehdi ; Davoudi, Heidar ; Ayanso, Anteneh.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:135:y:2021:i:c:p:112-126.

    Full description at Econpapers || Download paper

  20. A multi-period analysis of the integrated item-sharing and crowdshipping problem. (2021). Behrend, Moritz ; Fagerholt, Kjetil ; Andersson, Henrik ; Meisel, Frank.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:292:y:2021:i:2:p:483-499.

    Full description at Econpapers || Download paper

  21. Classifying variety of customers online engagement for churn prediction with mixed-penalty logistic regression. (2021). Sun, Edward ; Posedel Šimović, Petra ; Vsimovi, Petra Posedel ; Horvatic, Davor.
    In: Papers.
    RePEc:arx:papers:2105.07671.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 03:46:21 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.