Amin, A.; Al-Obeidat, F.; Shah, B.; Adnan, A.; Loo, J.; Anwar, S. Customer churn prediction in telecommunication industry using data certainty. J. Bus. Res. 2019, 94, 290â301. [CrossRef]
- Amornvetchayakul, P.; Phumchusri, N. Customer Churn Prediction for a Software-as-a-Service Inventory Management Software Company: A Case Study in Thailand. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16â21 April 2020.
Paper not yet in RePEc: Add citation now
- Chai, Y.; Bian, Y.; Liu, H.; Li, J.; Xu, J. Glaucoma diagnosis in the Chinese context: An uncertainty information-centric Bayesian deep learning model. Inf. Process. Manag. 2021, 58, 102454. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chouiekh, A.; Haj, E. Deep Convolutional Neural Networks for Customer Churn Prediction Analysis. Int. J. Cogn. Inform. Nat. Intell. (IJCINI) 2020, 14, 1â16. [CrossRef] Mathematics 2022, 10, 4733 16 of 16
Paper not yet in RePEc: Add citation now
- Cosma, O.; Macelaru, M.; Pop, P.C.; Sabo, C.; Zelina, I. A comparative study of the most important methods for forecasting the ICT systems vulnerabilities. In Proceedings of the 14th International Conference on Computational Intelligence in Security for Information Systems and 12th International Conference on European Transnational Educational (CISIS 2021 and ICEUTE 2021), Bilbao, Spain, 22â24 September 2021; Volume 1400, pp. 224â233.
Paper not yet in RePEc: Add citation now
- Cosma, O.; Pop, P.C.; Sabo, C.; Cosma, L. Forecasting the Number of Bugs and Vulnerabilities in Software Components using Neural Network Models. In Proceedings of the International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022), Salamanca, Spain, 5â7 September 2022; Volume 289, pp. 258â268.
Paper not yet in RePEc: Add citation now
- Elnagar, A.; Al-Debsi, R.; Einea, O. Arabic text classification using deep learning models. Inf. Process. Manag. 2020, 57, 102121. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fridrich, M. Explanatory Variable Selection with Balanced Clustering in Customer Churn Prediction. 2019. Available online: https://www.researchgate.net/publication/334416868_Explanatory_variable_selection_with_balanced_clustering_in_ customer_churn_prediction (accessed on 1 October 2022).
Paper not yet in RePEc: Add citation now
- Huang, W.; Chen, J.; Cai, Q.; Liu, X.; Zhang, Y.; Hu, X. Hierarchical Hybrid Neural Networks With Multi-Head Attention for Document Classification. Int. J. Data Warehous. Min. 2022, 18, 1â16. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jeyakarthic, M. An Effective Customer Churn Prediction Model using Adaptive Gain with Back Propagation Neural Network in Cloud Computing Environment. J. Res. Lepid. 2020, 51, 386â399.
Paper not yet in RePEc: Add citation now
- Jha, S.; Prashar, D.; Long, H.V.; Taniar, D. Recurrent neural network for detecting malware. Comput. Secur. 2020, 99, 102037. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, X.D. Model of Customer Churn Prediction on Support Vector Machine. Syst. Eng. - Theory Pract. 2008, 28, 71â77.
Paper not yet in RePEc: Add citation now
- Karimi, N.; Dash, A.; Rautaray, S.S.; Pandey, M. A Proposed Model for Customer Churn Prediction and Factor Identification Behind Customer Churn in Telecom Industry. In Advances in Smart Grid and Renewable Energy; Springer: Singapore, 2021.
Paper not yet in RePEc: Add citation now
- Kozak, J.; Kania, K.; Juszczuk, P.; MitrË ega, M. Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management. Int. J. Inf. Manag. 2021, 60, 102357. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kumar, H.; Yadav, R.K. Rule-Based Customer Churn Prediction Model Using Artificial Neural Network Based and Rough Set Theory; Soft Computing: Theories and Applications; Springer: Singapore, 2020.
Paper not yet in RePEc: Add citation now
- Li, Y. Predictions model of customer churn in E-commerce based on online sequential optimization extreme learning machine. J. Nanjing Univ. Technol. (Nat. Sci. Ed.) 2019, 43, 108â114.
Paper not yet in RePEc: Add citation now
Li, Y.; Hou, B.; Wu, Y.; Zhao, D.; Zou, P. Giant fight: Customer churn prediction in traditional broadcast industry. J. Bus. Res. 2021, 131, 630â639. [CrossRef]
Lu, X.; Gu, D.; Zhang, H.; Song, Z.; Cai, Q.; Zhao, H.; Wu, H. Semi-Supervised Sentiment Classification on E-Commerce Reviews Using Tripartite Graph and Clusters. Int. J. Data Warehous 2022, 18, 1â20. [CrossRef]
- Margulis, A.; Boeck, H.; Laroche, M. Connecting with consumers using ubiquitous technology: A new model to forecast consumer reaction. J. Bus. Res. 2019, 121, 448â460. [CrossRef]
Paper not yet in RePEc: Add citation now
- Maw, M.; Haw, S.C.; Ho, C.K. Customer Churn Prediction in Telecommunication: An Analysis on Issues, Techniques and Future Trends. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia, 7â9 November 2019.
Paper not yet in RePEc: Add citation now
- Papa, A.; Shemet, Y.; Yarovyi, A. Analysis of fuzzy logic methods for forecasting customer churn. Inf. Process. Manag. 2021, 1, 57.
Paper not yet in RePEc: Add citation now
- Rekha, G.; Malik, S.; Tyagi, A.K.; Reddy, V.K. A Survey on Data Level TechniquesâA Customer Churn Prediction Case Study; ICT for Competitive Strategies; CRC Press: Boca Raton, FL, USA, 2020.
Paper not yet in RePEc: Add citation now
- Ren, Z.; Shen, Q.; Diao, X.; Xu, H. A sentiment-aware deep learning approach for personality detection from text. Inf. Process. Manag. 2021, 58, 102532. [CrossRef]
Paper not yet in RePEc: Add citation now
- Seymen, O.F.; Dogan, O.; Hiziroglu, A. Customer Churn Prediction Using Deep Learning. In Proceedings of the International Conference on Soft Computing and Pattern Recognition, Online, 15â18 December 2020.
Paper not yet in RePEc: Add citation now
- Smetanin, S.; Komarov, M. Deep transfer learning baselines for sentiment analysis in Russian. Inf. Process. Manag. 2021, 58, 102484. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wen J, X.Y.; Hong, L. Incomplete Multiview Spectral Clustering With Adaptive Graph Learning. IEEE Trans. Cybern. 2020, 50, 1418â1429. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wen, J.; Fang, X.; Cui, J.; Fei, L.; Yan, K.; Chen, Y.; Xu, Y. Robust Sparse Linear Discriminant Analysis. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 390â403. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wen, J.; Xu, Y.; Li, Z.; Ma, Z.; Xu, Y. Inter-class sparsity based discriminative least square regression. Neural Netw. 2018, 102, 36â47. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Yang, L. Application of Survival Analysis in Customer Churn Prediction Model. Stat. Appl. 2021, 10, 10â20.
Paper not yet in RePEc: Add citation now
- Ying, W.Y.; Qin, Z.; Zhao, Y.; Li, B.; Li, X. Support Vector Machine and Its Application in Customer Churn Prediction. Syst.-Eng.-Theory Pract. 2007, 27, 105â110.
Paper not yet in RePEc: Add citation now