- Ahmed, A. A., & Maheswari, D. (2017). Churn prediction on huge telecom data using hybrid firefly based classification. Egyptian Informatics Journal, 18(3), 215–220. https://doi.org/10.1016/j.eij.2017.02.002.
Paper not yet in RePEc: Add citation now
- Ajit, P. (2016). Prediction of employee turnover in organizations using machine learning algorithms. Algorithms, 4(5), C5.
Paper not yet in RePEc: Add citation now
- Alamsyah, A., & Salma, N. (2018). A comparative study of employee churn prediction model. 2018 4th International Conference on Science and Technology (ICST), IEEE.
Paper not yet in RePEc: Add citation now
- Alaskar, L., Crane, M., & Alduailij, M. (2019). Employee turnover prediction using machine learning. In A. Alfaries, H. Mengash, A. Yasar, & E. Shakshuki (Eds.), Advances in data science, cyber security and IT applications, international conference on computing (pp. 301–316). Springer.
Paper not yet in RePEc: Add citation now
- Alduayj, S. S., & Rajpoot, K. (2018). Predicting employee attrition using machine learning. 2018 International Conference on Innovations in Information Technology (IIT), IEEE.
Paper not yet in RePEc: Add citation now
Amin, A., Al‐Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019). Customer churn prediction in telecommunication industry using data certainty. Journal of Business Research, 94, 290–301. https://doi.org/10.1016/j.jbusres.2018.03.003.
- Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., & Huang, K. (2017). Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing, 237, 242–254. https://doi.org/10.1016/j.neucom.2016.12.009.
Paper not yet in RePEc: Add citation now
- Atila, Ü., Baydilli, Y. Y., Sehirli, E., & Turan, M. K. (2020). Classification of DNA damages on segmented comet assay images using convolutional neural network. Computer Methods and Programs in Biomedicine, 186, 105192. https://doi.org/10.1016/j.cmpb.2019.105192.
Paper not yet in RePEc: Add citation now
- Berengueres, J., Duran, G., & Castro, D. (2017). Happiness, an inside job?: Turnover prediction using employee likeability, engagement and relative happiness. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, ACM.
Paper not yet in RePEc: Add citation now
Coussement, K., Lessmann, S., & Verstraeten, G. (2017). A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decision Support Systems, 95, 27–36. https://doi.org/10.1016/j.dss.2016.11.007.
de Caigny, A., Coussement, K., & de Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760–772. https://doi.org/10.1016/j.ejor.2018.02.009.
- Dolatabadi, S. H., & Keynia, F. (2017). Designing of customer and employee churn prediction model based on data mining method and neural predictor. 2017 2nd International Conference on Computer and Communication Systems (ICCCS), IEEE.
Paper not yet in RePEc: Add citation now
- Ghoneim, A., Muhammad, G., & Hossain, M. S. (2020). Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Generation Computer Systems, 102, 643–649. https://doi.org/10.1016/j.future.2019.09.015.
Paper not yet in RePEc: Add citation now
- Gordini, N., & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter‐selection technique in B2B e‐commerce industry. Industrial Marketing Management, 62, 100–107. https://doi.org/10.1016/j.indmarman.2016.08.003.
Paper not yet in RePEc: Add citation now
- Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
Paper not yet in RePEc: Add citation now
- Huang, J., & He, L. (2018). Application of improved PSO‐BP neural network in customer churn warning. Procedia Computer Science, 131, 1238–1246. https://doi.org/10.1016/j.procs.2018.04.336.
Paper not yet in RePEc: Add citation now
- Jain, N., Tomar, A., & Jana, P. K. (2020). A novel scheme for employee churn problem using multi‐attribute decision making approach and machine learning. Journal of Intelligent Information Systems, 56, 279–302. https://doi.org/10.1007/s10844-020-00614-9.
Paper not yet in RePEc: Add citation now
- Jain, R., & Nayyar, A. (2018). Predicting employee attrition using XGBoost machine learning approach. 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), IEEE.
Paper not yet in RePEc: Add citation now
- Khera, S. N., & Divya. (2018). Predictive modelling of employee turnover in Indian IT industry using machine learning techniques. Vision, 23(1), 12–21. https://doi.org/10.1177/0972262918821221.
Paper not yet in RePEc: Add citation now
- Mohammadzadeh, M., Hoseini, Z. Z., & Derafshi, H. (2017). A data mining approach for modeling churn behavior via RFM model in specialized clinics case study: A public sector hospital in Tehran. Procedia Computer Science, 120, 23–30. https://doi.org/10.1016/j.procs.2017.11.206.
Paper not yet in RePEc: Add citation now
- Óskarsdóttir, M., Bravo, C., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J. (2017). Social network analytics for churn prediction in telco: Model building, evaluation and network architecture. Expert Systems with Applications, 85, 204–220. https://doi.org/10.1016/j.eswa.2017.05.028.
Paper not yet in RePEc: Add citation now
- Óskarsdóttir, M., Van Calster, T., Baesens, B., Lemahieu, W., & Vanthienen, J. (2018). Time series for early churn detection: Using similarity based classification for dynamic networks. Expert Systems with Applications, 106, 55–65. https://doi.org/10.1016/j.eswa.2018.04.003.
Paper not yet in RePEc: Add citation now
- Pekel Özmen, E., & Özcan, T. (2020). Diagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm. Journal of Forecasting, 39(6), 661–670.
Paper not yet in RePEc: Add citation now
- Pekmezci, T., Demireli, C., & Batman, G. (2008). Ic Müsteri Memnuniyeti: Konya un Fabrikalarinda Bir Uygulama. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (22).
Paper not yet in RePEc: Add citation now
- Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026. https://doi.org/10.1016/j.amc.2006.09.022.
Paper not yet in RePEc: Add citation now
- Postigo‐Boix, M., & Melús‐Moreno, J. L. (2018). A social model based on customers' profiles for analyzing the churning process in the mobile market of data plans. Physica a: Statistical Mechanics and its Applications, 496, 571–592. https://doi.org/10.1016/j.physa.2017.12.121.
Paper not yet in RePEc: Add citation now
- Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251.
Paper not yet in RePEc: Add citation now
- Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning and NLP. Procedia Computer Science, 140, 170–178. https://doi.org/10.1016/j.procs.2018.10.326.
Paper not yet in RePEc: Add citation now
- Sampe, M. Z., Ariawan, E., & Ariawan, I. W. (2019). Predictive analysis of employee loyalty: A comparative study using logistic regression model and artificial neural network. Journal of the Indonesian Mathematical Society, 1(1), 325–335. https://doi.org/10.22342/jims.25.3.825.325-335.
Paper not yet in RePEc: Add citation now
- Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999–2006. https://doi.org/10.1016/j.eswa.2010.07.134.
Paper not yet in RePEc: Add citation now
- Shankar, R. S., Rajanikanth, J., Sivaramaraju, V., & Murthy, K. V. (2018). Prediction of employee attrition using datamining. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), IEEE.
Paper not yet in RePEc: Add citation now
- Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A., & Tsunoda, T. (2019). DeepInsight: A methodology to transform a non‐image data to an image for convolution neural network architecture. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-47765-6.
Paper not yet in RePEc: Add citation now
Shirazi, F., & Mohammadi, M. (2019). A big data analytics model for customer churn prediction in the retiree segment. International Journal of Information Management, 48, 238–253. https://doi.org/10.1016/j.ijinfomgt.2018.10.005.
- Sisodia, D. S., Vishwakarma, S., & Pujahari, A. (2017). Evaluation of machine learning models for employee churn prediction. 2017 International Conference on Inventive Computing and Informatics (ICICI), IEEE.
Paper not yet in RePEc: Add citation now
- Soni, U., Singh, N., Swami, Y., & Deshwal, P. (2018). A comparison study between ANN and ANFIS for the prediction of employee turnover in an organization. 2018 International Conference on Computing, Power and Communication Technologies (GUCON), IEEE.
Paper not yet in RePEc: Add citation now
- Tuna, M. (2007). Personel Devir Oranı Analizi: Ankara'da Yer Alan Yıldızlı Otel İşletmelerinde Bir Uygulama. Anatolia: Turizm Araştırmaları Dergisi, 18(1), 45–52.
Paper not yet in RePEc: Add citation now
- Yadav, S., Jain, A., & Singh, D. (2018). Early prediction of employee attrition using data mining techniques. 2018 IEEE 8th International Advance Computing Conference (IACC), IEEE.
Paper not yet in RePEc: Add citation now
- Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9.
Paper not yet in RePEc: Add citation now
- Yiğit, İ. O., & Shourabizadeh, H. (2017). An approach for predicting employee churn by using data mining. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE.
Paper not yet in RePEc: Add citation now
Zhu, X., Seaver, W., Sawhney, R., Ji, S., Holt, B., Sanil, G. B., & Upreti, G. (2017). Employee turnover forecasting for human resource management based on time series analysis. Journal of Applied Statistics, 44(8), 1421–1440. https://doi.org/10.1080/02664763.2016.1214242.