SlideShare una empresa de Scribd logo
Capítulo 13 - Elasticidad
Presentación PowerPoint de
Paul E. Tippens, Profesor de Física
Southern Polytechnic State University
© 2007
El salto BUNGEE utiliza
una larga cuerda
elástica que se estira
hasta que llega a una
longitud máxima que
es proporcional al peso
del saltador. La
elasticidad de la cuerda
determina la amplitud
de las vibraciones
resultantes. Si se
excede el límite
elástico de la cuerda,
ésta se romperá.
Capítulo 13. Elasticidad
Photo © Vol. 10
PhotoDisk/Getty
Objetivos: Después de completar
este módulo, deberá:
• Demostrar su comprensión de elasticidad,
límite elástico, esfuerzo, deformación y
resistencia a la rotura.
• Escribir y aplicar fórmulas para calcular
módulo de Young, módulo de corte y módulo
volumétrico.
• Resolver problemas que involucren cada uno
de los parámetros en los objetivos anteriores.
Propiedades elásticas de la materia
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
Bola de
golf
Balón de
soccer
Banda de
goma
Propiedades elásticas de la materia
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
Masa o pan Barro Bola inelástica
¿Elástico o inelástico?
Una colisión elástica no
pierde energía. La
deformación en la
colisión se restaura por
completo.
En una colisión inelástica
se pierde energía y la
deformación puede ser
permanente. (Clic aquí.)
Un resorte elástico
Un resorte es un ejemplo de un cuerpo elástico
que se puede deformar al estirarse.
Una fuerza restauradora,
F, actúa en la dirección
opuesta al desplazamiento
del cuerpo en oscilación.
F = -kx
x
F
Ley de Hooke
Cuando un resorte se estira, hay una fuerza
restauradora que es proporcional al
desplazamiento.
F = -kx
La constante de
resorte k es una
propiedad del resorte
dada por:
F
x
m
F
k
x



La constante de resorte k es una
medida de la elasticidad del resorte.
Esfuerzo y deformación
Esfuerzo se refiere a la causa de una deformación, y
deformación se refiere al efecto de la deformación.
x
F
La fuerza descendente F
causa el desplazamiento x.
Por tanto, el esfuerzo es la
fuerza; la deformación es la
elongación.
Tipos de esfuerzo
Un esfuerzo de tensión ocurre
cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas
iguales y opuestas se dirigen
una hacia la otra.
F
W
Tensión
F
W
Compresión
Resumen de definiciones
Esfuerzo es la razón de una fuerza aplicada F
al área A sobre la que actúa:
Deformación es el cambio relativo en las dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de
volumen.
F
Esfuerzo
A
 22
oPa:
in
lb
m
N
Unidades 
Esfuerzo y deformación longitudinales
L
L
A
A
F
Para alambres, varillas y
barras, existe un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:
F
Esfuerzo
A
 L
Deformación
L


Ejemplo 1. Un alambre de acero de 10 m
de largo y 2 mm de diámetro se une al
techo y a su extremo se une un peso de
200 N. ¿Cuál es el esfuerzo aplicado?
L
L
A
A
F
Primero encuentre el área del
alambre:
2 2
(0.002 m)
4 4
D
A
 
 
A = 3.14 x 10-6 m2
Esfuerzo
6.37 x 107 Pa
26
m10x3.14
N200


A
F
Esfuerzo
Ejemplo 1 (Cont.) Un alambre de acero
de 10 m se estira 3.08 mm debido a la
carga de 200 N. ¿Cuál es la
deformación longitudinal?
L
L
Dado: L = 10 m; L = 3.08 mm
Deformación longitudinal
3.08 x 10-4
m10
m0.00308



L
L
nDeformació
El límite elástico
El límite elástico es el esfuerzo máximo que un cuerpo puede
experimentar sin quedar deformado permanentemente.
W
W
2 m
Si el esfuerzo supera el límite elástico, la
longitud final será mayor que los 2 m originales.
Bien
Más allá del
límite
F
W
2 m
F
Esfuerzo
A

Resistencia a la rotura
La resistencia a la rotura es el esfuerzo máximo que un
cuerpo puede experimentar sin romperse.
Si el esfuerzo supera la resistencia a la
rotura, ¡la cuerda se rompe!
W
W
F
W
W
W
2 m
F
Esfuerzo
A

Ejemplo 2. El límite elástico para el
acero es 2.48 x 108 Pa. ¿Cuál es el
peso máximo que puede soportar sin
superar el límite elástico?
L
L
A
A
F
Recuerde: A = 3.14 x 10-6 m2
F = (2.48 x 108 Pa) A
F = (2.48 x 108 Pa)(3.14 x 10-6 m2) F = 779 N
Pa10x2.48 8

A
F
Esfuerzo
Ejemplo 2 (Cont.) La resistencia a la
rotura para el acero es 4089 x 108 Pa.
¿Cuál es el peso máximo que puede
soportar sin romper el alambre?
L
L
A
A
F
Recuerde: A = 3.14 x 10-6 m2
F = (4.89 x 108 Pa) A
F = (4.89 x 108 Pa)(3.14 x 10-6 m2) F = 1536 N
Pa104.89 8

A
F
Esfuerzo
El módulo de elasticidad
Siempre que el límite elástico no se supere,
una deformación elástica (deformación) es
directamente proporcional a la magnitud de la
fuerza aplicada por unidad de área (esfuerzo).
ndeformació
esfuerzo
delasticidadeMódulo 
Ejemplo 3. En el ejemplo anterior, el
esfuerzo aplicado al alambre de acero fue
6.37 x 107 Pa y la deformación fue 3.08 x 10-4.
Encuentre el módulo de elasticidad para el acero.
L
L
Módulo = 207 x 109 Pa
Este módulo de elasticidad longitudinal se llama
módulo de Young y se denota con el símbolo Y.
4
7
1008.3
Pa106.37




ndeformació
esfuerzo
Módulo
Módulo de Young
Para materiales cuya longitud es mucho mayor que el
ancho o espesor, se tiene preocupación por el módulo
longitudinal de elasticidad, o módulo de Young (Y).
/
/
F A FL
Y
L L A L
 
 
allongitudinndeformació
allongitudinesfuerzo
YoungdeMódulo 
2
lb
in.
Unidades: Pa o
Ejemplo 4: El módulo de
Young para el latón es 8.96 x
1011 Pa. Un peso de 120 N se
une a un alambre de latón de 8
m de largo; encuentre el
aumento en longitud. El
diámetro es 1.5 mm.
8 m
L
120 N
Primero encuentre el área del alambre:
2 2
(0.0015 m)
4 4
D
A
 
  A = 1.77 x 10-6 m2
or
FL FL
Y L
A L AY
  

Ejemplo 4: (continuación)
8 m
L
120 N
Y = 8.96 x 1011 Pa; F = 120 N;
L = 8 m; A = 1.77 x 10-6 m2
F = 120 N; L = ?
or
FL FL
Y L
A L AY
  

-6 2 11
(120 N)(8.00 m)
(1.77 x 10 m )(8.96 x 10 Pa)
FL
L
AY
  
L = 0.605 mmAumento en longitud:
Módulo de corte
A
F
Ffl
d
Un esfuerzo cortante altera sólo la forma del
cuerpo y deja el volumen invariable. Por ejemplo,
considere las fuerzas cortantes iguales y opuestas
F que actúan sobre el cubo siguiente:
La fuerza cortante F produce un ángulo
cortante f. El ángulo f es la deformación y el
esfuerzo está dado por F/A como antes.
Cálculo del módulo de corte
F
Ffl
d A
La deformación es el ángulo
expresado en radianes:
El esfuerzo es
fuerza por
unidad de
área:
El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte f:
Módulo de corte:
unidades en pascales.
F A
S
f

FEsfuerzo
A

l
d
nDeformació  f
Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa)
de 1 cm de diámetro se proyecta 4 cm desde la
pared. Al extremo se aplica una fuerza cortante de
36,000 N. ¿Cuál es la desviación d del perno?
d
l
F
2 2
(0.01 m)
4 4
D
A
 
 
Área: A = 7.85 x 10-5 m2
;
F A F A Fl Fl
S d
d l Ad ASf
   
-5 2 10
(36,000 N)(0.04 m)
(7.85 x 10 m )(8.27 x 10 Pa)
d  d = 0.222 mm
Elasticidad volumétrica
No todas las deformaciones son lineales. A veces un
esfuerzo aplicado F/A resulta en una disminución del
volumen. En tales casos, existe un módulo
volumétrico B de elasticidad.
El módulo volumétrico es negativo
debido a la disminución en V.
VV
AF
avolumétricndeformació
ovolumétricesfuerzo
B



El módulo volumétrico
Dado que F/A por lo general es la presión P, se
puede escribir:
/
P PV
B
V V V
 
 
 
Las unidades siguen siendo pascales (Pa)
pues la deformación es adimensional.
VV
AF
avolumétricndeformació
ovolumétricesfuerzo
B



Ejemplo 7. Una prensa hidrostática contiene 5
litros de aceite. Encuentre la disminución en
volumen del aceite si se sujeta a una presión
de 3000 kPa. (Suponga que B = 1700 MPa.)
/
P PV
B
V V V
 
 
 
6
9
(3 x 10 Pa)(5 L)
(1.70 x 10 Pa)
PV
V
B
 
  
V = -8.82 mL
Disminución en V;
mililitros (mL):
Resumen: Elástico e inelástico
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
En una colisión inelástica, se pierde energía y
la deformación puede ser permanente.
Una colisión elástica no pierde energía. La
deformación en la colisión se restaura
completamente.
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
Un esfuerzo de tensión ocurre
cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas iguales
y opuestas se dirigen una
hacia la otra.
F
W
Tensión
F
W
Compresión
Resumen
Tipos de esfuerzo
Resumen de definiciones
El esfuerzo es la razón de una fuerza aplicada
F al área A sobre la que actúa:
La deformación es el cambio relativo en dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de volumen.
F
Esfuerzo
A
 22
oPa
in
lb
m
N
Unidades 
Esfuerzo y deformación longitudinales
L
L
A
A
F
Para alambres, varillas y
barras, hay un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:
F
Esfuerzo
A
 L
Deformación
L


El límite elástico
El límite elástico es el esfuerzo máximo que un
cuerpo puede experimentar sin quedar
permanentemente deformado.
La resistencia a la rotura es el mayor estrés que
un cuerpo puede experimentar sin romperse.
La resistencia a la rotura
Módulo de Young
Para materiales cuya longitud es mucho mayor que el
ancho o el espesor, se tiene preocupación por el
módulo longitudinal de elasticidad, o módulo de
Young Y.
/
/
F A FL
Y
L L A L
 
 
allongitudinndeformació
allongitudinesfuerzo
YoungdeMódulo 
22
oPa
in
lb
m
N
Unidades 
El módulo de corte
F
Ffl
d A
La deformación es el
ángulo expresado en
radianes:
Esfuerzo es
fuerza por
unidad de
área:
El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte f:
El módulo de corte: sus
unidades son pascales.
F A
S
f

F
Esfuerzo
A

dDeformación
l
f 
El módulo volumétrico
Puesto que F/A por lo general es presión P, se
puede escribir:
/
P PV
B
V V V
 
 
 
Las unidades siguen siendo pascales (Pa)
pues la deformación es adimensional.
VV
AF
avolumétricndeformació
ovolumétricesfuerzo
B



CONCLUSIÓN:
Capítulo 13 - Elasticidad

Más contenido relacionado

PPTX
PPT
Semana 1 elasticidad
PDF
PDF
1 elasticidad _16159__
PDF
Ley de hooke generalizada
PPT
Elasticidad
PPT
Elasticidad
PPTX
Esfuerzo, Flexión y Torsion
Semana 1 elasticidad
1 elasticidad _16159__
Ley de hooke generalizada
Elasticidad
Elasticidad
Esfuerzo, Flexión y Torsion

La actualidad más candente (20)

PDF
Trabajo ecuaciones
PDF
Problemas fluidos
PDF
Tema 5 difusión problemas respuestas
PDF
electricidad y magnetismo ejercicios resueltos Capitulo 7
DOCX
Flujo laminar y flujo turbulento
PPTX
Esfuerzo y deformacion
PDF
Ejercicios fluidos
PPTX
Estatica de fluidos opta 2011
PDF
Ejercicios resueltos dinamica de fluidos
DOCX
Informe de práctica de física 2 campo eléctrico
PDF
221405948 ejercicios-resueltos(1)
DOCX
Ecuacion de la continuidad
PPT
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
PPT
Flujo de fluidos
DOCX
Teorema de bernoulli
DOCX
Momento polar de_inercia
PDF
Ejercicios Desarrollados - DINÁMICA
DOCX
Informe de laboratorio- Movimiento armonico simple
DOCX
Informe leyes-de-kirchhoff
PDF
Problemas resueltos mecanica_de_fluidos
Trabajo ecuaciones
Problemas fluidos
Tema 5 difusión problemas respuestas
electricidad y magnetismo ejercicios resueltos Capitulo 7
Flujo laminar y flujo turbulento
Esfuerzo y deformacion
Ejercicios fluidos
Estatica de fluidos opta 2011
Ejercicios resueltos dinamica de fluidos
Informe de práctica de física 2 campo eléctrico
221405948 ejercicios-resueltos(1)
Ecuacion de la continuidad
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
Flujo de fluidos
Teorema de bernoulli
Momento polar de_inercia
Ejercicios Desarrollados - DINÁMICA
Informe de laboratorio- Movimiento armonico simple
Informe leyes-de-kirchhoff
Problemas resueltos mecanica_de_fluidos
Publicidad

Similar a Modulo de Young (20)

PPTX
Presentacion Elasticidad
PDF
Tippens-13 elasticidad y energía fuerzas
PPT
Elasticidad ppt
PPT
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
PDF
Presentación Elasticidad-Teorico-practico
PPT
Tippens fisica
PPT
Tippens fisica 7e_diapositivas_13
PPT
Tippens fisica 7e_diapositivas_13
PPT
LEY DE HOOKE.ppt
PPTX
Elasticidad.pptx
PDF
Elasticidad.pdf
PPTX
DOCX
DEFORMACIÓN Y ELASTICIDAD
PPT
Sem1 amb fisica ii
PPT
Sem1 electmodi fisica ii
PPT
Semana 1 elasticidad
PPTX
Elasticidad
PDF
Capitulo 1 elasticidad.
PDF
Cap.1 elasticidad
PDF
Medina fisica2 cap1
Presentacion Elasticidad
Tippens-13 elasticidad y energía fuerzas
Elasticidad ppt
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
Presentación Elasticidad-Teorico-practico
Tippens fisica
Tippens fisica 7e_diapositivas_13
Tippens fisica 7e_diapositivas_13
LEY DE HOOKE.ppt
Elasticidad.pptx
Elasticidad.pdf
DEFORMACIÓN Y ELASTICIDAD
Sem1 amb fisica ii
Sem1 electmodi fisica ii
Semana 1 elasticidad
Elasticidad
Capitulo 1 elasticidad.
Cap.1 elasticidad
Medina fisica2 cap1
Publicidad

Más de princobudget (20)

DOCX
Diseño y desarrollo del curriculum
DOCX
Detectan la fuerza más pequeña medida hasta ahora
DOCX
Evolución de la Fisica
DOCX
Historia de las matemáticas y de las físicas
PPT
Personajes de la física moderna
DOCX
Manual del profesor
DOCX
Diseño de experimento de acustica
DOC
Tarea de informática
RTF
DOC
Resumen de la charla
DOCX
Taller de graficas
DOCX
Taller de graficas
DOC
Las funciones mas comunes
DOCX
Taller de excel
DOCX
Taller jorge castillo
PPTX
Diagnostico de power point
DOC
Diagnostico word
DOCX
La informática
PPT
ACUSTICA
DOCX
Solución del modulo de young
Diseño y desarrollo del curriculum
Detectan la fuerza más pequeña medida hasta ahora
Evolución de la Fisica
Historia de las matemáticas y de las físicas
Personajes de la física moderna
Manual del profesor
Diseño de experimento de acustica
Tarea de informática
Resumen de la charla
Taller de graficas
Taller de graficas
Las funciones mas comunes
Taller de excel
Taller jorge castillo
Diagnostico de power point
Diagnostico word
La informática
ACUSTICA
Solución del modulo de young

Último (20)

PDF
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
DOCX
V UNIDAD - PRIMER GRADO. del mes de agosto
PDF
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
PDF
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PDF
Metodologías Activas con herramientas IAG
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
PDF
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
PDF
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
PDF
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
PPTX
Presentación de la Cetoacidosis diabetica.pptx
PDF
TOMO II - LITERATURA.pd plusenmas ultras
PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
ciencias-1.pdf libro cuarto basico niños
PDF
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
V UNIDAD - PRIMER GRADO. del mes de agosto
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Metodologías Activas con herramientas IAG
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
Presentación de la Cetoacidosis diabetica.pptx
TOMO II - LITERATURA.pd plusenmas ultras
Fundamentos_Educacion_a_Distancia_ABC.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
ciencias-1.pdf libro cuarto basico niños
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL

Modulo de Young

  • 1. Capítulo 13 - Elasticidad Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007
  • 2. El salto BUNGEE utiliza una larga cuerda elástica que se estira hasta que llega a una longitud máxima que es proporcional al peso del saltador. La elasticidad de la cuerda determina la amplitud de las vibraciones resultantes. Si se excede el límite elástico de la cuerda, ésta se romperá. Capítulo 13. Elasticidad Photo © Vol. 10 PhotoDisk/Getty
  • 3. Objetivos: Después de completar este módulo, deberá: • Demostrar su comprensión de elasticidad, límite elástico, esfuerzo, deformación y resistencia a la rotura. • Escribir y aplicar fórmulas para calcular módulo de Young, módulo de corte y módulo volumétrico. • Resolver problemas que involucren cada uno de los parámetros en los objetivos anteriores.
  • 4. Propiedades elásticas de la materia Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. Bola de golf Balón de soccer Banda de goma
  • 5. Propiedades elásticas de la materia Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. Masa o pan Barro Bola inelástica
  • 6. ¿Elástico o inelástico? Una colisión elástica no pierde energía. La deformación en la colisión se restaura por completo. En una colisión inelástica se pierde energía y la deformación puede ser permanente. (Clic aquí.)
  • 7. Un resorte elástico Un resorte es un ejemplo de un cuerpo elástico que se puede deformar al estirarse. Una fuerza restauradora, F, actúa en la dirección opuesta al desplazamiento del cuerpo en oscilación. F = -kx x F
  • 8. Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. F = -kx La constante de resorte k es una propiedad del resorte dada por: F x m F k x    La constante de resorte k es una medida de la elasticidad del resorte.
  • 9. Esfuerzo y deformación Esfuerzo se refiere a la causa de una deformación, y deformación se refiere al efecto de la deformación. x F La fuerza descendente F causa el desplazamiento x. Por tanto, el esfuerzo es la fuerza; la deformación es la elongación.
  • 10. Tipos de esfuerzo Un esfuerzo de tensión ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. F W Tensión F W Compresión
  • 11. Resumen de definiciones Esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: Deformación es el cambio relativo en las dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de volumen. F Esfuerzo A  22 oPa: in lb m N Unidades 
  • 12. Esfuerzo y deformación longitudinales L L A A F Para alambres, varillas y barras, existe un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: F Esfuerzo A  L Deformación L  
  • 13. Ejemplo 1. Un alambre de acero de 10 m de largo y 2 mm de diámetro se une al techo y a su extremo se une un peso de 200 N. ¿Cuál es el esfuerzo aplicado? L L A A F Primero encuentre el área del alambre: 2 2 (0.002 m) 4 4 D A     A = 3.14 x 10-6 m2 Esfuerzo 6.37 x 107 Pa 26 m10x3.14 N200   A F Esfuerzo
  • 14. Ejemplo 1 (Cont.) Un alambre de acero de 10 m se estira 3.08 mm debido a la carga de 200 N. ¿Cuál es la deformación longitudinal? L L Dado: L = 10 m; L = 3.08 mm Deformación longitudinal 3.08 x 10-4 m10 m0.00308    L L nDeformació
  • 15. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar deformado permanentemente. W W 2 m Si el esfuerzo supera el límite elástico, la longitud final será mayor que los 2 m originales. Bien Más allá del límite F W 2 m F Esfuerzo A 
  • 16. Resistencia a la rotura La resistencia a la rotura es el esfuerzo máximo que un cuerpo puede experimentar sin romperse. Si el esfuerzo supera la resistencia a la rotura, ¡la cuerda se rompe! W W F W W W 2 m F Esfuerzo A 
  • 17. Ejemplo 2. El límite elástico para el acero es 2.48 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin superar el límite elástico? L L A A F Recuerde: A = 3.14 x 10-6 m2 F = (2.48 x 108 Pa) A F = (2.48 x 108 Pa)(3.14 x 10-6 m2) F = 779 N Pa10x2.48 8  A F Esfuerzo
  • 18. Ejemplo 2 (Cont.) La resistencia a la rotura para el acero es 4089 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin romper el alambre? L L A A F Recuerde: A = 3.14 x 10-6 m2 F = (4.89 x 108 Pa) A F = (4.89 x 108 Pa)(3.14 x 10-6 m2) F = 1536 N Pa104.89 8  A F Esfuerzo
  • 19. El módulo de elasticidad Siempre que el límite elástico no se supere, una deformación elástica (deformación) es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). ndeformació esfuerzo delasticidadeMódulo 
  • 20. Ejemplo 3. En el ejemplo anterior, el esfuerzo aplicado al alambre de acero fue 6.37 x 107 Pa y la deformación fue 3.08 x 10-4. Encuentre el módulo de elasticidad para el acero. L L Módulo = 207 x 109 Pa Este módulo de elasticidad longitudinal se llama módulo de Young y se denota con el símbolo Y. 4 7 1008.3 Pa106.37     ndeformació esfuerzo Módulo
  • 21. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young (Y). / / F A FL Y L L A L     allongitudinndeformació allongitudinesfuerzo YoungdeMódulo  2 lb in. Unidades: Pa o
  • 22. Ejemplo 4: El módulo de Young para el latón es 8.96 x 1011 Pa. Un peso de 120 N se une a un alambre de latón de 8 m de largo; encuentre el aumento en longitud. El diámetro es 1.5 mm. 8 m L 120 N Primero encuentre el área del alambre: 2 2 (0.0015 m) 4 4 D A     A = 1.77 x 10-6 m2 or FL FL Y L A L AY    
  • 23. Ejemplo 4: (continuación) 8 m L 120 N Y = 8.96 x 1011 Pa; F = 120 N; L = 8 m; A = 1.77 x 10-6 m2 F = 120 N; L = ? or FL FL Y L A L AY     -6 2 11 (120 N)(8.00 m) (1.77 x 10 m )(8.96 x 10 Pa) FL L AY    L = 0.605 mmAumento en longitud:
  • 24. Módulo de corte A F Ffl d Un esfuerzo cortante altera sólo la forma del cuerpo y deja el volumen invariable. Por ejemplo, considere las fuerzas cortantes iguales y opuestas F que actúan sobre el cubo siguiente: La fuerza cortante F produce un ángulo cortante f. El ángulo f es la deformación y el esfuerzo está dado por F/A como antes.
  • 25. Cálculo del módulo de corte F Ffl d A La deformación es el ángulo expresado en radianes: El esfuerzo es fuerza por unidad de área: El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte f: Módulo de corte: unidades en pascales. F A S f  FEsfuerzo A  l d nDeformació  f
  • 26. Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa) de 1 cm de diámetro se proyecta 4 cm desde la pared. Al extremo se aplica una fuerza cortante de 36,000 N. ¿Cuál es la desviación d del perno? d l F 2 2 (0.01 m) 4 4 D A     Área: A = 7.85 x 10-5 m2 ; F A F A Fl Fl S d d l Ad ASf     -5 2 10 (36,000 N)(0.04 m) (7.85 x 10 m )(8.27 x 10 Pa) d  d = 0.222 mm
  • 27. Elasticidad volumétrica No todas las deformaciones son lineales. A veces un esfuerzo aplicado F/A resulta en una disminución del volumen. En tales casos, existe un módulo volumétrico B de elasticidad. El módulo volumétrico es negativo debido a la disminución en V. VV AF avolumétricndeformació ovolumétricesfuerzo B   
  • 28. El módulo volumétrico Dado que F/A por lo general es la presión P, se puede escribir: / P PV B V V V       Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional. VV AF avolumétricndeformació ovolumétricesfuerzo B   
  • 29. Ejemplo 7. Una prensa hidrostática contiene 5 litros de aceite. Encuentre la disminución en volumen del aceite si se sujeta a una presión de 3000 kPa. (Suponga que B = 1700 MPa.) / P PV B V V V       6 9 (3 x 10 Pa)(5 L) (1.70 x 10 Pa) PV V B      V = -8.82 mL Disminución en V; mililitros (mL):
  • 30. Resumen: Elástico e inelástico Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. En una colisión inelástica, se pierde energía y la deformación puede ser permanente. Una colisión elástica no pierde energía. La deformación en la colisión se restaura completamente. Un cuerpo elástico es aquel que regresa a su forma original después de una deformación.
  • 31. Un esfuerzo de tensión ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. F W Tensión F W Compresión Resumen Tipos de esfuerzo
  • 32. Resumen de definiciones El esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: La deformación es el cambio relativo en dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de volumen. F Esfuerzo A  22 oPa in lb m N Unidades 
  • 33. Esfuerzo y deformación longitudinales L L A A F Para alambres, varillas y barras, hay un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: F Esfuerzo A  L Deformación L  
  • 34. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar permanentemente deformado. La resistencia a la rotura es el mayor estrés que un cuerpo puede experimentar sin romperse. La resistencia a la rotura
  • 35. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o el espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young Y. / / F A FL Y L L A L     allongitudinndeformació allongitudinesfuerzo YoungdeMódulo  22 oPa in lb m N Unidades 
  • 36. El módulo de corte F Ffl d A La deformación es el ángulo expresado en radianes: Esfuerzo es fuerza por unidad de área: El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte f: El módulo de corte: sus unidades son pascales. F A S f  F Esfuerzo A  dDeformación l f 
  • 37. El módulo volumétrico Puesto que F/A por lo general es presión P, se puede escribir: / P PV B V V V       Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional. VV AF avolumétricndeformació ovolumétricesfuerzo B   