SlideShare una empresa de Scribd logo
INSTITUTO TECNOLOGICO DE MEXICALI
ING. QUIMICA AMBIENTAL
LABORATORIO INTEGRAL I
DOCENTE: NORMAN EDILBERTO PASOS RIVERA
PRACTICA No. 7
MESA HIDRODINÁMICA
EQUIPO: BROOKFIELD
INTEGRANTES:
 CUEVAS LOPEZ MAYRA MARIZA
 IBARRA AGUILAR GRECIA
 HERNANDEZ MORALES DIANA PAULINA
 VILLAFUERTE RUIZ BRENDA MARITZA
 TORRES HERNANDEZ IRVING MARCIAL
 PUENTE ROBLES JOSHUA ISSAC
 SALAZAR DUEÑAS GUSTAVO ENRIQUE
 VASQUEZ LOPEZ FRANCISCO ENRIQUE
 FAUSTO VEGA LUIS MARTIN
Mexicali Baja California
Objetivo:
Determinar las pérdidas por fricción y obtener los datos experimentales como caída de
presión (dP) y caudal (Q) en tuberías y accesorios con un fluido líquido (agua).
Objetivo específico:
* Determinar las pérdidas por fricción de forma experimental en tuberías utilizadas.
* Comparar los resultados experimentales con los teóricos.
* Conocer la caída de presión y el caudal de las tuberías y accesorios utilizados.
MarcoTeórico:
Clases de tuberías:
 Tubería de acero y hierro dulce: Se utiliza para altas presiones y temperaturas,
generalmente transporta agua, vapor, aceites y gases. Esta tubería se
especifican por el diámetro nominal, el cual es siempre menor que el diámetro
interior (DI) real de la tubería. De manera general tiene tres clases: “estándar”
(Schedule 40), extrafuerte (Schedule 80) y doble extrafuerte.
 Tuberías de hierro fundido: Este tipo de tuberías se instala frecuentemente bajo
tierra para transportar agua, gas y aguas negras (drenaje); aunque también se
utiliza para conexiones de vapor a baja presión. Los acoplamientos de tuberías
de hierro fundido generalmente son del tipo de bridas o del tipo campana y
espigo.
 Tuberías sin costura de latón y cobre: Estas se usan extensamente en
instalaciones sanitarias debido a sus propiedades anticorrosivas. Tienen el
mismo diámetro nominal de las tuberías de acero y hierro, pero el espesor de
sus paredes es menor.
 Tuberías de cobre: Se usan en instalaciones sanitarias y de calefacción en
donde hay que tener en cuenta la vibración y el des alineamiento como factores
de diseño, por ejemplo en diseño automotriz, hidráulico y neumático.
 Tuberías plásticas: Estas tuberías se usan extensamente en industria química
debido a su resistencia a la corrosión y a la acción de sustancias químicas. Son
flexibles y se instalan muy fácilmente pero no son recomendables para
instalaciones en donde haya calor o alta presión.
Accesorios: Son las piezas que se usan para unir tramos de tuberías. Su uso puede
ser para cambiar de diámetro o de dirección y para unir tramos de tuberías o
suministrar unión de tuberías en bifurcaciones. Se agrupan en tres clases generales:
roscados, soldados y de bridas; aunque también puede agruparse particularmente por
su uso, es decir: tuberías de hierro fundido, de cobre y para tubos de plástico.
Los accesorios se especifican por el diámetro nominal de la tubería, el nombre del
accesorio y el material. Ejemplo una T usa diferentes diámetros de unión por lo que
habrá de especificar la apertura de mayor diámetro del ramal principal, seguido por la
apertura opuesta y finalmente la salida.
 Accesorios Roscados: Se usan generalmente en instalaciones de tuberías de 2
½ pulgadas de diámetro, o menos. Se usa un compuesto (aceite y plomo) en las
conexiones roscadas como lubricante y para sellar cualquier irregularidad. La
rosca normalizada americana es de dos clases: cónica y paralela.
 Accesorios soldados: Se usan cuando las conexiones deben ser permanentes y
en líneas de alta presión y temperatura. Otras ventajas sobre los accesorios de
bridas o roscados son: las tuberías soldadas son más fáciles de aislar, se
pueden colocar más cerca las unas de las otras y pesan menos. Los extremos
de la tubería y los accesorios se biselan para poder acomodar la soldadura. Se
pueden usar anillos de empalme cuando la tubería soldada se debe desmontar
periódicamente.
 Accesorios de bridas: Proporcionan una forma rápida de desarmar tuberías. Las
bridas se unen a los extremos de las tuberías por medio de soldadura, rosca o
separándolas. Las caras de las bridas se acoplan entonces por medio de
pernos, cuyo tamaño y espaciamiento se determina por el tamaño y presión de
trabajo de acoplamiento.
Válvulas.
Las válvulas se usan en sistemas de tuberías para parar o regular el flujo de fluidos y
gases.
 Válvula de compuerta: Se usan para controlar el flujo de líquidos. La cuña, o
compuerta, se levanta para permitir un flujo completo, sin obstrucciones y se
baja para pararlo completamente. Se usan generalmente cuando la válvula es
poco frecuente, y no se deben usar para estrangulamiento o control de cierre.
 Válvula de globo: Se usa para controlar el flujo de líquido o gases. En las
válvulas de globo se efectúan dos cambios en la dirección del flujo, la cual
reduce ligeramente la presión en el sistema.
 Válvulas de retención: Las válvulas de retención permiten el flujo en una
dirección pero impiden el flujo en la dirección contraria. Operan por medio de la
presión y velocidad del flujo únicamente y no tiene medios externos de
operación.
Caída de presión.
Disminución de la presión de un fluido, dentro de un conducto, que tiene lugar cada vez
que dicho fluido atraviesa un estrangulamiento o un elemento de utilización.
Con la expresión «caída de presión» también se entiende la rápida disminución de la
presión de un circuito debida a una repentina pérdida. Éste es el caso, por ejemplo, de
la rotura de un tubo o de una junta de la instalación de frenado de un vehículo
automóvil; la consiguiente caída de presión anula casi completamente la fuerza ejercida
por los émbolos sobre las mordazas o sobre las pinzas de los frenos, haciendo inútil
cualquier tentativa de frenado.
Menos grave para el conductor, pero peligrosa para el motor, es la caída de presión
que pueda producirse en el circuito de lubricación a causa de una avería de la bomba
de aceite o por la obstrucción de uno de los conductos de lubricación. El automovilista
puede darse cuenta de la situación de peligro para el motor consultando el manómetro
del aceite: si la toma de presión está situada inmediatamente después de la bomba, el
manómetro señala una disminución de presión debida a una avería de la bomba
misma; si la toma está al final del circuito, el manómetro indica la disminución de
presión debida a una obstrucción en el circuito de lubricación.
Material y Reactivos:
Agua
Mesa hidrodinámica
Válvulas
Mangueras
Procedimiento
1 -Comenzaremos con llenar el tanque con agua, destapando con cuidado, el cual este
se ubica debajo de la mesa es una caja de color verde moco.
2 -Luego conectar las mangueras grandes que van de extremo a extremo en cada tubo,
aquí enchufamos el equipo, el cual tuvimos un problema ya que creíamos que tenía un
falso contacto y tenía el freno de emergencia activado.
3-Luego te de que arreglamos el problema conectamos las mangueras más pequeñas
a los orificios del tubo de acero galvanizado, este cuenta con dos orificios, la manguera
de aguas arriba va en la primera boquilla de arriba hacia debajo de las llaves y el de
aguas abajo que es la última boquilla del tubo de acero galvanizado va en la boquilla de
abajo que esta a su vez es controlada por la llave de abajo
4-Después de esto abriremos la válvula naranja que está a un lado de la bomba que
controla el flujo de agua, la vamos a abrir, después de abrir esta válvula, aquí ya
podremos comenzar con el purgado (extraer el aire de las mangueras pequeñas) para
esto encenderemos la bomba para que empuje el agua por el tubo que por este flujo
extraerá el aire de las mangueras pequeñas.
5-Luego de encenderla abriremos las llaves donde están puestas las mangueras
pequeñas, cuando veamos que ya no hay burbujas de aire cerraremos las llaves donde
están puestas las mangueras pequeñas y apagaremos la bomba que empuja el agua
hacia el tubo, e inmediatamente cerraremos la válvula naranja y aquí el panel digital
nos mostrare datos, el cual tenemos que calibrar nosotros hasta llegar a 0, desde aquí
comenzamos a tomar la temperatura que es de 26°C. Cabe mencionar que tuvimos
mucho cuidado poniendo recipientes o pedazos de papel debajo de las conexiones
entre tubos y mangueras, ya que suele tirar un poco de agua.
6-Desconectaremos las mangueras pequeñas de las llaves.
7-Después iniciaremos con las pruebas, comenzaremos como lo hicimos inicialmente
pero abriremos las llaves donde van puestas las mangueras pequeñas, después de
que el agua pase por el tubo, ya abiertas las llaves de las mangueras pequeñas, el
panel digital nos arrogara unas lecturas, la primera pantalla digital flujo volumétrico
(Caudal) y la segunda pantalla digital nos mostrara la caída de presión(mbar), esto lo
repetiremos 5 veces, para tomar 5 datos.
8- Ya tomadas los 5 datos, cambiaremos de tubo, el siguiente será el cobre el cual es
el mismo procedimiento que el primero pero lo único que cambiara es el material del
tubo, aquí no tuvimos ningún problema.
9-Cambiaremos en el PVC con el mismo procedimiento con el acero galvanizado, aquí
tuvimos un problema, un error en las mangueras pequeñas que fueron puestas al revés
en las llaves.
“perdida de fricción en los accesorios, formula”
10- Seguimos con un tubo de PVC pero con un accesorio, un reductor. Nomás que la
única diferencia con este es que son 3 boquillas.
11-Aquí tomaremos diferentes lecturas 5, una boquilla está ubicada en el reductor y
otra boquilla está ubicada en un tubo de diámetro más chico, el cual haremos 5
pruebas en la boquilla del reductor y haremos una prueba en el tubo pequeño, el cual
suponemos que nos arrojara datos muy diferentes, tuvimos un problema en confundir
los tubos, no hubo daños colaterales, solucionamos el problema lo más pronto
poniéndonos de acuerdo y aclarando dudas entre el equipo.
Tenemos un control en abrir las llaves, contamos 9 vueltas para abrirlas y 9 para
cerrarlas y contamos 5 segundos en Misisipi.
“Todos los valores deben ser positivos por el cambio de presión, si fueran negativos,
estarían succionando”
12-Cambiamos de tubo también de PVC pero con un accesorio llamado
ensanchamiento, aquí haremos una medida antes del accesorio y después del
accesorio también con 3 boquilla este tubo y recordemos que las mangueras pequeñas
que van en las boquillas del tubo una funcionara como un “tapón” la que funcionara con
tapón es la que es después del accesorio de ensanchamiento y cuando queramos
sacar datos después del ensanchamiento la boquilla anterior al accesorio funcionara
como tapón.
13-Cabe mencionar que todos las pruebas que hemos hecho es cuidando que las
mangueras pequeñas estén en forma horizontal para que haya un mínimo de varianzas
en los datos.
14-Seguiremos con el tubo de PVC con 2 tubos codos, el cual este cuenta con 6
boquillas el cual tomaremos lecturas, aquí hare un paréntesis ya que tuvimos un error
al no cambiar una manguera de tubo y un compañero encendió la bomba que empuja
el agua por los tubos y tuvimos un accidente, derramando agua que salió por todos los
orificios del tubo.
15-Comenzamos con la prueba de la primera boquilla, que esta antes del codo que es
todo recto, las demás boquillas, excepto la última y la que estemos probando
funcionaran como tapones.
“Nos mencionó que podemos regular el flujo con la válvula de color naranja que está a
un lado de la bomba que empuja el agua”
16-Seguimos poniendo la manguera en la boquilla donde inicia el codo o tubo curvo,
efectuando sus respectivas pruebas.
17-Continuamos con la última prueba. Aquí cambiamos de lugar las mangueras a las
ultimas 3 boquillas, ya que nos daba valores negativos, y nos dio más negativo, esto
fue más bien un experimento para revisar porque nos dan valores negativos.
“nos menciona que efectuemos las pruebas así”.
18-Volveremos a tomar datos desde el principio con el tubo de PVC con tubos curvos.
Iniciamos de nuevo con la prueba “todo recto” desde la sexta boquilla.
Y así sucesivamente con la quinta y cuarta boquilla.
19-La quinta boquilla es el final del tubo curvo y la cuarta boquilla es iniciando el tubo
curvo.
20-Haremos pruebas con el tubo de PVC con accesorio válvula de diafragma que
funciona como un reductor pero es más exacta ya que tú puedes decidir cuánto quieres
reducir el flujo.
21-Para iniciar con el accesorio, que este tiene una boquilla antes de la válvula de
diafragma y después de la misma, aquí será el mismo proceso de las mangueras
pequeñas que la primera boquilla será aguas arriba y será puesta en la boquilla de las
llaves de arriba, y la boquilla que esta después de la misma, será aguas abajo y será
ubicada en la boquilla de debajo de las llaves respectivamente.
22-También cambiamos las mangueras grandes al tubo de PVC que esta tiene el
accesorio de válvula de diafragma, iniciaremos con 25% abierto de la válvula de
diafragma,50% abierto, 75% abierto y luego totalmente abierta. Tenemos un goteo de
la Válvula de diafragma, será una prueba por cada situación difiere.
Msdcesa hidropractica
Cálculos y resultados:
Msdcesa hidropractica
Observacióny conclusión:
Los resultados obtenidos por ecuaciones corroboraron las mediciones de la mesa
hidrodinámica, los resultados indican que hay ciertas variaciones con los resultados de
la caída de presión en el experimento y en el cálculo, nosotros decimos que de la mesa
hidrodinámica podría tener desgaste de las tuberías, pequeñas fugas o tal vez el
purgado, son diferentes factores que podrían afectar a las mediciones en el
experimento, pero los resultados se puede considerar que son bastante acercados y
por lo tanto podemos concluir que el experimento así como los cálculos son buenos.
Bibliografía:
- McCabe, Warren. (1991). Operaciones Unitarias en Ingeniería Química. Editorial McGraw-
Hill. Cuarta Edición. España. Pág. 75-76, 106-109, 88-193.
- Mott, Robert. (2006). Mecánica de Fluidos. Editorial Pearson Educación. Sexta Edición.
México. Págs. 158-161, 281-305.
- Perry, Robert. (2001). Manual del Ingeniero Químico. Editorial McGraw-Hill. Sexta
Edición.
- Wilson D, Jerry. (2003). Física. Editorial Pearson. Quinta Edición. México.
- GUNT Hamburg. (2005). Equipos para la Educación en Ingeniería. HM 112 Banco de
Ensayos. Consultado el 27 de febrero de 2015 en:
http://www.gunt.de/static/s3178_3.php?p1=&p2=&pN=
ANEXO:
Manual de Mesa para Hidrodinámica.

Más contenido relacionado

DOCX
Practica 4_U3
PPT
Válvulas y accesorios
PPTX
Tema 1. tubos, tuberias y accesorios
DOCX
Equipos mecanicos golpe de ariete
PDF
P3
 
PPTX
Valvulas
PPTX
transitorios en instalaciones de bombeo
DOCX
Practica 3: Valvulas y Accesorios
Practica 4_U3
Válvulas y accesorios
Tema 1. tubos, tuberias y accesorios
Equipos mecanicos golpe de ariete
P3
 
Valvulas
transitorios en instalaciones de bombeo
Practica 3: Valvulas y Accesorios

La actualidad más candente (20)

DOCX
Articulos sobre ventilacion cloacal y mas
PDF
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
PPTX
Mecanica de los Fluidos <> "Tuberias"
PPTX
Accesorios de la tuberia hg
PDF
Ventilaciones cloacales-
DOCX
Reporte 3 valvulas de deceleracion
PDF
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
PDF
Operacion y mantenimiento de valvulas
DOCX
1ra practica de Maquinas y Equipos Sanitarios
PDF
Válvulas solenoides
PPT
Elementos de distribucción y regulación
PPTX
valvulas
DOCX
PPTX
Tipos de valvulas neumaticas
PPT
Elementos+finales+de+control
PDF
Curso valvulas-distribuidoras-vias-sistemas-hidraulicos-representacion-funcio...
PDF
Valvulas tema iv valvulas y mecanismos
PDF
Curso de bombas de lodos
PPTX
Procedimientos de construccion informe de investigación nº1 - grupo n°11-ppt ...
PPTX
Instalaciones Hidrosanitarias- Equipos hidroneumáticos-
Articulos sobre ventilacion cloacal y mas
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
Mecanica de los Fluidos <> "Tuberias"
Accesorios de la tuberia hg
Ventilaciones cloacales-
Reporte 3 valvulas de deceleracion
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
Operacion y mantenimiento de valvulas
1ra practica de Maquinas y Equipos Sanitarios
Válvulas solenoides
Elementos de distribucción y regulación
valvulas
Tipos de valvulas neumaticas
Elementos+finales+de+control
Curso valvulas-distribuidoras-vias-sistemas-hidraulicos-representacion-funcio...
Valvulas tema iv valvulas y mecanismos
Curso de bombas de lodos
Procedimientos de construccion informe de investigación nº1 - grupo n°11-ppt ...
Instalaciones Hidrosanitarias- Equipos hidroneumáticos-
Publicidad

Destacado (20)

DOC
Charging with out_wires.
PDF
The Value Of Corporate Image
PDF
Inspiron 14r-5420 setup guide2-es-mx
PDF
Uca informe anual argentina diciembre 2010
PDF
Royex - generation 2 introduction
PDF
Wifimotion, Wi-Fi en Movilidad para hoteles
PDF
Póster: Utilización de materiales nanohíbridos como transductores de sensores...
PPT
Innowacje w eCommerce 2
PDF
TSA luggage lock master passkeys
PPT
Profesiones universitarias (1)
PDF
Only in Digital
PPT
Comunicacion tactica en seguridad
PDF
SpeedCore Infografiken
PDF
Las 10 Leyes de la Entregabilidad en el Email Marketing (adSalsa)
PPT
Salmo 63 un alma en busca de dios (a)
DOC
Tragao de municiones
PDF
PPTX
Automating the User Provisioning Process
Charging with out_wires.
The Value Of Corporate Image
Inspiron 14r-5420 setup guide2-es-mx
Uca informe anual argentina diciembre 2010
Royex - generation 2 introduction
Wifimotion, Wi-Fi en Movilidad para hoteles
Póster: Utilización de materiales nanohíbridos como transductores de sensores...
Innowacje w eCommerce 2
TSA luggage lock master passkeys
Profesiones universitarias (1)
Only in Digital
Comunicacion tactica en seguridad
SpeedCore Infografiken
Las 10 Leyes de la Entregabilidad en el Email Marketing (adSalsa)
Salmo 63 un alma en busca de dios (a)
Tragao de municiones
Automating the User Provisioning Process
Publicidad

Similar a Msdcesa hidropractica (20)

DOCX
Mesa hidrodinamica
DOCX
Practica 9 Mesa Hidrodinamica
PDF
Practica #10-Mesa-de-hidrodinamica
PPTX
Transporte de fluidos "Tuberia"
PDF
13 mantenimiento de tuberia
PDF
13 mantenimiento de tuberia
PDF
13 mantenimiento de tuberia
PDF
Reporte practica 11 Mesa Hidrodinamica
DOCX
Mesa hidrodinamica bn
DOCX
Mesa hidrodinamica bnbn
DOCX
Practica 5,6,7
DOCX
Mesa hidraulica
DOCX
Mesa hidrodinamica
PDF
Practica 10 Mesa Hidrodinamica
PDF
Reporte practica 11 Mesa Hidrodinamica
DOCX
informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...
PDF
Tuberias
PPT
Máquinas Auxiliares - cañerías, tuberías y filtros.ppt
PPT
Tuberia para exponer
PDF
Catalogo de simbologia y nomenclatura para instalaciones sanitarias.pdf
Mesa hidrodinamica
Practica 9 Mesa Hidrodinamica
Practica #10-Mesa-de-hidrodinamica
Transporte de fluidos "Tuberia"
13 mantenimiento de tuberia
13 mantenimiento de tuberia
13 mantenimiento de tuberia
Reporte practica 11 Mesa Hidrodinamica
Mesa hidrodinamica bn
Mesa hidrodinamica bnbn
Practica 5,6,7
Mesa hidraulica
Mesa hidrodinamica
Practica 10 Mesa Hidrodinamica
Reporte practica 11 Mesa Hidrodinamica
informe de laboratorio resuelto de mecánica de los fluidos, Perdidas de energ...
Tuberias
Máquinas Auxiliares - cañerías, tuberías y filtros.ppt
Tuberia para exponer
Catalogo de simbologia y nomenclatura para instalaciones sanitarias.pdf

Más de brenda villafuerte (20)

DOCX
Practica perdida reyn
DOCX
bv Practica bernoulli completa
DOCX
bm Lecho practica completa
DOCX
Practica bernoulli
DOCX
Lechso practica
DOCX
Leystokes-lva1-app6891
DOCX
Ley stokes
DOCX
Ley stokes
DOCX
Curva caracteristica de una bomba
DOCX
Practica bomba calculos y conclusion
DOCX
Reporte terminado
DOCX
DOCX
Conveccion
DOCX
Conveccion
PPTX
Presentación2
DOCX
PPTX
PDF
Pba de hipótesis con muestras pequeñas
Practica perdida reyn
bv Practica bernoulli completa
bm Lecho practica completa
Practica bernoulli
Lechso practica
Leystokes-lva1-app6891
Ley stokes
Ley stokes
Curva caracteristica de una bomba
Practica bomba calculos y conclusion
Reporte terminado
Conveccion
Conveccion
Presentación2
Pba de hipótesis con muestras pequeñas

Último (20)

PPTX
MBR VS GPT (Gómez).pptx particiones del disco duro
PDF
La maquina humana de Arnold Bennet PDF .
PPTX
Presentacion minimalista aesthetic simple beige.pptx
PDF
ejempli7253mapaedeprocesosborradorde.pdf
PDF
Jerónimo Gutierrez...................9.4
PPTX
PPT diptongos hiatos.pptxadasfsdfasdfasdfads
PDF
1.2. Laboratorio - Escala de grises - fotografía - primero carrera.pdf
PPTX
Formato Club Orense - Pedagogía y Entrenamiento Físico.pptx
PPTX
Las virtudes.pptxlkjhhghgggyubffvhjjhgfghg
PPTX
benito perez galdos:un gigante de la literatura Gptx
PDF
epoch-of-twiligh por el autor t-501-593.pdf
PDF
Tarjeta Felicitación de Cumpleaños Femenina Rosada.pdf
PDF
Brochure Diptico Plantas Organico Verde Azul.pdf
PDF
ANALISIS CANCION MILAGROS DE KAROL G PDF
PDF
Letra de cantos mexica y concheros para ceremonias
PPTX
Diapositivas de sobre el tema PowerPoint
PPTX
el tema diapositivas de plan de negocio.pptx
PPTX
Anatomía y Fisiología del Cuello HMUCA.pptx
PPTX
Leyes-de-la-Composicion-en-el-Diseno-Grafico.pptx
PPTX
dia del padre 2 prsentacion en ppt 2025,
MBR VS GPT (Gómez).pptx particiones del disco duro
La maquina humana de Arnold Bennet PDF .
Presentacion minimalista aesthetic simple beige.pptx
ejempli7253mapaedeprocesosborradorde.pdf
Jerónimo Gutierrez...................9.4
PPT diptongos hiatos.pptxadasfsdfasdfasdfads
1.2. Laboratorio - Escala de grises - fotografía - primero carrera.pdf
Formato Club Orense - Pedagogía y Entrenamiento Físico.pptx
Las virtudes.pptxlkjhhghgggyubffvhjjhgfghg
benito perez galdos:un gigante de la literatura Gptx
epoch-of-twiligh por el autor t-501-593.pdf
Tarjeta Felicitación de Cumpleaños Femenina Rosada.pdf
Brochure Diptico Plantas Organico Verde Azul.pdf
ANALISIS CANCION MILAGROS DE KAROL G PDF
Letra de cantos mexica y concheros para ceremonias
Diapositivas de sobre el tema PowerPoint
el tema diapositivas de plan de negocio.pptx
Anatomía y Fisiología del Cuello HMUCA.pptx
Leyes-de-la-Composicion-en-el-Diseno-Grafico.pptx
dia del padre 2 prsentacion en ppt 2025,

Msdcesa hidropractica

  • 1. INSTITUTO TECNOLOGICO DE MEXICALI ING. QUIMICA AMBIENTAL LABORATORIO INTEGRAL I DOCENTE: NORMAN EDILBERTO PASOS RIVERA PRACTICA No. 7 MESA HIDRODINÁMICA EQUIPO: BROOKFIELD INTEGRANTES:  CUEVAS LOPEZ MAYRA MARIZA  IBARRA AGUILAR GRECIA  HERNANDEZ MORALES DIANA PAULINA  VILLAFUERTE RUIZ BRENDA MARITZA  TORRES HERNANDEZ IRVING MARCIAL  PUENTE ROBLES JOSHUA ISSAC  SALAZAR DUEÑAS GUSTAVO ENRIQUE  VASQUEZ LOPEZ FRANCISCO ENRIQUE  FAUSTO VEGA LUIS MARTIN Mexicali Baja California
  • 2. Objetivo: Determinar las pérdidas por fricción y obtener los datos experimentales como caída de presión (dP) y caudal (Q) en tuberías y accesorios con un fluido líquido (agua). Objetivo específico: * Determinar las pérdidas por fricción de forma experimental en tuberías utilizadas. * Comparar los resultados experimentales con los teóricos. * Conocer la caída de presión y el caudal de las tuberías y accesorios utilizados.
  • 3. MarcoTeórico: Clases de tuberías:  Tubería de acero y hierro dulce: Se utiliza para altas presiones y temperaturas, generalmente transporta agua, vapor, aceites y gases. Esta tubería se especifican por el diámetro nominal, el cual es siempre menor que el diámetro interior (DI) real de la tubería. De manera general tiene tres clases: “estándar” (Schedule 40), extrafuerte (Schedule 80) y doble extrafuerte.  Tuberías de hierro fundido: Este tipo de tuberías se instala frecuentemente bajo tierra para transportar agua, gas y aguas negras (drenaje); aunque también se utiliza para conexiones de vapor a baja presión. Los acoplamientos de tuberías de hierro fundido generalmente son del tipo de bridas o del tipo campana y espigo.  Tuberías sin costura de latón y cobre: Estas se usan extensamente en instalaciones sanitarias debido a sus propiedades anticorrosivas. Tienen el mismo diámetro nominal de las tuberías de acero y hierro, pero el espesor de sus paredes es menor.  Tuberías de cobre: Se usan en instalaciones sanitarias y de calefacción en donde hay que tener en cuenta la vibración y el des alineamiento como factores de diseño, por ejemplo en diseño automotriz, hidráulico y neumático.  Tuberías plásticas: Estas tuberías se usan extensamente en industria química debido a su resistencia a la corrosión y a la acción de sustancias químicas. Son flexibles y se instalan muy fácilmente pero no son recomendables para instalaciones en donde haya calor o alta presión.
  • 4. Accesorios: Son las piezas que se usan para unir tramos de tuberías. Su uso puede ser para cambiar de diámetro o de dirección y para unir tramos de tuberías o suministrar unión de tuberías en bifurcaciones. Se agrupan en tres clases generales: roscados, soldados y de bridas; aunque también puede agruparse particularmente por su uso, es decir: tuberías de hierro fundido, de cobre y para tubos de plástico. Los accesorios se especifican por el diámetro nominal de la tubería, el nombre del accesorio y el material. Ejemplo una T usa diferentes diámetros de unión por lo que habrá de especificar la apertura de mayor diámetro del ramal principal, seguido por la apertura opuesta y finalmente la salida.  Accesorios Roscados: Se usan generalmente en instalaciones de tuberías de 2 ½ pulgadas de diámetro, o menos. Se usa un compuesto (aceite y plomo) en las conexiones roscadas como lubricante y para sellar cualquier irregularidad. La rosca normalizada americana es de dos clases: cónica y paralela.  Accesorios soldados: Se usan cuando las conexiones deben ser permanentes y en líneas de alta presión y temperatura. Otras ventajas sobre los accesorios de bridas o roscados son: las tuberías soldadas son más fáciles de aislar, se pueden colocar más cerca las unas de las otras y pesan menos. Los extremos de la tubería y los accesorios se biselan para poder acomodar la soldadura. Se pueden usar anillos de empalme cuando la tubería soldada se debe desmontar periódicamente.  Accesorios de bridas: Proporcionan una forma rápida de desarmar tuberías. Las bridas se unen a los extremos de las tuberías por medio de soldadura, rosca o separándolas. Las caras de las bridas se acoplan entonces por medio de pernos, cuyo tamaño y espaciamiento se determina por el tamaño y presión de trabajo de acoplamiento.
  • 5. Válvulas. Las válvulas se usan en sistemas de tuberías para parar o regular el flujo de fluidos y gases.  Válvula de compuerta: Se usan para controlar el flujo de líquidos. La cuña, o compuerta, se levanta para permitir un flujo completo, sin obstrucciones y se baja para pararlo completamente. Se usan generalmente cuando la válvula es poco frecuente, y no se deben usar para estrangulamiento o control de cierre.  Válvula de globo: Se usa para controlar el flujo de líquido o gases. En las válvulas de globo se efectúan dos cambios en la dirección del flujo, la cual reduce ligeramente la presión en el sistema.  Válvulas de retención: Las válvulas de retención permiten el flujo en una dirección pero impiden el flujo en la dirección contraria. Operan por medio de la presión y velocidad del flujo únicamente y no tiene medios externos de operación. Caída de presión. Disminución de la presión de un fluido, dentro de un conducto, que tiene lugar cada vez que dicho fluido atraviesa un estrangulamiento o un elemento de utilización. Con la expresión «caída de presión» también se entiende la rápida disminución de la presión de un circuito debida a una repentina pérdida. Éste es el caso, por ejemplo, de la rotura de un tubo o de una junta de la instalación de frenado de un vehículo automóvil; la consiguiente caída de presión anula casi completamente la fuerza ejercida por los émbolos sobre las mordazas o sobre las pinzas de los frenos, haciendo inútil cualquier tentativa de frenado. Menos grave para el conductor, pero peligrosa para el motor, es la caída de presión que pueda producirse en el circuito de lubricación a causa de una avería de la bomba de aceite o por la obstrucción de uno de los conductos de lubricación. El automovilista puede darse cuenta de la situación de peligro para el motor consultando el manómetro del aceite: si la toma de presión está situada inmediatamente después de la bomba, el manómetro señala una disminución de presión debida a una avería de la bomba misma; si la toma está al final del circuito, el manómetro indica la disminución de presión debida a una obstrucción en el circuito de lubricación.
  • 6. Material y Reactivos: Agua Mesa hidrodinámica Válvulas Mangueras
  • 7. Procedimiento 1 -Comenzaremos con llenar el tanque con agua, destapando con cuidado, el cual este se ubica debajo de la mesa es una caja de color verde moco. 2 -Luego conectar las mangueras grandes que van de extremo a extremo en cada tubo, aquí enchufamos el equipo, el cual tuvimos un problema ya que creíamos que tenía un falso contacto y tenía el freno de emergencia activado. 3-Luego te de que arreglamos el problema conectamos las mangueras más pequeñas a los orificios del tubo de acero galvanizado, este cuenta con dos orificios, la manguera de aguas arriba va en la primera boquilla de arriba hacia debajo de las llaves y el de aguas abajo que es la última boquilla del tubo de acero galvanizado va en la boquilla de abajo que esta a su vez es controlada por la llave de abajo 4-Después de esto abriremos la válvula naranja que está a un lado de la bomba que controla el flujo de agua, la vamos a abrir, después de abrir esta válvula, aquí ya podremos comenzar con el purgado (extraer el aire de las mangueras pequeñas) para esto encenderemos la bomba para que empuje el agua por el tubo que por este flujo extraerá el aire de las mangueras pequeñas. 5-Luego de encenderla abriremos las llaves donde están puestas las mangueras pequeñas, cuando veamos que ya no hay burbujas de aire cerraremos las llaves donde están puestas las mangueras pequeñas y apagaremos la bomba que empuja el agua hacia el tubo, e inmediatamente cerraremos la válvula naranja y aquí el panel digital nos mostrare datos, el cual tenemos que calibrar nosotros hasta llegar a 0, desde aquí comenzamos a tomar la temperatura que es de 26°C. Cabe mencionar que tuvimos mucho cuidado poniendo recipientes o pedazos de papel debajo de las conexiones entre tubos y mangueras, ya que suele tirar un poco de agua. 6-Desconectaremos las mangueras pequeñas de las llaves. 7-Después iniciaremos con las pruebas, comenzaremos como lo hicimos inicialmente pero abriremos las llaves donde van puestas las mangueras pequeñas, después de que el agua pase por el tubo, ya abiertas las llaves de las mangueras pequeñas, el panel digital nos arrogara unas lecturas, la primera pantalla digital flujo volumétrico (Caudal) y la segunda pantalla digital nos mostrara la caída de presión(mbar), esto lo repetiremos 5 veces, para tomar 5 datos. 8- Ya tomadas los 5 datos, cambiaremos de tubo, el siguiente será el cobre el cual es el mismo procedimiento que el primero pero lo único que cambiara es el material del tubo, aquí no tuvimos ningún problema. 9-Cambiaremos en el PVC con el mismo procedimiento con el acero galvanizado, aquí tuvimos un problema, un error en las mangueras pequeñas que fueron puestas al revés en las llaves.
  • 8. “perdida de fricción en los accesorios, formula” 10- Seguimos con un tubo de PVC pero con un accesorio, un reductor. Nomás que la única diferencia con este es que son 3 boquillas. 11-Aquí tomaremos diferentes lecturas 5, una boquilla está ubicada en el reductor y otra boquilla está ubicada en un tubo de diámetro más chico, el cual haremos 5 pruebas en la boquilla del reductor y haremos una prueba en el tubo pequeño, el cual suponemos que nos arrojara datos muy diferentes, tuvimos un problema en confundir los tubos, no hubo daños colaterales, solucionamos el problema lo más pronto poniéndonos de acuerdo y aclarando dudas entre el equipo. Tenemos un control en abrir las llaves, contamos 9 vueltas para abrirlas y 9 para cerrarlas y contamos 5 segundos en Misisipi. “Todos los valores deben ser positivos por el cambio de presión, si fueran negativos, estarían succionando” 12-Cambiamos de tubo también de PVC pero con un accesorio llamado ensanchamiento, aquí haremos una medida antes del accesorio y después del accesorio también con 3 boquilla este tubo y recordemos que las mangueras pequeñas que van en las boquillas del tubo una funcionara como un “tapón” la que funcionara con tapón es la que es después del accesorio de ensanchamiento y cuando queramos sacar datos después del ensanchamiento la boquilla anterior al accesorio funcionara como tapón. 13-Cabe mencionar que todos las pruebas que hemos hecho es cuidando que las mangueras pequeñas estén en forma horizontal para que haya un mínimo de varianzas en los datos. 14-Seguiremos con el tubo de PVC con 2 tubos codos, el cual este cuenta con 6 boquillas el cual tomaremos lecturas, aquí hare un paréntesis ya que tuvimos un error al no cambiar una manguera de tubo y un compañero encendió la bomba que empuja el agua por los tubos y tuvimos un accidente, derramando agua que salió por todos los orificios del tubo. 15-Comenzamos con la prueba de la primera boquilla, que esta antes del codo que es todo recto, las demás boquillas, excepto la última y la que estemos probando funcionaran como tapones. “Nos mencionó que podemos regular el flujo con la válvula de color naranja que está a un lado de la bomba que empuja el agua” 16-Seguimos poniendo la manguera en la boquilla donde inicia el codo o tubo curvo, efectuando sus respectivas pruebas. 17-Continuamos con la última prueba. Aquí cambiamos de lugar las mangueras a las ultimas 3 boquillas, ya que nos daba valores negativos, y nos dio más negativo, esto fue más bien un experimento para revisar porque nos dan valores negativos. “nos menciona que efectuemos las pruebas así”.
  • 9. 18-Volveremos a tomar datos desde el principio con el tubo de PVC con tubos curvos. Iniciamos de nuevo con la prueba “todo recto” desde la sexta boquilla. Y así sucesivamente con la quinta y cuarta boquilla. 19-La quinta boquilla es el final del tubo curvo y la cuarta boquilla es iniciando el tubo curvo. 20-Haremos pruebas con el tubo de PVC con accesorio válvula de diafragma que funciona como un reductor pero es más exacta ya que tú puedes decidir cuánto quieres reducir el flujo. 21-Para iniciar con el accesorio, que este tiene una boquilla antes de la válvula de diafragma y después de la misma, aquí será el mismo proceso de las mangueras pequeñas que la primera boquilla será aguas arriba y será puesta en la boquilla de las llaves de arriba, y la boquilla que esta después de la misma, será aguas abajo y será ubicada en la boquilla de debajo de las llaves respectivamente. 22-También cambiamos las mangueras grandes al tubo de PVC que esta tiene el accesorio de válvula de diafragma, iniciaremos con 25% abierto de la válvula de diafragma,50% abierto, 75% abierto y luego totalmente abierta. Tenemos un goteo de la Válvula de diafragma, será una prueba por cada situación difiere.
  • 13. Observacióny conclusión: Los resultados obtenidos por ecuaciones corroboraron las mediciones de la mesa hidrodinámica, los resultados indican que hay ciertas variaciones con los resultados de la caída de presión en el experimento y en el cálculo, nosotros decimos que de la mesa hidrodinámica podría tener desgaste de las tuberías, pequeñas fugas o tal vez el purgado, son diferentes factores que podrían afectar a las mediciones en el experimento, pero los resultados se puede considerar que son bastante acercados y por lo tanto podemos concluir que el experimento así como los cálculos son buenos. Bibliografía: - McCabe, Warren. (1991). Operaciones Unitarias en Ingeniería Química. Editorial McGraw- Hill. Cuarta Edición. España. Pág. 75-76, 106-109, 88-193. - Mott, Robert. (2006). Mecánica de Fluidos. Editorial Pearson Educación. Sexta Edición. México. Págs. 158-161, 281-305. - Perry, Robert. (2001). Manual del Ingeniero Químico. Editorial McGraw-Hill. Sexta Edición. - Wilson D, Jerry. (2003). Física. Editorial Pearson. Quinta Edición. México. - GUNT Hamburg. (2005). Equipos para la Educación en Ingeniería. HM 112 Banco de Ensayos. Consultado el 27 de febrero de 2015 en: http://www.gunt.de/static/s3178_3.php?p1=&p2=&pN= ANEXO: Manual de Mesa para Hidrodinámica.