- Abiyev, R.; Arslan, M.; Bush Idoko, J.; Sekeroglu, B.; Ilhan, A. Identification of epileptic EEG signals using convolutional neural networks. Appl. Sci. 2020, 10, 4089. [CrossRef]
Paper not yet in RePEc: Add citation now
- Adhikary, D.D.; Gupta, D. Applying over 100 classifiers for churn prediction in telecom companies. Multimed. Tools Appl. 2021, 80, 35123â35144. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Ahmad, A.K.; Jafar, A.; Aljoumaa, K. Customer churn prediction in telecom using machine learning in big data platform. J. Big Data 2019, 6, 28. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alboukaey, N.; Joukhadar, A.; Ghneim, N. Dynamic behavior based churn prediction in mobile telecom. Expert Syst. Appl. 2020, 162, 113779. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alsouda, Y.; Pllana, S.; Kurti, A. Iot-based urban noise identification using machine learning: Performance of SVM, KNN, bagging, and random forest. In Proceedings of the International Conference on Omni-Layer Intelligent Systems, Heraklion, Crete, Greece, 5â7 May 2019; pp. 62â67.
Paper not yet in RePEc: Add citation now
- American Telecom Market Dataset. Available online: https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets (accessed on 18 February 2020).
Paper not yet in RePEc: Add citation now
Amin, A.; Al-Obeidat, F.; Shah, B.; Adnan, A.; Loo, J.; Anwar, S. Customer churn prediction in telecommunication industry using data certainty. J. Bus. Res. 2019, 94, 290â301. [CrossRef]
- Amin, A.; Anwar, S.; Adnan, A.; Nawaz, M.; Alawfi, K.; Hussain, A.; Huang, K. Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing 2017, 237, 242â254. [CrossRef]
Paper not yet in RePEc: Add citation now
Amin, A.; Shah, B.; Khattak, A.M.; Moreira, F.J.L.; Ali, G.; Rocha, .; Anwar, S. Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods. Int. J. Inf. Manag. 2019, 46, 304â319. [CrossRef]
- Arifin, S.; Samopa, F. Analysis of Churn Rate Significantly Factors in Telecommunication Industry Using Support Vector Machines Method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1108, p. 012018.
Paper not yet in RePEc: Add citation now
- Ãskarsdóttir, M.; Van Calster, T.; Baesens, B.; Lemahieu, W.; Vanthienen, J. Time series for early churn detection: Using similarity based classification for dynamic networks. Expert Syst. Appl. 2018, 106, 55â65. [CrossRef]
Paper not yet in RePEc: Add citation now
- Beygelzimer, A.; Hazan, E.; Kale, S.; Luo, H. Online gradient boosting. arXiv 2015, arXiv:1506.04820.
Paper not yet in RePEc: Add citation now
- Bhattacharyya, J.; Dash, M.K. Investigation of customer churn insights and intelligence from social media: A netnographic research. Online Inf. Rev. 2020, 45, 174â206. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A channel independent generalized seizure detection method for pediatric epileptic seizures. Comput. Methods Programs Biomed. 2021, 209, 106335. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Chakrabarti, S.; Swetapadma, A.; Ranjan, A.; Pattnaik, P.K. Time domain implementation of pediatric epileptic seizure detection system for enhancing the performance of detection and easy monitoring of pediatric patients. Biomed. Signal Process. Control 2020, 59, 101930. [CrossRef]
Paper not yet in RePEc: Add citation now
Coussement, K.; Lessmann, S.; Verstraeten, G. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Support Syst. 2017, 95, 27â36. [CrossRef]
De Bock, K.W.; De Caigny, A. Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling. Decis. Support Syst. 2021, 150, 113523. [CrossRef]
De Caigny, A.; Coussement, K.; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. Eur. J. Oper. Res. 2018, 269, 760â772. [CrossRef]
De Caigny, A.; Coussement, K.; De Bock, K.W.; Lessmann, S. Incorporating textual information in customer churn prediction models based on a convolutional neural network. Int. J. Forecast. 2020, 36, 1563â1578. [CrossRef] Sustainability 2023, 15, 4543 21 of 21
- Drucker, H.; Schapire, R.; Simard, P. Improving performance in neural networks using a boosting algorithm. Adv. Neural Inf. Process. Syst. 1993, 5, 42â49.
Paper not yet in RePEc: Add citation now
- El-Gohary, H. E-Marketing: Towards a conceptualization of a new marketing philosophy e book chapter. In E-Business Issues, Challenges and Opportunities for SMEs: Driving Competitiveness; IGI Global: Hershey, PA, USA, 2010.
Paper not yet in RePEc: Add citation now
- El-Gohary, H.; Trueman, M.; Fukukawa, K. Understanding the factors affecting the adoption of E-Marketing by small business enterprises. In E-Commerce Adoption and Small Business in the Global Marketplace; Thomas, B., Simmons, G., Eds.; IGI Global: Hershey, PA, USA, 2009; pp. 237â258.
Paper not yet in RePEc: Add citation now
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In ICML; ACM Digital Library: New York City, NY, USA, 1996; Volume 96, pp. 148â156.
Paper not yet in RePEc: Add citation now
- Fujo, S.W.; Subramanian, S.; Khder, M.A. Customer Churn Prediction in Telecommunication Industry Using Deep Learning. Inf. Sci. Lett. 2022, 11, 24.
Paper not yet in RePEc: Add citation now
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3â42. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghasemi Darehnaei, Z.; Shokouhifar, M.; Yazdanjouei, H.; Rastegar Fatemi, S.M.J. SI-EDTL: Swarm intelligence ensemble deep transfer learning for multiple vehicle detection in UAV images. Concurr. Comput. Pract. Exp. 2022, 34, e6726. [CrossRef]
Paper not yet in RePEc: Add citation now
Höppner, S.; Stripling, E.; Baesens, B.; vanden Broucke, S.; Verdonck, T. Profit driven decision trees for churn prediction. Eur. J. Oper. Res. 2020, 284, 920â933. [CrossRef]
- Indian and Southeast Asian Telecom Industry Dataset Which Is. Available online: https://www.kaggle.com/datasets/ priyankanavgire/telecom-churn (accessed on 22 March 2021).
Paper not yet in RePEc: Add citation now
- Jain, H.; Khunteta, A.; Srivastava, S. Churn prediction in telecommunication using logistic regression and logit boost. Procedia Comput. Sci. 2020, 167, 101â112. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jain, N.; Tomar, A.; Jana, P.K. A novel scheme for employee churn problem using multi-attribute decision making approach and machine learning. J. Intell. Inf. Syst. 2021, 56, 279â302. [CrossRef]
Paper not yet in RePEc: Add citation now
- Karuppaiah, K.S.; Palanisamy, N.G. Heterogeneous ensemble stacking with minority upliftment (HESMU) for churn prediction on imbalanced telecom data. In Materials Today: Proceedings; Elsevier: London, UK, 2021.
Paper not yet in RePEc: Add citation now
- Liao, Y.; Vemuri, V.R. Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 2002, 21, 439â448. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ly, T.V.; Son, D.V.T. Churn prediction in telecommunication industry using kernel Support Vector Machines. PLoS ONE 2022, 17, e0267935.
Paper not yet in RePEc: Add citation now
- Ma, B.; Meng, F.; Yan, G.; Yan, H.; Chai, B.; Song, F. Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput. Biol. Med. 2020, 121, 103761. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mishra, A.; Reddy, U.S. A comparative study of customer churn prediction in telecom industry using ensemble-based classifiers. In Proceedings of the 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23â24 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 721â725.
Paper not yet in RePEc: Add citation now
MitrovicÌ, S.; Baesens, B.; Lemahieu, W.; De Weerdt, J. On the operational efficiency of different feature types for telco Churn prediction. Eur. J. Oper. Res. 2018, 267, 1141â1155. [CrossRef]
- Saha, L.; Tripathy, H.K.; Masmoudi, F.; Gaber, T. A Machine Learning Model for Personalized Tariff Plan based on Customerâs Behavior in the Telecom Industry. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2022, 13, 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
Saha, L.; Tripathy, H.K.; Nayak, S.R.; Bhoi, A.K.; Barsocchi, P. Amalgamation of Customer Relationship Management and Data Analytics in Different Business SectorsâA Systematic Literature Review. Sustainability 2021, 13, 5279. [CrossRef]
- Saha, L.; Tripathy, H.K.; Sahoo, L. Business Intelligence Influenced Customer Relationship Management in Telecommunication Industry and Its Security Challenges. In Privacy and Security Issues in Big Data; Springer: Singapore, 2021; pp. 175â188.
Paper not yet in RePEc: Add citation now
- Sana, J.K.; Abedin, M.Z.; Rahman, M.S.; Rahman, M.S. A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection. PLoS ONE 2022, 17, e0278095. [CrossRef]
Paper not yet in RePEc: Add citation now
- Savkovic, B.; Kovac, P.; Dudic, B.; Gregus, M.; Rodic, D.; Strbac, B.; Ducic, N. Comparative Characteristics of Ductile Iron and Austempered Ductile Iron Modeled by Neural Network. Materials 2019, 12, 2864. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme gradient boosting as a method for quantitative structureâ activity relationships. J. Chem. Inf. Model. 2016, 56, 2353â2360. [CrossRef]
Paper not yet in RePEc: Add citation now
Shirazi, F.; Mohammadi, M. A big data analytics model for customer churn prediction in the retiree segment. Int. J. Inf. Manag. 2019, 48, 238â253. [CrossRef]
- Sreng, S.; Maneerat, N.; Hamamoto, K.; Panjaphongse, R. Automated diabetic retinopathy screening system using hybrid simulated annealing and ensemble bagging classifier. Appl. Sci. 2018, 8, 1198. [CrossRef]
Paper not yet in RePEc: Add citation now
- Stripling, E.; vanden Broucke, S.; Antonio, K.; Baesens, B.; Snoeck, M. Profit maximizing logistic regression modeling for customer churn prediction. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19â21 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1â10.
Paper not yet in RePEc: Add citation now
- Sudharsan, R.; Ganesh, E.N. A Swish RNN based customer churn prediction for the telecom industry with a novel feature selection strategy. Connect. Sci. 2022, 34, 1855â1876. [CrossRef]
Paper not yet in RePEc: Add citation now
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533â1543. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vo, N.N.; Liu, S.; Li, X.; Xu, G. Leveraging unstructured call log data for customer churn prediction. Knowl.-Based Syst. 2021, 212, 106586. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, F.; Jiang, D.; Wen, H.; Song, H. Adaboost-based security level classification of mobile intelligent terminals. J. Supercomput. 2019, 75, 7460â7478. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xu, T.; Ma, Y.; Kim, K. Telecom Churn Prediction System Based on Ensemble Learning Using Feature Grouping. Appl. Sci. 2021, 11, 4742. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zdravevski, E.; Lameski, P.; Apanowicz, C.; SÌlȩzak, D. From Big Data to business analytics: The case study of churn prediction. Appl. Soft Comput. 2020, 90, 106164. [CrossRef]
Paper not yet in RePEc: Add citation now