SlideShare una empresa de Scribd logo
1
2. Funciones de variable compleja
Gary Larson
2
Conjuntos de puntos en el plano complejo
Un conjunto S de puntos en el plano complejo es
cualquier colección finita o infinita de puntos en el plano
complejo. Por ejemplo las soluciones de una ecuación
cuadrática, los puntos de una línea, los puntos del interior
de un círculo, etc.
¿Qué lugares geométricos describen las siguientes ecuaciones?
βα << zArg
La ecuación Arg z= α define una semirecta infinita de pendiente
α. Entonces la desigualdad anterior define un sector infinito
comprendido entre las semirectas infinitas Arg z= α y Arg z= β.
βα <−< )Arg( ozz (...)
3
4
5
Un conjunto de puntos S se llama abierto si cada punto de
S tiene un vecindad constituida enteramente por puntos que
pertenecen a S. Por ejemplo los puntos del interior de un
círculo o un cuadrado.
El complementario de un conjunto de puntos S es el
conjunto de todos los puntos que no pertenecen a S.
Un conjunto de puntos S se llama cerrado si su
complementario es abierto. Ej.: los puntos sobre y dentro de
una circunferencia o un cuadrado, puesto que sus
complementarios (los puntos exteriores a la circunferencia
o
al cuadrado) son abiertos.
6
La distancia entre dos puntos z y a es |z-a|. De modo que un
círculo C de radio ρ y centrado en a, puede expresarse como:
|z-a| = ρ
a
ρ
x
y z
En particular, el círculo de radio unidad
centrado en el origen puede escribirse
como: |z| = 1
x
y
1
i
¿C es abierto o cerrado?
7
Los puntos dentro del círculo C vienen representados por:
|z-a| < ρ (un entorno abierto centrado en a).
define un entorno
circular cerrado centrado en a.
a
ρ
x
y z
a
ρ
x
y z
0 < |z-a| < ρ define un entorno punteado
o reducido.
ρ≤|z-a|
}||/{),( ρρ <−∈= azCzaB
8
El anillo abierto de radios ρ1 y ρ2, viene
dado por: ρ1 < |z-a| < ρ2
a
ρ1
x
y
ρ2
9
(1) Determina la región en el plano complejo dada por:
|z-3-i| ≤ 4
Es la región circular cerrada de radio 4
con centro en 3+i.
(2) Determina las regiones: (a) |z|<1; (b) |z| ≤ 1; (c) |z| >1
4
x
y
3+i
(a) Círculo unidad abierto (b) Círculo unidad cerrado (c) Exterior del círculo unidad.
10
Re(z) ≥ 1 (No es un conjunto abierto).
11
12
¿Qué lugar geométrico describe la siguiente ecuación?
5|2||2| =++− zz
Una elipse de focos en -2 y 2 (suma de distancias a
los focos igual a 5) con semieje mayor igual a 5/2).
2-2
Ejercicio: ¿Qué representan las
siguientes ecuaciones?
cbzazc
cbzazb
cbzaza
≤−−−
>−+−
=−+−
||||)(
||||)(
||||)(
13
¿Qué lugar geométrico describen las siguientes ecuaciones:
1Im||)(
3)Re(|2|)(
||||)(
+=−
+=−
=−−−
zizf
zze
cbzazd
Nota: Busca las definiciones de parábola e hipérbola.
14
• Un punto interior de un conjunto S es un punto para el que
podemos encontrar un entorno o vecindad cuyos puntos
pertenecen todos a S. Por ejemplo, el centro de un círculo.
• Un punto frontera de un conjunto S es un punto tal que
todo entorno alrededor de él contiene puntos que pertenecen a
S y que no pertenecen a S. Por ejemplo los puntos que forman
la frontera de un círculo.
• Si un punto no es interior ni frontera de un conjunto de
puntos S, entonces es un punto exterior a S.
• Entonces, si S es abierto no posee puntos frontera, solo
puntos interiores. Si S es cerrado posee también a sus puntos
frontera.
• Algunos conjuntos no son ni abiertos ni cerrados. Contienen
algunos puntos frontera. Por ejemplo un entorno punteado.
• El plano complejo C es abierto y cerrado a la vez. No posee
puntos frontera.
15
• Una región es un conjunto formado por un dominio, más,
quizás, algunos o todos sus puntos frontera (Cuidado:
algunos autores usan región para indicar dominio).
• Un conjunto es acotado si todo punto de S está dentro de
algún círculo |z| = R. En caso contrario es no acotado.
• Un punto de S se dice que es de acumulación si cada
entorno punteado del mismo contiene al menos un punto de S.
Entonces, si S es cerrado contiene a todos sus puntos de
acumulación.
• Un punto no es de acumulación si existe un entorno
punteado del mismo que no contenga puntos de S. P.ej.:
Todos los puntos del conjunto S = {i/n} (n = 1,2,...) no son de
acumulación a excepción del cero.
16
Semiplanos infinitos
x
y
Inferior: z = x+iy tales que y < 0 o Im(z) < 0.
Semiplano superior: el conjunto de todos los
puntos z = x+iy tales que y > 0 o Im(z) > 0.
Derecho:
z = x+iy tales que x > 0 o Re(z) > 0.
Izquierdo:
z = x+iy tales que x < 0 o Re(z) < 0
x
y
x
y
x
y
¿Qué regiones describen?
(a) Im(z) = 0, (b) Im(z) = a,
(c) Re(z) = 0, (d) Re(z) = a
17
18
Conjuntos de Julia
Iteración:
2
1 nn zz =+
Condición inicial y órbita:
( ){ } { },...,,,...)(,)(, 210
22
0
2
00 zzzzzz =
Utilizando la identidad de Moivre:
( ){ }
{ }),...4sin4(cos),2sin2(cos),sin(cos
,...))sin(cos(,))sin(cos(),sin(cos
)sin(cos
42
222
0
θθθθθθ
θθθθθθ
θθ
iririr
iririr
irz
+++
=+++
+=
Gaston Maurice Julia
1893 - 1978
Cuando decía en 1980 a mis amigos que estaba trabajando con H.
Hubbard en el estudio de polinomios de grado 2 en variable compleja (y
más específicamente en z → z2
+ c ), me preguntaban: ¿Esperas
encontrar alguna cosa nueva?
Adrien Douady
19
)]2sin()2[cos(2
θθ ninrz
n
n +=
En el paso enésimo tendremos:
Si comenzamos con un número complejo de módulo r < 1,
sucesivamente el módulo irá disminuyendo hasta tomar valor
r = 0 para n infinito.
Al contrario, si r > 1 el módulo aumentará exponencialmente,
tendiendo a infinito.
El caso frontera, r = 1, mantendrá los valores de la iteración
en un círculo de radio unidad sobre el plano complejo.
20
De modo que todos los puntos del plano complejo
pertenecen a uno de estos dos conjuntos:
(a) Si escapan al infinito (r > 1): conjunto de escape E.
En este caso los puntos exteriores del círculo unidad.
La frontera de P (r = 1) es
el conjunto de Julia de esta
iteración: la circunferencia unidad.
(b) Si permanecen recluidos
en una región finita (r ≤ 1):
conjunto prisionero P.
En este caso el círculo unidad
cerrado.
21
Julia centró sus estudios en el
conjunto de iteraciones cuadráticas:
Fijado el parámetro complejo c establecemos una iteración
cuadrática en concreto.
czz nn +=+
2
1
Al potenciar el módulo, la iteración
nos manda al origen o al infinito,
excepto para el módulo de valor 1
(con c = 0).
Elevar al cuadrado implica
multiplicar el ángulo por dos.
Sumar c = a + ib, consiste en
una traslación.
22
c = 0.275 c = 1/4 c = 0 c = -3/4
c = -1.312 c = -1.375 c = -2 c = i
c=(+0.285,+0.535) c=(-0.125,+0.750) c=(-0.500,+0.563) c=(-0.687,+0.312)
23
¿Cómo discriminar si un punto del plano complejo
pertenece o no al conjunto de escape Ec?
Existe un sencillo criterio:
Si |z| ≥ |c| y |z| > 2, entonces z es un punto de
escape de la iteración zn+1 = zn
2
+ c.
Supongamos que definimos r(c) = max (|c|, 2), y
que se cumplen las condiciones del criterio.
Entonces, existe un ε > 0 tal que r(c) = 2 + ε y
|z| ≥ r(c).
24
Observemos que:
|z2
+ c| ≥ |z2
| - |c| = |z|2
- |c| ≥ |z|2
- |z| = (|z| - 1)·|z|
Recordemos que |z| ≥ r(c) = 2 + ε . Entonces:
(|z| - 1)·|z| ≥ (1 + ε)·|z|.
En conclusión, si z cumple las condiciones previas,
entonces: |z2
+ c| ≥ (1 + ε)·|z|.
De modo que en cada iteración el módulo del nuevo
valor crece.
25
•Fractint/Winfract
•Ultrafractal (UF) probablemente es el programa de generación
de fractales más usado por la comunidad de ciberartistas que
experimentan con fractales.
•Puedes bajarte una versión de evaluación en
http://www.ultrafractal.com/, la página oficial del programa.
•No te pierdas la galería de imágenes en:
http://www.ultrafractal.com/showcase.html.
Te harás una idea de las posibilidades de UF.
Ejecutar Ultrafractal localmente.
Curso de fractales en nuestra página del departamento:
http://matap.dmae.upm.es/cursofractales/index.html
26
Conjuntos conexos
¿Son los siguientes conjuntos de puntos dominios?


 No existe camino entre
el triángulo inferior y el
triángulo superior.
a
ρ
x
y
Un disco abierto
a
ρ1
x
y
ρ2
Un anillo
abierto
x
y
Un cuadrado abierto
sin diagonal.
Un conjunto S se llama conexo si cualquier par de sus puntos pueden
conectarse mediante un camino formado por puntos que pertenecen a S.
Un abierto conexo se denomina dominio (en algunos textos se denomina
región). P.ej.: todo entorno es un dominio.
27
Teorema:
Cualesquiera dos puntos de
un dominio pueden unirse
por medio de una línea
poligonal contenida en el
dominio.
28
El conjunto de Mandelbrot
Benoit Mandelbrot
(1924 -)
29
czz nn +=+
2
1
30
El valor de c determina si un conjunto de Julia es
conexo o no.
Para determinar qué valores de c producen conjuntos
de Julia conexos parece que no quede más remedio
que determinar cada conjunto iterando todos los puntos
del plano complejo para cada función z2
+ c.
Afortunadamente, se puede demostrar que basta
con iterar z0 = (0, 0) para cada c.
czz nn +=+
2
1
31
Si la órbita con semilla z0 = (0, 0)
no escapa al infinito,
entonces el conjunto de Julia es
conexo.
El conjunto de todos los valores c
tales que sus
correspondientes conjuntos de
Julia son conexos
forman en el plano complejo el
famoso conjunto
de Mandelbrot.
Este es el dibujo original
que Mandelbrot
descubrió a la
comunidad científica a
finales de los 70 cuando
trabajaba en el centro de
investigación Thomas J.
Watson.
32
En la figura de la izquierda están
representados algunos conjuntos de Julia
con distintos valores de c (indicados
en el plano complejo por las líneas de
color azul). Para valores de c dentro del
conjunto de Mandelbrot la forma de los
conjuntos de Julia es semejante a
círculos. Fuera del conjunto tenemos
nubes de puntos desconectados
(conjuntos de Julia no conexos). Los
conjuntos de Julia más interesantes
estéticamente se observan
en la frontera. Las formas dendríticas de
los conjuntos de Julia corresponden a las
fronteras filamentosas del conjunto de
Mandelbrot. En la imagen inferior
puedes observar un gif animado
del efecto de la variación continua del
parámetro c en las formas de los
conjuntos J a lo largo de
una línea que va desde la frontera de M
(forma dendrítica) hasta su interior
(forma circular).
33
34
35
36
37
38
Funciones complejas
Sea S un conjunto de números complejos z = x+iy.
Una función f definida sobre S es una regla que asigna a
cada z en S un número complejo w llamado valor de f en z.
w = f(z)
– z es una variable compleja.
– S es el dominio de definición de f.
– El conjunto de valores de la función f se llama rango de f.
Como w es complejo (w = u+i v; con u y v reales) podemos
escribir:
w = f(z) = u(x,y) + i v(x,y)
– Una función compleja f(z) es equivalente a un par de funciones
reales u(x,y) y v(x,y), cada una dependiente de dos variables
reales x e y.
39
),( yxu
),( yxv
Ejemplos:
)(zfw =
)2()(
)(
)(
22
2
2
xyiyx
iyx
zzf
+−=
+=
=
),(),( yxviyxuw +=
Función de
variable
compleja
),( yxu ),( yxv
)62()26(
)(6)(2
62)(
yxiyx
yixyixi
zizzf
−+−=
−++=
+=
)(zf
iz 23+=
i
i
yxiyxzf
614
)2632()2236(
)62()26()(
−=
⋅−⋅+⋅−⋅=
−+−=
¿Cuál es el valor de
en ?
Parte real Parte imaginaria
¿Cuáles son los
dominios de
definición de estas
funciones?
40
Ejemplos:
• Polinomios de grado n:
donde c0, c1...cn son constantes complejas y cn es distinto de
cero.
• Funciones racionales (cocientes de polinomios):
• Si en f(z) = u+iv, v = v(x,y) = 0, entonces f es una
función de variable compleja con valores reales. P.ej.:
f(z)= |z|2
= x2
+ y2
.
n
n zczczczczcczP ++++++= 4
4
3
3
2
210)(
)(
)(
zQ
zP
41
42
x
Funciones de variable real
)(xfy =
2
)( xxf =
Representación
geométrica
cartesiana
Variable real
y
Asignación
43
x
)(zfw =
2
)( zzf =
y
i+1
i2
1−
Funciones de variable compleja
¿Cómo representarlas geométricamente?
Parte imaginaria
1+
Asignación Parte real
Imagen
Preimagen. ¿Cuál es la otra?
1)1()1( 2
=−=−f
iiif 2)1()1( 2
=+=+
44
Representación mediante dos planos: z y w
yixz +=
iz += 13
iz 212 −=
iz −−= 21
viuw +=
iw 431 +=
iw 432 −−=
14 −=z
14 +=w
iw 23 =
x
y
Plano z
2
)( zzf =
u
v
Plano w
¿Cómo transforman ?zf(z)(c)iz,f(z)(b)c,zf(z)(a) ==+=
45
46
Transformaciones mediante funciones lineales
Existen muchas situaciones prácticas donde podemos simplificar
un problema mediante una transformación en el plano complejo.
),(),(
),(con)(
21
21
cycxwyxz
cccczzfw
++=→=
=+==Translación:
)|,|(),(
)]sin()[cos(||)sin(cos
)sin(cos||con)(
φθθ
θφθφφφ
θθ
+→
+++→+=
+===
brr
ibrirz
ibbbzzfw
Rotación alrededor del origen y alargamiento/contracción:
47
Funciones lineales
cbzzfw +== )( Translación
Rotación y alargamiento/contracción
Ejemplo: )1()( ++== iizzfw
Esta función transforma el cuadrado A en el cuadrado B.
48
2
)( zzf =
x
y
u
v
)]2sin()2[cos(22
θθ irzwz +==→
La función/transformación
¿Es biyectiva la transformación?
Plano z Plano w
49
2
)( zzf =
x
y
u
v
)]2sin()2[cos(22
θθ irzwz +==→
¿Cómo puede ser? Si a cada punto de la semicircunferencia del
plano z le corresponde un solo punto del plano w, ¿cómo media
circunferencia se transforma en una entera? ¿No hay el doble de
puntos en una circunferencia que en media?
Plano z Plano w
50
]1,0[;)1()( 2
∈+−= µµµµ zzzf
51
]1,0[;)1()( 2
∈+−= µµµµ zzzf
52
0),( =yxF
)()()( tiytxtzz +==
),(),()( yxivyxuzfw +==
0),( =Φ vu
Curva en el plano z
Transformación f(z)
Curva en el plano w
Parametrizamos la curva:
)](),([)(
)](),([)(
tytxvtv
tytxutu
=
=
Obtenemos la transformación
de la parametrización:
Y de aquí la curva transformada:
En general
53
¿En qué curva se transforma una circunferencia de radio
unidad centrado en el origen a través de la función f(z)=z2
?
)2()(
)()(
22
22
xyiyx
iyxzzf
+−=
=+==
01),( 22
=−+= yxyxF
ttyttxiyxz
ttittzz
sin)(,cos)(;
)2,0[,sincos)(
==+=
∈+== π
)2sin(sincos2)(
)2cos()(sin)(cos)( 22
ttttv
ttttu
==
=−=
01),( 22
=−+=Φ vuvu
La imagen traza una circunferencia de radio unidad centrada en el
origen dando dos vueltas.
Circunferencia de radio unidad
centrada en el origen:
Parametrizamos.
Todos los puntos de la cincurferencia
pueden expresarse como:
La transformación es:
xyyxv
yxyxu
2),(
),( 22
=
−=
En componentes:
Usando la parametrización:
Que nos proporciona la curva:
54
]1,0[;)1()( 2
∈+−= µµµµ zzzf
55
Encuentra la imagen de la línea Re(z) = 1 bajo la
transformación f(z) = z2
.
Re(z) = x = 1,
yxyyxv
yyxyxu
iyxzzf
22),(
1),(
)()(
222
22
==
−=−=
+==
4/1entonces,2/ 2
vuvy −==
56
¿En qué curvas se transforman rectas verticales en el
plano z a través de la función f(z)=z2
en el plano w?
kx =
kyxyyxv
ykyxyxu
22),(
),( 2222
==
−=−=
iykz +=
La ecuación de un parábola abierta hacia la izquierda:
con vértice en (k2
, 0) y foco en el origen.
Idem para rectas horizontales (pero serán parábolas
hacia la derecha):
)(4
2
222
2
kukv
k
v
y
uky
−−=




=
−=
ikxz
ky
+=
=
kxxyyxv
kxyxyxu
22),(
),( 2222
==
−=−=
)(4
2
222
2
kukv
k
v
x
kux
−=




=
−=
57
Tomemos como dominio un rectángulo con esquinas en ±3/2±3/2i. Observa
como las líneas verticales, formadas por complejos de parte real constante, se
convierten en parábolas abiertas hacia la izquierda. Y las líneas horizontales,
formadas por números complejos de parte imaginaria constante, en parábolas
abiertas a la derecha. Observa también como los ángulos entre rectas amarillas y
rosas siguen siendo rectos: la transformación es conforme..
http://www.ima.umn.edu/~arnold/complex.html Douglas N. Arnold
58
]1,0[;)1()( 2
∈+−= µµµµ zzzf
59
60
61
)2,(),(
2),(),(
22
22
xyyxyx
xyyxvyxyxu
−→
=−=Observa que puesto
que la transformación
w = f(z) = z2
es:
Los puntos z sobre la hipérbola x2
– y2
= k se transforman en lineas u = k.
Los puntos z sobre la hipérbola 2xy = k’ se transforman en lineas v = k’.
62
f(z) = z2
Esquema de color dependiente del valor real
Dominio Rango
http://winnie.fit.edu/~gabdo/function.html
63
f(z) = z3
Esquema de color dependiente del argumento
Dominio Rango
64
65
Límite de una función compleja
Una función f(z) se dice que tiene límite w0 cuando z tiende a z0, y
se escribe:
u
si f está definida en un entorno de z0 (a excepción tal vez de z0 mismo) y si:
∀ real ε > 0, ∃ un real δ > 0: ∀ z ≠ z0 , y |z - z0| < δ, entonces |f(z) - w0| < ε.
0)(lim
0
wzf
zz
=
→
x
z0
δ
y
z
w0
ε
v
f(z)
En general δ=δ(ε, z0)
Si el límite existe,
es único.
Es decir: si dado un entorno de radio ε alrededor del límite, podemos
determinar un entorno de radio δ(ε, z0) alrededor de z0.
66
Observemos que como en el caso de variable real, la definición
de límite no nos dice cómo encontrarlo.
Demostremos que:
iiz
iz
2)(lim =+
→
|||2)(||)(|
||||
)(
0
0
iziizwzf
izzz
izzf
−=−+=−
−=−
+=
Utilizando la notación anterior, tenemos en este caso:
ε<−< ||0 iz
δ<−< ||0 iz
Tomando δ = ε,
por ejemplo,
siempre se
cumple.
Ejercicio: Demostrar que si el límite existe,
es único. (Nota: Suponer dos valores distintos
para el límite, aplicar definiciones y demostrar entonces
que ambos valores han de ser, a la fuerza, el mismo).
67
¿Cuál es el equivalente a límite por la derecha y por la izquierda
de variable real en el caso de variable compleja?
En el plano complejo podemos acercarnos al límite a través de
una infinidad de trayectorias. Por ejemplo:
zzf Arg)( =
x
y
0z
1C
2CToda vecindad de z0 contiene
valores de Arg z en el segundo
cuadrante arbitrariamente cerca
de , pero también del tercer
cuadrante arbitrariamente cerca
de . Acercándonos por C1 y por
C2 obtenemos dos valores distintos
del límite.
π
π−
ππ +≤<− zArg
68
Ejemplo
yx
yyi
yx
xx
zf
+
+
+
+
+
=
)(
)(
22
Esta función no está definida para z = x+iy = 0, (x = 0, y = 0).
Veamos que no existe el límite de la función cuando z tiende a 0.
(1) Nos aproximamos al origen a lo largo del eje y. Tomando
x=0 en f(z), tenemos:
)1(
)(
)(
2
0 +=
+
== yi
y
yyi
zf x
Que se aproxima a i,
a medida que nos
acercamos al origen.
(2) Tomando y=0 nos aproximamos a lo largo del eje x:
1)(
2
0
+=
+
==
x
x
xx
zf y
Que tiende a 1.
Como el límite por ambos
caminos no coincide, el
límite no existe.
69
70
Ejercicios:
(1) Sean: 000000 y),,(),()( ivuwiyxzyxviyxuzf +=+=+=
Entonces:
0
),(),(
0
),(),(
0
),(limy),(lim
sii)(lim
0000
0
vyxvuyxu
wzf
yxyxyxyx
zz
==
=
→→
→
Nota: Utilizar la definición de límite y la desigualdad:
(2) Demostrar que si
|||)(|lim)(lim 00
00
wzfwzf
zzzz
=⇒=
→→
|)(||||)(| 00 wzfwzf −≤−
71
Propiedades de los límites
Sean w0 y w'0 los límites, cuando z
tiende a z0, de f(z) y g(z) respectivamente. Entonces:
En particular si f(z) = g(z) = z :
y por inducción: Como además:
Entonces, para un polinomio P(z) = a0+a1z+...+anzn
,
tendremos:
0si
)(
)(
lim
)]()([lim)]()([lim
'
0'
0
0
'
00
'
00
0
00
≠=
⋅=⋅+=+
→
→→
w
w
w
zg
zf
wwzgzfwwzgzf
zz
zzzz
2
0
2
0
lim wz
zz
=
→
nn
zz
wz 0
0
lim =
→
cc
zz
=
→ 0
lim
)()(lim 0
0
zPzP
zz
=
→
Nota: Es fácil demostrar estas
propiedades a partir de u(x,y) y v(x,y).
72
)(lim)(lim
00
zfzf
zzzz →→
=
Ejercicio: Demostrar que
73
Punto del infinito
74
Punto del infinito
•El número complejo infinito o punto del infinito,
denotado por , no posee signo ni argumento.
•Su módulo es mayor que |z| para todo z complejo.
•¿Es un punto del plano complejo? No es localizable,
pero sí “alcanzable” a través de cualquier trayectoria
en la que |z| sea creciente.
•Se “opera” como en los reales. Por ejemlo:
z / = 0, z/0 = , etc.
•Cuando el plano complejo incluye al punto del infinito ,
hablamos de plano complejo extendido.
∞
∞ ∞
∞
75
Ejemplo: Sea
2
1
)(
−
−
=
z
z
zf
Determina la imagen para z = ∞.
1
1
1
2
1
1
1
lim
2
1
lim)(lim ==
−
−
=
−
−
=
∞→∞→∞→
z
z
z
z
zf
zzz
Cuando z tiende a infinito obtenemos f(z) = 1.
Nota. Una forma alternativa de encontrar el valor en el infinito
es encontrar la imagen de 1/z para z =0.
1
21
1
lim
2
1
1
1
lim
1
lim
000
=
−
−
=
−
−
=





→→→ z
z
z
z
z
f
zzz
76
0
1
1
lim)(lim
1
lim)(lim
0
)(
1
lim)(lim
0
0
0
0
00
=






⇔∞=
=





⇔=
=⇔∞=
→∞→
→∞→
→→
z
f
zf
w
z
fwzf
zf
zf
zz
zz
zzzz
Algunas relaciones útiles:
77
78
79
Sol.: a) 4, b) ∞, c) ∞, d) 0, e) No existe, f) 6i.
Sol.: No existe.
80
Bernhard Riemann
(1826 - 1866)
Esfera de radio unidad centrada en
el cero del plano complejo.
Proyección estereográfica: hacemos
corresponder cada punto del plano con
un punto de la esfera como muestra la
gráfica. El polo norte N de la esfera
corresponde al punto del infinito.
La esfera de Riemann
81
Otra forma de la
esfera de Riemann
Ahora ya podemos definir
límites al infinito. Si
para todo real ε > 0, ∃ un real
δ> 0: |f(z) - w0| < ε para todo
z: |z|> 1/δ.
0)(lim wzf
z
=
∞→
O: si para todo real ε > 0, ∃ un real δ > 0:
|f(z)| < 1/ε siempre que |z - z0| < δ.
∞=
→
)(lim
0
zf
zz
82
)Arg(|| zrz ==
Espiral de Arquímedes. Dado que , la ecuación
anterior solo representa una espira de la espiral.
Espirales esféricas de M.C. Escher
La proyección estereográfica tiene dos
propiedades importantes: las circunferencias
siempre se transforman en circunferencias y
la transformación conserva ángulos.
ππ +≤<− zArg
83
84
85
Funciones complejas continuas
Decimos que f(z) es continua
en una región si es continua
en todo punto de la región.
Una función f(z) se dice que es continua en z = z0 si f(z0)
está definida en z0 y )()(lim 0
0
zfzf
zz
=
→
Ejercicio:Las sumas, diferencias y productos de funciones
continuas son continuas. El cociente de dos funciones
continuas es continuo salvo en los puntos en que se anula el
denominador. La composición de funciones continuas es
continua. Sea f(z) = u(x,y) + iv(x,y), entonces u y v serán
continuas en todo punto en el que f(z) lo sea. Y a la inversa:
f(z) será continua en todo punto en que u(x,y) y v(x,y) lo sean.
(Nota: si en el límite δ = δ(ε, z0)
no depende de z0, la continuidad
es uniforme).
86
Ejemplo:
Sea:




=
≠
−
+
=
izi
iz
iz
z
zf
,3
,
1
)(
2
¿Es continua f(z) en z = i? (1) f(i) = 3i está definido.
(2) Calculemos el límite de la función cuando z tiende a i:
iiz
iz
iziz
iz
z
iziziz
2)(lim
))((
lim
1
lim
2
=+=
−
+−
=
−
+
→→→
El límite existe pero no coincide con el valor de la función:
la función no es continua.
87
Funciones continuas
Ejercicios:
(1) Sea f(z) = u(x,y) + iv(x,y), entonces u y v serán
continuas en todo punto en el que f(z) lo sea.
(2) Y a la inversa: f(z) será continua en todo punto en que
u(x,y) y v(x,y) lo sean.
Nota: Recuerda que, u(x,y) será continua en (a,b) sii
lim(x,y)→(a,b) u(x,y) = u(a,b).
88
Transformación w = f(z) = 1/z
En este caso la transformación sí es biyectiva,
excluyendo al origen. En coordenadas polares la
transformación es:
),/1(),( θθ −→ rr
Una inversión en el círculo
unidad (lo de fuera pasa adentro
y al contrario) seguida de una
reflexión respecto al eje x.
Las circunferencias de radio r se
convierten en circunferencias de
radio 1/r. En particular, una
circunferencia de radio unidad
permanece invariante.
89
f(z) = 1/z
Esquema de color dependiente del argumento
Dominio Rango
),/1(),( θθ −→ rr
Biyección
"We may thus think of the interior of the unit circle as a condensed image, a
microcosmos, of its exterior". To infinity and beyond, Eli Maor
90
f(z) = 1/z
Esquema de color dependiente del módulo
Dominio Rango
),/1(),( θθ −→ rr
?
¿Qué figura permanece invariante?
91
http://mathworld.wolfram.com/Inversion.html
Gardner, M. The Sixth Book of Mathematical Games from Scientific American.
Chicago, IL: University of Chicago Press, 1984.
92
Una línea que pase por el centro O, permanece
invariante...
Una línea que no pase por el centro O se
transforma en un círculo k que pasa por O (y al
revés) y está completamente dentro del círculo
unitario de inversión c.
Si la línea es tangente al círculo unitario de
inversión c, el círculo k toca en el mismo punto
a la línea y al centro O.
...
Planos z y w
superpuestos
Vamos a describirlo con algo de mates...
93
2222
2222
2222
;
:entesimétricamy
;
;
1
);,(),(
11
)(
yx
y
v
yx
x
u
vu
v
y
vu
u
x
vu
v
i
vu
u
ivu
iyx
yxivyxu
iyxz
zf
+
−
=
+
=
+
−
=
+
=
+
−
+
=
+
=+
+=
+
==
Veamos con más detalle la transformación f(z) = 1/z.
94
Ejemplo: ¿Cuál es la imagen de la recta x = c bajo la transformación
f(z) = 1/z?
Es decir, un círculo de centro
(1/(2c), 0) que pasa por el
origen.
El semiplano x > c se
transforma en el interior del
círculo.
2
2
2
22
2222
2222
2
1
2
1
;0
;;
)valorcualquier(:esrtransformaarectaLa
;
1
;
11
)(






=+





−=−+
=
+
−==
+
=
==
+
−
+
=
+
=++=
+
==
c
v
c
u
c
u
vu
vu
v
yc
vu
u
x
ycx
vu
v
i
vu
u
ivu
iyxivu
iyxz
zf
λ
λ
95
rectaunadeecuación0círculoundeecuación0
),,,(0)( 22
→=→≠
ℜ∈=++++
aa
dcbadcybxyxa
Podemos escribir la ecuación general de un círculo y una recta
en el plano z en la forma:
0)(
0
0
;
0)(
22
22
2222
2
22
2
22
2222
22
=+−++
=+
+
−+
=+
+
−
+
+














+
−
+





+
+
−
=
+
=
=++++
acvbuvud
d
vu
cvbua
d
vu
v
c
vu
u
b
vu
v
vu
u
a
vu
v
y
vu
u
x
dcybxyxa
Bajo la transformación 1/z, la ecuación general se convertirá en:
96
rectaunadeecuación0círculoundeecuación0
),,,(0)( 22
→=→≠
ℜ∈=++++
aa
dcbadcybxyxa
(1)a y d distintos de 0: círculos que no pasan por el centro
se transforman en círculos que no pasan por el centro.
(2) a distinto de 0 y d = 0: círculos que pasan por el centro
se transforman en rectas que no pasan por el centro.
(3) a = 0 y d distinto de 0: rectas que no pasan por el centro
se transforman en círculos que pasan por el centro.
(4) a = d = 0: rectas que pasan por el centro se transforman
en rectas que pasan por el centro.
0)( 22
=+−++ acvbuvudSe transforma bajo 1/z en:
De hecho, si pensamos en rectas como círculos de radio infinito, 1/z transforma
círculos en círculos.
rectaunadeecuación0círculoundeecuación0 →=→≠ dd
97
f(z) = 1/z
Esquema de color dependiente del argumento
Dominio Rango
98
u = 1/a
u = -1/b
b = 0; u = -v
b distinto de 0; en
circunferencias.
v = -ku
circunf.
u2
= -v3
/(1+v)
99
Transformaciones bilineales o de Möbius
),,,,0()( Cdcbabcad
dcz
baz
wzM ∈≠−
+
+
==
La transformación inversa es
también bilineal:
acw
bdw
zwM
−
+−
==−
)(1
Observemos que la transformación no está definida para z = -d/c.
Y lo mismo ocurre con w = a/c en el caso de la inversa.
El conjunto de posibles transformaciones bilineales forman un grupo.
August Ferdinand Möbius (1790-1868)
100
),,,,0()( Cdcbabcad
dcz
baz
wzM ∈≠−
+
+
==
101
Cuando c ≠ 0, T(z) tiene un cero simple en z0 = −d/c, y
entonces:
./)(osescribiremy
,
/
/
lim)(lim
entonces,0además,Si,.)(osEscribirem
,)(lim
0
0
caT
c
a
zdc
zba
zT
czT
zT
zz
zz
=∞
=
+
+
=
≠∞=
∞=
∞→∞→
→
Ejemplo: Si T(z) = (2z + 1)/(z – i), calcula T(0), T(∞), T(i).
∞=∞==
==∞=−=
→
∞→
)(,)(lim)(
,2)(lim)(,)/(1)0(
iTzTiT
zTTiiT
iz
z
102
Las transformaciones de Möbius son biyecciones
103
( ) ''
'
1
''
'
'
)(
z
c
adbc
c
a
z
z
z
c
ad
b
c
a
dczz
dcz
c
ad
b
c
a
c
d
zc
c
ad
b
c
d
za
dcz
baz
wzf
−
+→≡






−
+→+≡
+






−
+=






+






−+





+
=
+
+
==
¿Cómo transforma la bilineal?
De modo que cualquier
transformación bilineal
puede obtenerse como
una composición de una
transformación lineal
y una transformación 1/z.
Así que para las transformaciones bilineales transforman el conjunto de
círculos y líneas en sí mismo.
104
22:
4
2
2
1
82
)( ≤−
+
−=
+
= zC
zz
z
zf
Re(z)2 4
)(4' traslaciónzz +=
Re(z')2 4 6 8
26' ≤−z
22 ≤−z
82
)(
+
=
z
z
zf
b) Determinar la imagen de la región , al
considerar la transformación:
Examen
JUNIO 04/05: P-1
105
16
1
16
3
''
16
1
16
3
0112)(32
03212)(2)6(26'
0)(0)(
'
1
''
2
2
2
22
22222
2222
=−⇒
⇒=+





−⇒=+−+⇒
⇒=+−+⇒=+−⇒=−
=+−++⇒=++++
=
z
vuuvu
xyxyxz
acvbuvuddcybxyxa
z
z
Re(z'')3/16 1/4
16
1
16
3
'' ≥−z
26':
'
2
2
1
22:
4
2
2
1
82
)(
≤−−
≤−
+
−=
+
=
zC
z
zC
zz
z
zf
Recordemos cómo actúa la inversión:
...exterior del círculo...
106
8
1
8
3
'''
)homotecia(''2'''
≥−
=
z
zz
Re(z''')3/8 1/2
16
1
16
3
''''2
2
1
26':
'
2
2
1
22:
4
2
2
1
82
)(
≥−−
≤−−
≤−
+
−=
+
=
zz
zC
z
zC
zz
z
zf
...seguimos en
el exterior del círculo...
107
8
1
8
3
)claromódulo,elomanteniend
,180ºafijoslostodosdegiro(''''''
≥+
=−=
Z
zezZ iπ
Re(Z)-3/8-1/2
8
1
8
1
)(
2
1
≥−
+=
w
traslaciónZw
Re(Z)1/41/8
108
Ejemplo: Sea a una constante compleja tal que Im(a) > 0.
Encontrar la imagen del semiplano infinito
superior bajo la transformación bilineal:
az
az
w
−
−
=
Consideremos primero el borde. Para los puntos z sobre el
eje x, tenemos:
1
||
||
|||||| =
−
−
=−=−
az
az
wazaz
De modo que el eje x
se transforma en el
círculo unidad con
centro en el origen.
z = a se transforma en
w = 0 (un punto interior
del círculo).
La transformación es continua, y de aquí podemos deducir que
la imagen del semiplano superior es el interior del círculo.
109
110
111
112
113
114
115
116
Möbius Transformations Revealed is a short video by Douglas Arnold and Jonathan Rogness
which depicts the beauty of Möbius transformations and shows how moving to a higher
dimension reveals their essential unity. It was one of the winners in the
2007 Science and Visualization Challenge and was featured along with the other winning entries
in the September 28, 2007 issue of journal Science. The video, which was first released on
YouTube in June 2007, has been watched there by more than a million viewers and classified as
a "Top Favorite of All Time" first in the Film & Animation category and later in the Education
category. It has been selected for inclusion in MathFilm Festival 2008.
117
Tripletes a Tripletes
Observa que podemos crear una transformación de Moebius
a partir de tres puntos:
esta transformación tendrá un cero en z = z1(T(z1) = 0,
T(z2) = 1 y tiene un polo en z = z3 (T(z3) = ∞). De modo
que T(z) transforma los complejos z1, z2, z3 en 0, 1, e ∞,
( )
( )
.
;
;;
)(
212
232
31
312
132
12
32
3
1
bzzzc
dzzza
zdzb
dcz
baz
zzzz
zzzz
zz
zz
zz
zz
zM
+=−=
+=−=
−=−=
+
+
=
−−
−−
=
−
−
⋅
−
−
=
118
De la misma manera, la transformación de
Moebius:
transforma w1, w2, w3 en 0, 1 e ∞, y S-1
transforma0,
1 e ∞ en w1, w2, w3.
De modo que w = S-1
(T(z)) transforma el triplete z1,
z2, z3 en el triplete w1, w2, w3. Observa que como w
= S-1
(T(z)), tenemos que S(w) = T(z) y
12
32
3
1
)(
ww
ww
ww
ww
wS
−
−
−
−
=
12
32
3
1
12
32
3
1
zz
zz
zz
zz
ww
ww
ww
ww
−
−
−
−
=
−
−
−
−
119
Ejemplo:
Construye una transformación de Moebius que
transforma los puntos 1, i, −1 sobre el círculo unidad
|z| = 1 a los puntos −1, 0 y 1 sobre el eje real.
Despejando w, tenemos w = −i(z – i)/(z + i).
1
1
1
1
o
1
1
1
1
)1(0
10
1
1
+
−
−=
−
+
−
−
+
+
−
=
−−
−
−
+
z
z
i
w
w
i
i
z
z
w
w
12
32
3
1
12
32
3
1
zz
zz
zz
zz
ww
ww
ww
ww
−
−
−
−
=
−
−
−
−
120
121
122
123
Ejemplo: Construye una transformación de
Moebius que transforma los puntos ∞, 0, 1 sobre
el eje real en los puntos 1, i, −1 sobre el círculo |
w| = 1.
Puesto que z1 = ∞, los términos z − z1 y z2 − z1 en:
son 1. Y entonces:
)(
1
1
1
1
)(o
1
10
1
1
1
1
1
1
zT
zw
w
iwS
zi
i
w
w
=
−
−
=
−
+
−=
−
−
=
−
+
+
−
12
32
3
1
)(
zz
zz
zz
zz
zT
−
−
−
−
=
124
Versión matricial
Podemos asociar la transformación bilineal a una matriz:












=





+
+
=
+
+
=
+
+
=
+
+
=





=
11
11
22
22
12
22
22
2
11
11
1
)(pordadaviene))((entonces
,)(,)(Si
)(aciótransformlarepresenta
dc
ba
matrizLa
dc
ba
dc
ba
dc
ba
dcz
baz
zTzTT
dzc
bza
zT
dzc
bza
zT
dcz
baz
zTA
125
adj:esasociadamatrizLa
.)(:escribirpodemosy
entonces,)(Si
1






−
−
=
+−
−
=
+−
−
=
+
+
==
−
ac
bd
acw
bdw
wT
acw
bdw
z
dcz
baz
zTw
A
)).((encontrar,
1
)(y
2
12
)(Si:Ejemplo 1-
zTS
iz
iz
zS
z
z
zT
−
−
=
+
−
=





 −






−
−
=





+
+
=
21
12
1
1
adj
donde,))((Sea 1-
i
i
dc
ba
dcz
baz
zTS
izi
izi
zTS
ii
ii
i
i
++−
+++−
=






+−
+−+−
=




 −






−
−
=
−
2)21(
21)2(
))((:entonces
,
221
212
21
12
1
1
1
126
Jos Leys
http://www.josleys.com/
127
128
129
130
131
132
133
134
135
136
137
138
139
August Ferdinand Möbius (1790-1868)
Max Bill, “Endless surface”. From 1953 to 1956.
Size125 x 125 x 80 cm. Open air Sculpture
Middlelheim Museum, Antverpen, Belgium.
La banda de Moebius
(Möbius strip)
140
141Moebius Strip II, M. C. Escher (1963)
142

Más contenido relacionado

PPT
TRABAJO EN EQUIPO VS TRABAJO EN GRUPO.
PDF
Cuaderno de problemas
PDF
100 problemas maravillosos de matemáticas - Libro 6
PDF
Electrónica: Electrónica Industrial y Automatización de CEKIT Parte 2
PDF
Triangulos rectangulos notables(completo)
PPT
El impacto social y cultural de la conquista
PDF
Diálogo en inglés en diferentes tiempos verbales
PDF
Distribución gamma y exponencial
TRABAJO EN EQUIPO VS TRABAJO EN GRUPO.
Cuaderno de problemas
100 problemas maravillosos de matemáticas - Libro 6
Electrónica: Electrónica Industrial y Automatización de CEKIT Parte 2
Triangulos rectangulos notables(completo)
El impacto social y cultural de la conquista
Diálogo en inglés en diferentes tiempos verbales
Distribución gamma y exponencial

La actualidad más candente (20)

PDF
Independencia Lineal y Wronskiano
PDF
Series de fourier 22 Ejercicios Resueltos
DOCX
Que es el wronskiano
PDF
Algunos resueltos de capítulo 13 sears
PDF
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
PDF
Ecuaciones diferenciales-orden-superior
PDF
Parametrizacion de superficies
PDF
Solucionario ecuaciones1
PPTX
Serie de Fourier
PDF
Aplicacion de las ecuaciones diferenciales de orden superior
PPSX
Ecuación Diferencial de un Circuito RLC
PDF
Ejercicios circuitos i
DOCX
Transformada de laplace (tablas)
PPTX
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
PPT
Induccion
PPTX
Circuitos de corriente directa. ing. carlos moreno (ESPOL)
PPT
Campos Electromagneticos - Tema 3
PPT
Magnetismo
PDF
Problemas resueltos y propuestos de redes basica
PDF
265131074 derivadas-parciales (1)
Independencia Lineal y Wronskiano
Series de fourier 22 Ejercicios Resueltos
Que es el wronskiano
Algunos resueltos de capítulo 13 sears
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
Ecuaciones diferenciales-orden-superior
Parametrizacion de superficies
Solucionario ecuaciones1
Serie de Fourier
Aplicacion de las ecuaciones diferenciales de orden superior
Ecuación Diferencial de un Circuito RLC
Ejercicios circuitos i
Transformada de laplace (tablas)
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
Induccion
Circuitos de corriente directa. ing. carlos moreno (ESPOL)
Campos Electromagneticos - Tema 3
Magnetismo
Problemas resueltos y propuestos de redes basica
265131074 derivadas-parciales (1)
Publicidad

Similar a Funciones -Variable compleja (20)

PDF
LAURENT RESIDUOS.pdf
PPT
8 integrales
PDF
Funciones de Varias Variables. Introducción.
PDF
Convexidad en Hiperplanos
DOCX
UNIDAD 1 NUMEROS COMPLEJOS
PDF
Serie de laurent
PDF
MA185 MATEMÁTICA V 2da Práctica Calificada
PDF
book_nrperez.pdf
PDF
introduccion libro
PDF
numeros compplejos
PDF
PPT
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
PPT
Convexidad en espacios Rn (conjuntos y )
PDF
Pec compleja enero2019_def_soluciones
DOCX
Números complejos
PPT
UDC. Numeros complejos
PDF
NÚMEROS COMPLEJOS en las matematicas en la parte de calculo
PDF
Gu_a_N_7.pdfkhdfhdgdhfdgdfgfxdfgrhbfdbfxxvvx
PPTX
Transformaciones lineales
PDF
Int superficie (1)
LAURENT RESIDUOS.pdf
8 integrales
Funciones de Varias Variables. Introducción.
Convexidad en Hiperplanos
UNIDAD 1 NUMEROS COMPLEJOS
Serie de laurent
MA185 MATEMÁTICA V 2da Práctica Calificada
book_nrperez.pdf
introduccion libro
numeros compplejos
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
Convexidad en espacios Rn (conjuntos y )
Pec compleja enero2019_def_soluciones
Números complejos
UDC. Numeros complejos
NÚMEROS COMPLEJOS en las matematicas en la parte de calculo
Gu_a_N_7.pdfkhdfhdgdhfdgdfgfxdfgrhbfdbfxxvvx
Transformaciones lineales
Int superficie (1)
Publicidad

Último (20)

PDF
Escuela Sabática 6. A través del Mar Rojo.pdf
PDF
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
PDF
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
Salcedo, J. et al. - Recomendaciones para la utilización del lenguaje inclusi...
PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
Tomo 1 de biologia gratis ultra plusenmas
DOCX
Tarea De El Colegio Coding For Kids 1 y 2
PDF
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PPTX
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
PDF
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
PDF
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
PDF
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
DOCX
III Ciclo _ Plan Anual 2025.docx PARA ESTUDIANTES DE PRIMARIA
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Escuela Sabática 6. A través del Mar Rojo.pdf
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
Híper Mega Repaso Histológico Bloque 3.pdf
Salcedo, J. et al. - Recomendaciones para la utilización del lenguaje inclusi...
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
Tomo 1 de biologia gratis ultra plusenmas
Tarea De El Colegio Coding For Kids 1 y 2
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
III Ciclo _ Plan Anual 2025.docx PARA ESTUDIANTES DE PRIMARIA
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf

Funciones -Variable compleja

  • 1. 1 2. Funciones de variable compleja Gary Larson
  • 2. 2 Conjuntos de puntos en el plano complejo Un conjunto S de puntos en el plano complejo es cualquier colección finita o infinita de puntos en el plano complejo. Por ejemplo las soluciones de una ecuación cuadrática, los puntos de una línea, los puntos del interior de un círculo, etc. ¿Qué lugares geométricos describen las siguientes ecuaciones? βα << zArg La ecuación Arg z= α define una semirecta infinita de pendiente α. Entonces la desigualdad anterior define un sector infinito comprendido entre las semirectas infinitas Arg z= α y Arg z= β. βα <−< )Arg( ozz (...)
  • 3. 3
  • 4. 4
  • 5. 5 Un conjunto de puntos S se llama abierto si cada punto de S tiene un vecindad constituida enteramente por puntos que pertenecen a S. Por ejemplo los puntos del interior de un círculo o un cuadrado. El complementario de un conjunto de puntos S es el conjunto de todos los puntos que no pertenecen a S. Un conjunto de puntos S se llama cerrado si su complementario es abierto. Ej.: los puntos sobre y dentro de una circunferencia o un cuadrado, puesto que sus complementarios (los puntos exteriores a la circunferencia o al cuadrado) son abiertos.
  • 6. 6 La distancia entre dos puntos z y a es |z-a|. De modo que un círculo C de radio ρ y centrado en a, puede expresarse como: |z-a| = ρ a ρ x y z En particular, el círculo de radio unidad centrado en el origen puede escribirse como: |z| = 1 x y 1 i ¿C es abierto o cerrado?
  • 7. 7 Los puntos dentro del círculo C vienen representados por: |z-a| < ρ (un entorno abierto centrado en a). define un entorno circular cerrado centrado en a. a ρ x y z a ρ x y z 0 < |z-a| < ρ define un entorno punteado o reducido. ρ≤|z-a| }||/{),( ρρ <−∈= azCzaB
  • 8. 8 El anillo abierto de radios ρ1 y ρ2, viene dado por: ρ1 < |z-a| < ρ2 a ρ1 x y ρ2
  • 9. 9 (1) Determina la región en el plano complejo dada por: |z-3-i| ≤ 4 Es la región circular cerrada de radio 4 con centro en 3+i. (2) Determina las regiones: (a) |z|<1; (b) |z| ≤ 1; (c) |z| >1 4 x y 3+i (a) Círculo unidad abierto (b) Círculo unidad cerrado (c) Exterior del círculo unidad.
  • 10. 10 Re(z) ≥ 1 (No es un conjunto abierto).
  • 11. 11
  • 12. 12 ¿Qué lugar geométrico describe la siguiente ecuación? 5|2||2| =++− zz Una elipse de focos en -2 y 2 (suma de distancias a los focos igual a 5) con semieje mayor igual a 5/2). 2-2 Ejercicio: ¿Qué representan las siguientes ecuaciones? cbzazc cbzazb cbzaza ≤−−− >−+− =−+− ||||)( ||||)( ||||)(
  • 13. 13 ¿Qué lugar geométrico describen las siguientes ecuaciones: 1Im||)( 3)Re(|2|)( ||||)( +=− +=− =−−− zizf zze cbzazd Nota: Busca las definiciones de parábola e hipérbola.
  • 14. 14 • Un punto interior de un conjunto S es un punto para el que podemos encontrar un entorno o vecindad cuyos puntos pertenecen todos a S. Por ejemplo, el centro de un círculo. • Un punto frontera de un conjunto S es un punto tal que todo entorno alrededor de él contiene puntos que pertenecen a S y que no pertenecen a S. Por ejemplo los puntos que forman la frontera de un círculo. • Si un punto no es interior ni frontera de un conjunto de puntos S, entonces es un punto exterior a S. • Entonces, si S es abierto no posee puntos frontera, solo puntos interiores. Si S es cerrado posee también a sus puntos frontera. • Algunos conjuntos no son ni abiertos ni cerrados. Contienen algunos puntos frontera. Por ejemplo un entorno punteado. • El plano complejo C es abierto y cerrado a la vez. No posee puntos frontera.
  • 15. 15 • Una región es un conjunto formado por un dominio, más, quizás, algunos o todos sus puntos frontera (Cuidado: algunos autores usan región para indicar dominio). • Un conjunto es acotado si todo punto de S está dentro de algún círculo |z| = R. En caso contrario es no acotado. • Un punto de S se dice que es de acumulación si cada entorno punteado del mismo contiene al menos un punto de S. Entonces, si S es cerrado contiene a todos sus puntos de acumulación. • Un punto no es de acumulación si existe un entorno punteado del mismo que no contenga puntos de S. P.ej.: Todos los puntos del conjunto S = {i/n} (n = 1,2,...) no son de acumulación a excepción del cero.
  • 16. 16 Semiplanos infinitos x y Inferior: z = x+iy tales que y < 0 o Im(z) < 0. Semiplano superior: el conjunto de todos los puntos z = x+iy tales que y > 0 o Im(z) > 0. Derecho: z = x+iy tales que x > 0 o Re(z) > 0. Izquierdo: z = x+iy tales que x < 0 o Re(z) < 0 x y x y x y ¿Qué regiones describen? (a) Im(z) = 0, (b) Im(z) = a, (c) Re(z) = 0, (d) Re(z) = a
  • 17. 17
  • 18. 18 Conjuntos de Julia Iteración: 2 1 nn zz =+ Condición inicial y órbita: ( ){ } { },...,,,...)(,)(, 210 22 0 2 00 zzzzzz = Utilizando la identidad de Moivre: ( ){ } { }),...4sin4(cos),2sin2(cos),sin(cos ,...))sin(cos(,))sin(cos(),sin(cos )sin(cos 42 222 0 θθθθθθ θθθθθθ θθ iririr iririr irz +++ =+++ += Gaston Maurice Julia 1893 - 1978 Cuando decía en 1980 a mis amigos que estaba trabajando con H. Hubbard en el estudio de polinomios de grado 2 en variable compleja (y más específicamente en z → z2 + c ), me preguntaban: ¿Esperas encontrar alguna cosa nueva? Adrien Douady
  • 19. 19 )]2sin()2[cos(2 θθ ninrz n n += En el paso enésimo tendremos: Si comenzamos con un número complejo de módulo r < 1, sucesivamente el módulo irá disminuyendo hasta tomar valor r = 0 para n infinito. Al contrario, si r > 1 el módulo aumentará exponencialmente, tendiendo a infinito. El caso frontera, r = 1, mantendrá los valores de la iteración en un círculo de radio unidad sobre el plano complejo.
  • 20. 20 De modo que todos los puntos del plano complejo pertenecen a uno de estos dos conjuntos: (a) Si escapan al infinito (r > 1): conjunto de escape E. En este caso los puntos exteriores del círculo unidad. La frontera de P (r = 1) es el conjunto de Julia de esta iteración: la circunferencia unidad. (b) Si permanecen recluidos en una región finita (r ≤ 1): conjunto prisionero P. En este caso el círculo unidad cerrado.
  • 21. 21 Julia centró sus estudios en el conjunto de iteraciones cuadráticas: Fijado el parámetro complejo c establecemos una iteración cuadrática en concreto. czz nn +=+ 2 1 Al potenciar el módulo, la iteración nos manda al origen o al infinito, excepto para el módulo de valor 1 (con c = 0). Elevar al cuadrado implica multiplicar el ángulo por dos. Sumar c = a + ib, consiste en una traslación.
  • 22. 22 c = 0.275 c = 1/4 c = 0 c = -3/4 c = -1.312 c = -1.375 c = -2 c = i c=(+0.285,+0.535) c=(-0.125,+0.750) c=(-0.500,+0.563) c=(-0.687,+0.312)
  • 23. 23 ¿Cómo discriminar si un punto del plano complejo pertenece o no al conjunto de escape Ec? Existe un sencillo criterio: Si |z| ≥ |c| y |z| > 2, entonces z es un punto de escape de la iteración zn+1 = zn 2 + c. Supongamos que definimos r(c) = max (|c|, 2), y que se cumplen las condiciones del criterio. Entonces, existe un ε > 0 tal que r(c) = 2 + ε y |z| ≥ r(c).
  • 24. 24 Observemos que: |z2 + c| ≥ |z2 | - |c| = |z|2 - |c| ≥ |z|2 - |z| = (|z| - 1)·|z| Recordemos que |z| ≥ r(c) = 2 + ε . Entonces: (|z| - 1)·|z| ≥ (1 + ε)·|z|. En conclusión, si z cumple las condiciones previas, entonces: |z2 + c| ≥ (1 + ε)·|z|. De modo que en cada iteración el módulo del nuevo valor crece.
  • 25. 25 •Fractint/Winfract •Ultrafractal (UF) probablemente es el programa de generación de fractales más usado por la comunidad de ciberartistas que experimentan con fractales. •Puedes bajarte una versión de evaluación en http://www.ultrafractal.com/, la página oficial del programa. •No te pierdas la galería de imágenes en: http://www.ultrafractal.com/showcase.html. Te harás una idea de las posibilidades de UF. Ejecutar Ultrafractal localmente. Curso de fractales en nuestra página del departamento: http://matap.dmae.upm.es/cursofractales/index.html
  • 26. 26 Conjuntos conexos ¿Son los siguientes conjuntos de puntos dominios?    No existe camino entre el triángulo inferior y el triángulo superior. a ρ x y Un disco abierto a ρ1 x y ρ2 Un anillo abierto x y Un cuadrado abierto sin diagonal. Un conjunto S se llama conexo si cualquier par de sus puntos pueden conectarse mediante un camino formado por puntos que pertenecen a S. Un abierto conexo se denomina dominio (en algunos textos se denomina región). P.ej.: todo entorno es un dominio.
  • 27. 27 Teorema: Cualesquiera dos puntos de un dominio pueden unirse por medio de una línea poligonal contenida en el dominio.
  • 28. 28 El conjunto de Mandelbrot Benoit Mandelbrot (1924 -)
  • 30. 30 El valor de c determina si un conjunto de Julia es conexo o no. Para determinar qué valores de c producen conjuntos de Julia conexos parece que no quede más remedio que determinar cada conjunto iterando todos los puntos del plano complejo para cada función z2 + c. Afortunadamente, se puede demostrar que basta con iterar z0 = (0, 0) para cada c. czz nn +=+ 2 1
  • 31. 31 Si la órbita con semilla z0 = (0, 0) no escapa al infinito, entonces el conjunto de Julia es conexo. El conjunto de todos los valores c tales que sus correspondientes conjuntos de Julia son conexos forman en el plano complejo el famoso conjunto de Mandelbrot. Este es el dibujo original que Mandelbrot descubrió a la comunidad científica a finales de los 70 cuando trabajaba en el centro de investigación Thomas J. Watson.
  • 32. 32 En la figura de la izquierda están representados algunos conjuntos de Julia con distintos valores de c (indicados en el plano complejo por las líneas de color azul). Para valores de c dentro del conjunto de Mandelbrot la forma de los conjuntos de Julia es semejante a círculos. Fuera del conjunto tenemos nubes de puntos desconectados (conjuntos de Julia no conexos). Los conjuntos de Julia más interesantes estéticamente se observan en la frontera. Las formas dendríticas de los conjuntos de Julia corresponden a las fronteras filamentosas del conjunto de Mandelbrot. En la imagen inferior puedes observar un gif animado del efecto de la variación continua del parámetro c en las formas de los conjuntos J a lo largo de una línea que va desde la frontera de M (forma dendrítica) hasta su interior (forma circular).
  • 33. 33
  • 34. 34
  • 35. 35
  • 36. 36
  • 37. 37
  • 38. 38 Funciones complejas Sea S un conjunto de números complejos z = x+iy. Una función f definida sobre S es una regla que asigna a cada z en S un número complejo w llamado valor de f en z. w = f(z) – z es una variable compleja. – S es el dominio de definición de f. – El conjunto de valores de la función f se llama rango de f. Como w es complejo (w = u+i v; con u y v reales) podemos escribir: w = f(z) = u(x,y) + i v(x,y) – Una función compleja f(z) es equivalente a un par de funciones reales u(x,y) y v(x,y), cada una dependiente de dos variables reales x e y.
  • 39. 39 ),( yxu ),( yxv Ejemplos: )(zfw = )2()( )( )( 22 2 2 xyiyx iyx zzf +−= += = ),(),( yxviyxuw += Función de variable compleja ),( yxu ),( yxv )62()26( )(6)(2 62)( yxiyx yixyixi zizzf −+−= −++= += )(zf iz 23+= i i yxiyxzf 614 )2632()2236( )62()26()( −= ⋅−⋅+⋅−⋅= −+−= ¿Cuál es el valor de en ? Parte real Parte imaginaria ¿Cuáles son los dominios de definición de estas funciones?
  • 40. 40 Ejemplos: • Polinomios de grado n: donde c0, c1...cn son constantes complejas y cn es distinto de cero. • Funciones racionales (cocientes de polinomios): • Si en f(z) = u+iv, v = v(x,y) = 0, entonces f es una función de variable compleja con valores reales. P.ej.: f(z)= |z|2 = x2 + y2 . n n zczczczczcczP ++++++= 4 4 3 3 2 210)( )( )( zQ zP
  • 41. 41
  • 42. 42 x Funciones de variable real )(xfy = 2 )( xxf = Representación geométrica cartesiana Variable real y Asignación
  • 43. 43 x )(zfw = 2 )( zzf = y i+1 i2 1− Funciones de variable compleja ¿Cómo representarlas geométricamente? Parte imaginaria 1+ Asignación Parte real Imagen Preimagen. ¿Cuál es la otra? 1)1()1( 2 =−=−f iiif 2)1()1( 2 =+=+
  • 44. 44 Representación mediante dos planos: z y w yixz += iz += 13 iz 212 −= iz −−= 21 viuw += iw 431 += iw 432 −−= 14 −=z 14 +=w iw 23 = x y Plano z 2 )( zzf = u v Plano w ¿Cómo transforman ?zf(z)(c)iz,f(z)(b)c,zf(z)(a) ==+=
  • 45. 45
  • 46. 46 Transformaciones mediante funciones lineales Existen muchas situaciones prácticas donde podemos simplificar un problema mediante una transformación en el plano complejo. ),(),( ),(con)( 21 21 cycxwyxz cccczzfw ++=→= =+==Translación: )|,|(),( )]sin()[cos(||)sin(cos )sin(cos||con)( φθθ θφθφφφ θθ +→ +++→+= +=== brr ibrirz ibbbzzfw Rotación alrededor del origen y alargamiento/contracción:
  • 47. 47 Funciones lineales cbzzfw +== )( Translación Rotación y alargamiento/contracción Ejemplo: )1()( ++== iizzfw Esta función transforma el cuadrado A en el cuadrado B.
  • 48. 48 2 )( zzf = x y u v )]2sin()2[cos(22 θθ irzwz +==→ La función/transformación ¿Es biyectiva la transformación? Plano z Plano w
  • 49. 49 2 )( zzf = x y u v )]2sin()2[cos(22 θθ irzwz +==→ ¿Cómo puede ser? Si a cada punto de la semicircunferencia del plano z le corresponde un solo punto del plano w, ¿cómo media circunferencia se transforma en una entera? ¿No hay el doble de puntos en una circunferencia que en media? Plano z Plano w
  • 52. 52 0),( =yxF )()()( tiytxtzz +== ),(),()( yxivyxuzfw +== 0),( =Φ vu Curva en el plano z Transformación f(z) Curva en el plano w Parametrizamos la curva: )](),([)( )](),([)( tytxvtv tytxutu = = Obtenemos la transformación de la parametrización: Y de aquí la curva transformada: En general
  • 53. 53 ¿En qué curva se transforma una circunferencia de radio unidad centrado en el origen a través de la función f(z)=z2 ? )2()( )()( 22 22 xyiyx iyxzzf +−= =+== 01),( 22 =−+= yxyxF ttyttxiyxz ttittzz sin)(,cos)(; )2,0[,sincos)( ==+= ∈+== π )2sin(sincos2)( )2cos()(sin)(cos)( 22 ttttv ttttu == =−= 01),( 22 =−+=Φ vuvu La imagen traza una circunferencia de radio unidad centrada en el origen dando dos vueltas. Circunferencia de radio unidad centrada en el origen: Parametrizamos. Todos los puntos de la cincurferencia pueden expresarse como: La transformación es: xyyxv yxyxu 2),( ),( 22 = −= En componentes: Usando la parametrización: Que nos proporciona la curva:
  • 55. 55 Encuentra la imagen de la línea Re(z) = 1 bajo la transformación f(z) = z2 . Re(z) = x = 1, yxyyxv yyxyxu iyxzzf 22),( 1),( )()( 222 22 == −=−= +== 4/1entonces,2/ 2 vuvy −==
  • 56. 56 ¿En qué curvas se transforman rectas verticales en el plano z a través de la función f(z)=z2 en el plano w? kx = kyxyyxv ykyxyxu 22),( ),( 2222 == −=−= iykz += La ecuación de un parábola abierta hacia la izquierda: con vértice en (k2 , 0) y foco en el origen. Idem para rectas horizontales (pero serán parábolas hacia la derecha): )(4 2 222 2 kukv k v y uky −−=     = −= ikxz ky += = kxxyyxv kxyxyxu 22),( ),( 2222 == −=−= )(4 2 222 2 kukv k v x kux −=     = −=
  • 57. 57 Tomemos como dominio un rectángulo con esquinas en ±3/2±3/2i. Observa como las líneas verticales, formadas por complejos de parte real constante, se convierten en parábolas abiertas hacia la izquierda. Y las líneas horizontales, formadas por números complejos de parte imaginaria constante, en parábolas abiertas a la derecha. Observa también como los ángulos entre rectas amarillas y rosas siguen siendo rectos: la transformación es conforme.. http://www.ima.umn.edu/~arnold/complex.html Douglas N. Arnold
  • 59. 59
  • 60. 60
  • 61. 61 )2,(),( 2),(),( 22 22 xyyxyx xyyxvyxyxu −→ =−=Observa que puesto que la transformación w = f(z) = z2 es: Los puntos z sobre la hipérbola x2 – y2 = k se transforman en lineas u = k. Los puntos z sobre la hipérbola 2xy = k’ se transforman en lineas v = k’.
  • 62. 62 f(z) = z2 Esquema de color dependiente del valor real Dominio Rango http://winnie.fit.edu/~gabdo/function.html
  • 63. 63 f(z) = z3 Esquema de color dependiente del argumento Dominio Rango
  • 64. 64
  • 65. 65 Límite de una función compleja Una función f(z) se dice que tiene límite w0 cuando z tiende a z0, y se escribe: u si f está definida en un entorno de z0 (a excepción tal vez de z0 mismo) y si: ∀ real ε > 0, ∃ un real δ > 0: ∀ z ≠ z0 , y |z - z0| < δ, entonces |f(z) - w0| < ε. 0)(lim 0 wzf zz = → x z0 δ y z w0 ε v f(z) En general δ=δ(ε, z0) Si el límite existe, es único. Es decir: si dado un entorno de radio ε alrededor del límite, podemos determinar un entorno de radio δ(ε, z0) alrededor de z0.
  • 66. 66 Observemos que como en el caso de variable real, la definición de límite no nos dice cómo encontrarlo. Demostremos que: iiz iz 2)(lim =+ → |||2)(||)(| |||| )( 0 0 iziizwzf izzz izzf −=−+=− −=− += Utilizando la notación anterior, tenemos en este caso: ε<−< ||0 iz δ<−< ||0 iz Tomando δ = ε, por ejemplo, siempre se cumple. Ejercicio: Demostrar que si el límite existe, es único. (Nota: Suponer dos valores distintos para el límite, aplicar definiciones y demostrar entonces que ambos valores han de ser, a la fuerza, el mismo).
  • 67. 67 ¿Cuál es el equivalente a límite por la derecha y por la izquierda de variable real en el caso de variable compleja? En el plano complejo podemos acercarnos al límite a través de una infinidad de trayectorias. Por ejemplo: zzf Arg)( = x y 0z 1C 2CToda vecindad de z0 contiene valores de Arg z en el segundo cuadrante arbitrariamente cerca de , pero también del tercer cuadrante arbitrariamente cerca de . Acercándonos por C1 y por C2 obtenemos dos valores distintos del límite. π π− ππ +≤<− zArg
  • 68. 68 Ejemplo yx yyi yx xx zf + + + + + = )( )( 22 Esta función no está definida para z = x+iy = 0, (x = 0, y = 0). Veamos que no existe el límite de la función cuando z tiende a 0. (1) Nos aproximamos al origen a lo largo del eje y. Tomando x=0 en f(z), tenemos: )1( )( )( 2 0 += + == yi y yyi zf x Que se aproxima a i, a medida que nos acercamos al origen. (2) Tomando y=0 nos aproximamos a lo largo del eje x: 1)( 2 0 += + == x x xx zf y Que tiende a 1. Como el límite por ambos caminos no coincide, el límite no existe.
  • 69. 69
  • 70. 70 Ejercicios: (1) Sean: 000000 y),,(),()( ivuwiyxzyxviyxuzf +=+=+= Entonces: 0 ),(),( 0 ),(),( 0 ),(limy),(lim sii)(lim 0000 0 vyxvuyxu wzf yxyxyxyx zz == = →→ → Nota: Utilizar la definición de límite y la desigualdad: (2) Demostrar que si |||)(|lim)(lim 00 00 wzfwzf zzzz =⇒= →→ |)(||||)(| 00 wzfwzf −≤−
  • 71. 71 Propiedades de los límites Sean w0 y w'0 los límites, cuando z tiende a z0, de f(z) y g(z) respectivamente. Entonces: En particular si f(z) = g(z) = z : y por inducción: Como además: Entonces, para un polinomio P(z) = a0+a1z+...+anzn , tendremos: 0si )( )( lim )]()([lim)]()([lim ' 0' 0 0 ' 00 ' 00 0 00 ≠= ⋅=⋅+=+ → →→ w w w zg zf wwzgzfwwzgzf zz zzzz 2 0 2 0 lim wz zz = → nn zz wz 0 0 lim = → cc zz = → 0 lim )()(lim 0 0 zPzP zz = → Nota: Es fácil demostrar estas propiedades a partir de u(x,y) y v(x,y).
  • 74. 74 Punto del infinito •El número complejo infinito o punto del infinito, denotado por , no posee signo ni argumento. •Su módulo es mayor que |z| para todo z complejo. •¿Es un punto del plano complejo? No es localizable, pero sí “alcanzable” a través de cualquier trayectoria en la que |z| sea creciente. •Se “opera” como en los reales. Por ejemlo: z / = 0, z/0 = , etc. •Cuando el plano complejo incluye al punto del infinito , hablamos de plano complejo extendido. ∞ ∞ ∞ ∞
  • 75. 75 Ejemplo: Sea 2 1 )( − − = z z zf Determina la imagen para z = ∞. 1 1 1 2 1 1 1 lim 2 1 lim)(lim == − − = − − = ∞→∞→∞→ z z z z zf zzz Cuando z tiende a infinito obtenemos f(z) = 1. Nota. Una forma alternativa de encontrar el valor en el infinito es encontrar la imagen de 1/z para z =0. 1 21 1 lim 2 1 1 1 lim 1 lim 000 = − − = − − =      →→→ z z z z z f zzz
  • 77. 77
  • 78. 78
  • 79. 79 Sol.: a) 4, b) ∞, c) ∞, d) 0, e) No existe, f) 6i. Sol.: No existe.
  • 80. 80 Bernhard Riemann (1826 - 1866) Esfera de radio unidad centrada en el cero del plano complejo. Proyección estereográfica: hacemos corresponder cada punto del plano con un punto de la esfera como muestra la gráfica. El polo norte N de la esfera corresponde al punto del infinito. La esfera de Riemann
  • 81. 81 Otra forma de la esfera de Riemann Ahora ya podemos definir límites al infinito. Si para todo real ε > 0, ∃ un real δ> 0: |f(z) - w0| < ε para todo z: |z|> 1/δ. 0)(lim wzf z = ∞→ O: si para todo real ε > 0, ∃ un real δ > 0: |f(z)| < 1/ε siempre que |z - z0| < δ. ∞= → )(lim 0 zf zz
  • 82. 82 )Arg(|| zrz == Espiral de Arquímedes. Dado que , la ecuación anterior solo representa una espira de la espiral. Espirales esféricas de M.C. Escher La proyección estereográfica tiene dos propiedades importantes: las circunferencias siempre se transforman en circunferencias y la transformación conserva ángulos. ππ +≤<− zArg
  • 83. 83
  • 84. 84
  • 85. 85 Funciones complejas continuas Decimos que f(z) es continua en una región si es continua en todo punto de la región. Una función f(z) se dice que es continua en z = z0 si f(z0) está definida en z0 y )()(lim 0 0 zfzf zz = → Ejercicio:Las sumas, diferencias y productos de funciones continuas son continuas. El cociente de dos funciones continuas es continuo salvo en los puntos en que se anula el denominador. La composición de funciones continuas es continua. Sea f(z) = u(x,y) + iv(x,y), entonces u y v serán continuas en todo punto en el que f(z) lo sea. Y a la inversa: f(z) será continua en todo punto en que u(x,y) y v(x,y) lo sean. (Nota: si en el límite δ = δ(ε, z0) no depende de z0, la continuidad es uniforme).
  • 86. 86 Ejemplo: Sea:     = ≠ − + = izi iz iz z zf ,3 , 1 )( 2 ¿Es continua f(z) en z = i? (1) f(i) = 3i está definido. (2) Calculemos el límite de la función cuando z tiende a i: iiz iz iziz iz z iziziz 2)(lim ))(( lim 1 lim 2 =+= − +− = − + →→→ El límite existe pero no coincide con el valor de la función: la función no es continua.
  • 87. 87 Funciones continuas Ejercicios: (1) Sea f(z) = u(x,y) + iv(x,y), entonces u y v serán continuas en todo punto en el que f(z) lo sea. (2) Y a la inversa: f(z) será continua en todo punto en que u(x,y) y v(x,y) lo sean. Nota: Recuerda que, u(x,y) será continua en (a,b) sii lim(x,y)→(a,b) u(x,y) = u(a,b).
  • 88. 88 Transformación w = f(z) = 1/z En este caso la transformación sí es biyectiva, excluyendo al origen. En coordenadas polares la transformación es: ),/1(),( θθ −→ rr Una inversión en el círculo unidad (lo de fuera pasa adentro y al contrario) seguida de una reflexión respecto al eje x. Las circunferencias de radio r se convierten en circunferencias de radio 1/r. En particular, una circunferencia de radio unidad permanece invariante.
  • 89. 89 f(z) = 1/z Esquema de color dependiente del argumento Dominio Rango ),/1(),( θθ −→ rr Biyección "We may thus think of the interior of the unit circle as a condensed image, a microcosmos, of its exterior". To infinity and beyond, Eli Maor
  • 90. 90 f(z) = 1/z Esquema de color dependiente del módulo Dominio Rango ),/1(),( θθ −→ rr ? ¿Qué figura permanece invariante?
  • 91. 91 http://mathworld.wolfram.com/Inversion.html Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, 1984.
  • 92. 92 Una línea que pase por el centro O, permanece invariante... Una línea que no pase por el centro O se transforma en un círculo k que pasa por O (y al revés) y está completamente dentro del círculo unitario de inversión c. Si la línea es tangente al círculo unitario de inversión c, el círculo k toca en el mismo punto a la línea y al centro O. ... Planos z y w superpuestos Vamos a describirlo con algo de mates...
  • 94. 94 Ejemplo: ¿Cuál es la imagen de la recta x = c bajo la transformación f(z) = 1/z? Es decir, un círculo de centro (1/(2c), 0) que pasa por el origen. El semiplano x > c se transforma en el interior del círculo. 2 2 2 22 2222 2222 2 1 2 1 ;0 ;; )valorcualquier(:esrtransformaarectaLa ; 1 ; 11 )(       =+      −=−+ = + −== + = == + − + = + =++= + == c v c u c u vu vu v yc vu u x ycx vu v i vu u ivu iyxivu iyxz zf λ λ
  • 95. 95 rectaunadeecuación0círculoundeecuación0 ),,,(0)( 22 →=→≠ ℜ∈=++++ aa dcbadcybxyxa Podemos escribir la ecuación general de un círculo y una recta en el plano z en la forma: 0)( 0 0 ; 0)( 22 22 2222 2 22 2 22 2222 22 =+−++ =+ + −+ =+ + − + +               + − +      + + − = + = =++++ acvbuvud d vu cvbua d vu v c vu u b vu v vu u a vu v y vu u x dcybxyxa Bajo la transformación 1/z, la ecuación general se convertirá en:
  • 96. 96 rectaunadeecuación0círculoundeecuación0 ),,,(0)( 22 →=→≠ ℜ∈=++++ aa dcbadcybxyxa (1)a y d distintos de 0: círculos que no pasan por el centro se transforman en círculos que no pasan por el centro. (2) a distinto de 0 y d = 0: círculos que pasan por el centro se transforman en rectas que no pasan por el centro. (3) a = 0 y d distinto de 0: rectas que no pasan por el centro se transforman en círculos que pasan por el centro. (4) a = d = 0: rectas que pasan por el centro se transforman en rectas que pasan por el centro. 0)( 22 =+−++ acvbuvudSe transforma bajo 1/z en: De hecho, si pensamos en rectas como círculos de radio infinito, 1/z transforma círculos en círculos. rectaunadeecuación0círculoundeecuación0 →=→≠ dd
  • 97. 97 f(z) = 1/z Esquema de color dependiente del argumento Dominio Rango
  • 98. 98 u = 1/a u = -1/b b = 0; u = -v b distinto de 0; en circunferencias. v = -ku circunf. u2 = -v3 /(1+v)
  • 99. 99 Transformaciones bilineales o de Möbius ),,,,0()( Cdcbabcad dcz baz wzM ∈≠− + + == La transformación inversa es también bilineal: acw bdw zwM − +− ==− )(1 Observemos que la transformación no está definida para z = -d/c. Y lo mismo ocurre con w = a/c en el caso de la inversa. El conjunto de posibles transformaciones bilineales forman un grupo. August Ferdinand Möbius (1790-1868)
  • 101. 101 Cuando c ≠ 0, T(z) tiene un cero simple en z0 = −d/c, y entonces: ./)(osescribiremy , / / lim)(lim entonces,0además,Si,.)(osEscribirem ,)(lim 0 0 caT c a zdc zba zT czT zT zz zz =∞ = + + = ≠∞= ∞= ∞→∞→ → Ejemplo: Si T(z) = (2z + 1)/(z – i), calcula T(0), T(∞), T(i). ∞=∞== ==∞=−= → ∞→ )(,)(lim)( ,2)(lim)(,)/(1)0( iTzTiT zTTiiT iz z
  • 102. 102 Las transformaciones de Möbius son biyecciones
  • 103. 103 ( ) '' ' 1 '' ' ' )( z c adbc c a z z z c ad b c a dczz dcz c ad b c a c d zc c ad b c d za dcz baz wzf − +→≡       − +→+≡ +       − +=       +       −+      + = + + == ¿Cómo transforma la bilineal? De modo que cualquier transformación bilineal puede obtenerse como una composición de una transformación lineal y una transformación 1/z. Así que para las transformaciones bilineales transforman el conjunto de círculos y líneas en sí mismo.
  • 104. 104 22: 4 2 2 1 82 )( ≤− + −= + = zC zz z zf Re(z)2 4 )(4' traslaciónzz += Re(z')2 4 6 8 26' ≤−z 22 ≤−z 82 )( + = z z zf b) Determinar la imagen de la región , al considerar la transformación: Examen JUNIO 04/05: P-1
  • 108. 108 Ejemplo: Sea a una constante compleja tal que Im(a) > 0. Encontrar la imagen del semiplano infinito superior bajo la transformación bilineal: az az w − − = Consideremos primero el borde. Para los puntos z sobre el eje x, tenemos: 1 || || |||||| = − − =−=− az az wazaz De modo que el eje x se transforma en el círculo unidad con centro en el origen. z = a se transforma en w = 0 (un punto interior del círculo). La transformación es continua, y de aquí podemos deducir que la imagen del semiplano superior es el interior del círculo.
  • 109. 109
  • 110. 110
  • 111. 111
  • 112. 112
  • 113. 113
  • 114. 114
  • 115. 115
  • 116. 116 Möbius Transformations Revealed is a short video by Douglas Arnold and Jonathan Rogness which depicts the beauty of Möbius transformations and shows how moving to a higher dimension reveals their essential unity. It was one of the winners in the 2007 Science and Visualization Challenge and was featured along with the other winning entries in the September 28, 2007 issue of journal Science. The video, which was first released on YouTube in June 2007, has been watched there by more than a million viewers and classified as a "Top Favorite of All Time" first in the Film & Animation category and later in the Education category. It has been selected for inclusion in MathFilm Festival 2008.
  • 117. 117 Tripletes a Tripletes Observa que podemos crear una transformación de Moebius a partir de tres puntos: esta transformación tendrá un cero en z = z1(T(z1) = 0, T(z2) = 1 y tiene un polo en z = z3 (T(z3) = ∞). De modo que T(z) transforma los complejos z1, z2, z3 en 0, 1, e ∞, ( ) ( ) . ; ;; )( 212 232 31 312 132 12 32 3 1 bzzzc dzzza zdzb dcz baz zzzz zzzz zz zz zz zz zM +=−= +=−= −=−= + + = −− −− = − − ⋅ − − =
  • 118. 118 De la misma manera, la transformación de Moebius: transforma w1, w2, w3 en 0, 1 e ∞, y S-1 transforma0, 1 e ∞ en w1, w2, w3. De modo que w = S-1 (T(z)) transforma el triplete z1, z2, z3 en el triplete w1, w2, w3. Observa que como w = S-1 (T(z)), tenemos que S(w) = T(z) y 12 32 3 1 )( ww ww ww ww wS − − − − = 12 32 3 1 12 32 3 1 zz zz zz zz ww ww ww ww − − − − = − − − −
  • 119. 119 Ejemplo: Construye una transformación de Moebius que transforma los puntos 1, i, −1 sobre el círculo unidad |z| = 1 a los puntos −1, 0 y 1 sobre el eje real. Despejando w, tenemos w = −i(z – i)/(z + i). 1 1 1 1 o 1 1 1 1 )1(0 10 1 1 + − −= − + − − + + − = −− − − + z z i w w i i z z w w 12 32 3 1 12 32 3 1 zz zz zz zz ww ww ww ww − − − − = − − − −
  • 120. 120
  • 121. 121
  • 122. 122
  • 123. 123 Ejemplo: Construye una transformación de Moebius que transforma los puntos ∞, 0, 1 sobre el eje real en los puntos 1, i, −1 sobre el círculo | w| = 1. Puesto que z1 = ∞, los términos z − z1 y z2 − z1 en: son 1. Y entonces: )( 1 1 1 1 )(o 1 10 1 1 1 1 1 1 zT zw w iwS zi i w w = − − = − + −= − − = − + + − 12 32 3 1 )( zz zz zz zz zT − − − − =
  • 124. 124 Versión matricial Podemos asociar la transformación bilineal a una matriz:             =      + + = + + = + + = + + =      = 11 11 22 22 12 22 22 2 11 11 1 )(pordadaviene))((entonces ,)(,)(Si )(aciótransformlarepresenta dc ba matrizLa dc ba dc ba dc ba dcz baz zTzTT dzc bza zT dzc bza zT dcz baz zTA
  • 127. 127
  • 128. 128
  • 129. 129
  • 130. 130
  • 131. 131
  • 132. 132
  • 133. 133
  • 134. 134
  • 135. 135
  • 136. 136
  • 137. 137
  • 138. 138
  • 139. 139 August Ferdinand Möbius (1790-1868) Max Bill, “Endless surface”. From 1953 to 1956. Size125 x 125 x 80 cm. Open air Sculpture Middlelheim Museum, Antverpen, Belgium. La banda de Moebius (Möbius strip)
  • 140. 140
  • 141. 141Moebius Strip II, M. C. Escher (1963)
  • 142. 142