create a website

A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
In: Journal of Forecasting.
RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 40

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction. (2024). Liu, Zhenkun ; Niu, Xinsong ; Jiang, Ping ; Zhang, Lifang ; de Bock, Koen W ; Wang, Jianzhou.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006303.

    Full description at Econpapers || Download paper

  2. Deep learning on mixed frequency data. (2023). Wang, Zezhou ; Liu, Yezheng ; Xu, Qifa ; Jiang, Cuixia.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:8:p:2099-2120.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed, A. A., & Maheswari, D. (2017). Churn prediction on huge telecom data using hybrid firefly based classification. Egyptian Informatics Journal, 18(3), 215–220. https://doi.org/10.1016/j.eij.2017.02.002.
    Paper not yet in RePEc: Add citation now
  2. Ajit, P. (2016). Prediction of employee turnover in organizations using machine learning algorithms. Algorithms, 4(5), C5.
    Paper not yet in RePEc: Add citation now
  3. Alamsyah, A., & Salma, N. (2018). A comparative study of employee churn prediction model. 2018 4th International Conference on Science and Technology (ICST), IEEE.
    Paper not yet in RePEc: Add citation now
  4. Alaskar, L., Crane, M., & Alduailij, M. (2019). Employee turnover prediction using machine learning. In A. Alfaries, H. Mengash, A. Yasar, & E. Shakshuki (Eds.), Advances in data science, cyber security and IT applications, international conference on computing (pp. 301–316). Springer.
    Paper not yet in RePEc: Add citation now
  5. Alduayj, S. S., & Rajpoot, K. (2018). Predicting employee attrition using machine learning. 2018 International Conference on Innovations in Information Technology (IIT), IEEE.
    Paper not yet in RePEc: Add citation now
  6. Amin, A., Al‐Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019). Customer churn prediction in telecommunication industry using data certainty. Journal of Business Research, 94, 290–301. https://doi.org/10.1016/j.jbusres.2018.03.003.

  7. Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., & Huang, K. (2017). Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing, 237, 242–254. https://doi.org/10.1016/j.neucom.2016.12.009.
    Paper not yet in RePEc: Add citation now
  8. Atila, Ü., Baydilli, Y. Y., Sehirli, E., & Turan, M. K. (2020). Classification of DNA damages on segmented comet assay images using convolutional neural network. Computer Methods and Programs in Biomedicine, 186, 105192. https://doi.org/10.1016/j.cmpb.2019.105192.
    Paper not yet in RePEc: Add citation now
  9. Berengueres, J., Duran, G., & Castro, D. (2017). Happiness, an inside job?: Turnover prediction using employee likeability, engagement and relative happiness. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, ACM.
    Paper not yet in RePEc: Add citation now
  10. Coussement, K., Lessmann, S., & Verstraeten, G. (2017). A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decision Support Systems, 95, 27–36. https://doi.org/10.1016/j.dss.2016.11.007.

  11. de Caigny, A., Coussement, K., & de Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760–772. https://doi.org/10.1016/j.ejor.2018.02.009.

  12. Dolatabadi, S. H., & Keynia, F. (2017). Designing of customer and employee churn prediction model based on data mining method and neural predictor. 2017 2nd International Conference on Computer and Communication Systems (ICCCS), IEEE.
    Paper not yet in RePEc: Add citation now
  13. Ghoneim, A., Muhammad, G., & Hossain, M. S. (2020). Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Generation Computer Systems, 102, 643–649. https://doi.org/10.1016/j.future.2019.09.015.
    Paper not yet in RePEc: Add citation now
  14. Gordini, N., & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter‐selection technique in B2B e‐commerce industry. Industrial Marketing Management, 62, 100–107. https://doi.org/10.1016/j.indmarman.2016.08.003.
    Paper not yet in RePEc: Add citation now
  15. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
    Paper not yet in RePEc: Add citation now
  16. Huang, J., & He, L. (2018). Application of improved PSO‐BP neural network in customer churn warning. Procedia Computer Science, 131, 1238–1246. https://doi.org/10.1016/j.procs.2018.04.336.
    Paper not yet in RePEc: Add citation now
  17. Jain, N., Tomar, A., & Jana, P. K. (2020). A novel scheme for employee churn problem using multi‐attribute decision making approach and machine learning. Journal of Intelligent Information Systems, 56, 279–302. https://doi.org/10.1007/s10844-020-00614-9.
    Paper not yet in RePEc: Add citation now
  18. Jain, R., & Nayyar, A. (2018). Predicting employee attrition using XGBoost machine learning approach. 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), IEEE.
    Paper not yet in RePEc: Add citation now
  19. Khera, S. N., & Divya. (2018). Predictive modelling of employee turnover in Indian IT industry using machine learning techniques. Vision, 23(1), 12–21. https://doi.org/10.1177/0972262918821221.
    Paper not yet in RePEc: Add citation now
  20. Mohammadzadeh, M., Hoseini, Z. Z., & Derafshi, H. (2017). A data mining approach for modeling churn behavior via RFM model in specialized clinics case study: A public sector hospital in Tehran. Procedia Computer Science, 120, 23–30. https://doi.org/10.1016/j.procs.2017.11.206.
    Paper not yet in RePEc: Add citation now
  21. Óskarsdóttir, M., Bravo, C., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J. (2017). Social network analytics for churn prediction in telco: Model building, evaluation and network architecture. Expert Systems with Applications, 85, 204–220. https://doi.org/10.1016/j.eswa.2017.05.028.
    Paper not yet in RePEc: Add citation now
  22. Óskarsdóttir, M., Van Calster, T., Baesens, B., Lemahieu, W., & Vanthienen, J. (2018). Time series for early churn detection: Using similarity based classification for dynamic networks. Expert Systems with Applications, 106, 55–65. https://doi.org/10.1016/j.eswa.2018.04.003.
    Paper not yet in RePEc: Add citation now
  23. Pekel Özmen, E., & Özcan, T. (2020). Diagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm. Journal of Forecasting, 39(6), 661–670.
    Paper not yet in RePEc: Add citation now
  24. Pekmezci, T., Demireli, C., & Batman, G. (2008). Ic Müsteri Memnuniyeti: Konya un Fabrikalarinda Bir Uygulama. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (22).
    Paper not yet in RePEc: Add citation now
  25. Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026. https://doi.org/10.1016/j.amc.2006.09.022.
    Paper not yet in RePEc: Add citation now
  26. Postigo‐Boix, M., & Melús‐Moreno, J. L. (2018). A social model based on customers' profiles for analyzing the churning process in the mobile market of data plans. Physica a: Statistical Mechanics and its Applications, 496, 571–592. https://doi.org/10.1016/j.physa.2017.12.121.
    Paper not yet in RePEc: Add citation now
  27. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251.
    Paper not yet in RePEc: Add citation now
  28. Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning and NLP. Procedia Computer Science, 140, 170–178. https://doi.org/10.1016/j.procs.2018.10.326.
    Paper not yet in RePEc: Add citation now
  29. Sampe, M. Z., Ariawan, E., & Ariawan, I. W. (2019). Predictive analysis of employee loyalty: A comparative study using logistic regression model and artificial neural network. Journal of the Indonesian Mathematical Society, 1(1), 325–335. https://doi.org/10.22342/jims.25.3.825.325-335.
    Paper not yet in RePEc: Add citation now
  30. Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999–2006. https://doi.org/10.1016/j.eswa.2010.07.134.
    Paper not yet in RePEc: Add citation now
  31. Shankar, R. S., Rajanikanth, J., Sivaramaraju, V., & Murthy, K. V. (2018). Prediction of employee attrition using datamining. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), IEEE.
    Paper not yet in RePEc: Add citation now
  32. Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A., & Tsunoda, T. (2019). DeepInsight: A methodology to transform a non‐image data to an image for convolution neural network architecture. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-47765-6.
    Paper not yet in RePEc: Add citation now
  33. Shirazi, F., & Mohammadi, M. (2019). A big data analytics model for customer churn prediction in the retiree segment. International Journal of Information Management, 48, 238–253. https://doi.org/10.1016/j.ijinfomgt.2018.10.005.

  34. Sisodia, D. S., Vishwakarma, S., & Pujahari, A. (2017). Evaluation of machine learning models for employee churn prediction. 2017 International Conference on Inventive Computing and Informatics (ICICI), IEEE.
    Paper not yet in RePEc: Add citation now
  35. Soni, U., Singh, N., Swami, Y., & Deshwal, P. (2018). A comparison study between ANN and ANFIS for the prediction of employee turnover in an organization. 2018 International Conference on Computing, Power and Communication Technologies (GUCON), IEEE.
    Paper not yet in RePEc: Add citation now
  36. Tuna, M. (2007). Personel Devir Oranı Analizi: Ankara'da Yer Alan Yıldızlı Otel İşletmelerinde Bir Uygulama. Anatolia: Turizm Araştırmaları Dergisi, 18(1), 45–52.
    Paper not yet in RePEc: Add citation now
  37. Yadav, S., Jain, A., & Singh, D. (2018). Early prediction of employee attrition using data mining techniques. 2018 IEEE 8th International Advance Computing Conference (IACC), IEEE.
    Paper not yet in RePEc: Add citation now
  38. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9.
    Paper not yet in RePEc: Add citation now
  39. Yiğit, İ. O., & Shourabizadeh, H. (2017). An approach for predicting employee churn by using data mining. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE.
    Paper not yet in RePEc: Add citation now
  40. Zhu, X., Seaver, W., Sawhney, R., Ji, S., Holt, B., Sanil, G. B., & Upreti, G. (2017). Employee turnover forecasting for human resource management based on time series analysis. Journal of Applied Statistics, 44(8), 1421–1440. https://doi.org/10.1080/02664763.2016.1214242.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Profit-driven pre-processing in B2B customer churn modeling using fairness techniques. (2025). Bogaert, Matthias ; Janssens, Bram ; Rahman, Shimanto.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635.

    Full description at Econpapers || Download paper

  2. A closer look at customer experience with bundle telecommunication services and its impacts on satisfaction and switching intention. (2024). Rodrigues, Ricardo ; Moreira, Antonio C ; Barbosa, Belem ; Ribeiro, Hugo.
    In: Journal of Marketing Analytics.
    RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-023-00222-w.

    Full description at Econpapers || Download paper

  3. Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach. (2024). Cagliyor, Sendi ; Kirgiz, Omer Bugra ; Kiygi-Calli, Meltem ; el Oraiby, Maryam.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:48:y:2024:i:8:s0308596124001137.

    Full description at Econpapers || Download paper

  4. A neural network-based predictive decision model for customer retention in the telecommunication sector. (2024). Majhi, Ritanjali ; Thangeda, Rahul ; Kumar, Niraj.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:202:y:2024:i:c:s0040162524000465.

    Full description at Econpapers || Download paper

  5. Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. (2024). Guo, Yihan ; Feng, YI ; Marra, Marianna ; Ignatius, Joshua ; Wang, Dujuan ; Cheng, T. C. E., ; Yin, Yunqiang.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:184:y:2024:i:c:s014829632400376x.

    Full description at Econpapers || Download paper

  6. Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression. (2023). Imovi, Petra P ; Sun, Edward W.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-022-10275-1.

    Full description at Econpapers || Download paper

  7. Deep Churn Prediction Method for Telecommunication Industry. (2023). Gaber, Tarek ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; El-Gohary, Hatem ; El-Kenawy, El-Sayed M.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:5:p:4543-:d:1086814.

    Full description at Econpapers || Download paper

  8. Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art. (2023). Bogaert, Matthias ; Delaere, Lex.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1137-:d:1079547.

    Full description at Econpapers || Download paper

  9. Modelling bank customer behaviour using feature engineering and classification techniques. (2023). Sharif, Taimur ; Hajek, Petr ; Abedin, Mohammad Zoynul ; Satu, Md Shahriare ; Khan, Md Imran.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000399.

    Full description at Econpapers || Download paper

  10. A novel deep learning model based on convolutional neural networks for employee churn prediction. (2022). Ozcan, Tuncay ; Ozmen, Ebru Pekel.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550.

    Full description at Econpapers || Download paper

  11. Predicting individual event attendance with machine learning: a ‘step-forward’ approach. (2022). Valadkhani, Abbas ; Nguyen, Jeremy K ; McDonald, Heath ; Karg, Adam.
    In: Applied Economics.
    RePEc:taf:applec:v:54:y:2022:i:27:p:3138-3153.

    Full description at Econpapers || Download paper

  12. A New Churn Prediction Model Based on Deep Insight Features Transformation for Convolution Neural Network Architecture and Stacknet. (2022). Ridouani, Mohammed ; Hassouni, Larbi ; Frambach, Janneke M ; Rabbah, Jalal ; Abouzeid, Enjy ; Agarwal, Anshoo.
    In: International Journal of Web-Based Learning and Teaching Technologies (IJWLTT).
    RePEc:igg:jwltt0:v:17:y:2022:i:1:p:1-18.

    Full description at Econpapers || Download paper

  13. Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model. (2022). Liu, Yunjie ; Nedjah, Nadia ; Shengdong, MU ; Jijian, GU.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:24:p:4733-:d:1002045.

    Full description at Econpapers || Download paper

  14. A social CRM analytic framework for improving customer retention, acquisition, and conversion. (2022). Lamrhari, Soumaya ; Oubrich, Mourad ; el Ghazi, Hamid ; el Faker, Abdellatif.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:174:y:2022:i:c:s0040162521007095.

    Full description at Econpapers || Download paper

  15. Implementation of penalized survival models in churn prediction of vehicle insurance. (2022). Zhao, Yulu ; Chen, Yan ; Zhang, Lei ; Xu, Bing.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:153:y:2022:i:c:p:162-171.

    Full description at Econpapers || Download paper

  16. Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review. (2021). Nayak, Soumyaranjan ; Barsocchi, Paolo ; Saha, Lewlisa ; Tripathy, Hrudaya Kumar ; Bhoi, Akash Kumar.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5279-:d:550856.

    Full description at Econpapers || Download paper

  17. Case based models of the relationship between consumer resistance to innovation and customer churn. (2021). Sun, Yang.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:61:y:2021:i:c:s0969698921000965.

    Full description at Econpapers || Download paper

  18. Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. (2021). Silipo, Rosaria ; Ordenes, Francisco Villarroel.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:137:y:2021:i:c:p:393-410.

    Full description at Econpapers || Download paper

  19. Leveraging non-respondent data in customer satisfaction modeling. (2021). Mengesha, Nigussie ; Zihayat, Morteza ; Kargar, Mehdi ; Davoudi, Heidar ; Ayanso, Anteneh.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:135:y:2021:i:c:p:112-126.

    Full description at Econpapers || Download paper

  20. A multi-period analysis of the integrated item-sharing and crowdshipping problem. (2021). Behrend, Moritz ; Fagerholt, Kjetil ; Andersson, Henrik ; Meisel, Frank.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:292:y:2021:i:2:p:483-499.

    Full description at Econpapers || Download paper

  21. Classifying variety of customers online engagement for churn prediction with mixed-penalty logistic regression. (2021). Sun, Edward ; Posedel Šimović, Petra ; Vsimovi, Petra Posedel ; Horvatic, Davor.
    In: Papers.
    RePEc:arx:papers:2105.07671.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 15:46:08 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.