SlideShare una empresa de Scribd logo
Algo de historia:
Los primeros vestigios del desarrollo de la ciencia
matemática se encuentran 5000-500 AC en Egipto.
Pitágoras, Tales de Mileto, Euclides son algunos de los
matemáticos que fueron dando realce al estudio de la
matemática. Establecieron un método riguroso para la
demostración geométrica e hicieron del número el
principio universal por excelencia.
Métodos para factorizar un polinomio
Antes de comenzar debes tener en claro que la
factorización lo que se busca es expresar una o varias
cantidades como el producto de dos o más factores,
dando la posibilidad de factorizar de diferentes
formas expresiones algebraicas denominando a este
proceso casos de factorización.
Pero … ¿Qué es factorizar?
En pocas palabras, la factorización de expresiones
algebraicas consiste en buscar el origen de las
mismas, en descomponerlas.
Casos de Factorización
Subsecciones :
1.- Factor Común
2.- Factor Común por agrupación de términos
3.- Casos para Trinomios
4.- Diferencia de cuadrados
5.- Trinomio cuadrado perfecto por adición o sustracción
6.- Trinomio cuadrado de la forma
7.- Trinomio cuadrado de la forma
8.- Cubo perfecto de Binomios
9.- Suma o Diferencia de Cubos perfectos
10.- Suma o Diferencia de dos potencias iguales
11.- Casos para Polinomios
12.- Relación con la Geometría.
12.- Prueba de diagnostico: I parte
13.- Prueba diagnostico: II parte
Factor Común
Explicación:
Este es el primer caso y se emplea para factorizar
una expresión en la cual todos los términos tienen algo
en común (puede ser un número, una letra, o la
combinación de los dos).
Factor común monomio: Es el factor que está
presente en cada término del polinomio :
Ejemplo:
Casos de factorización.
Factor común polinomio: Es el polinomio que aparece
en cada término de la expresión :
Ejemplos:
2a(m - 2n) - b (m - 2n ) = 2a(m - 2n) - b (m - 2n )
= (m - 2n )( 2a - b )
3x(2z - 5z) + x (2z – 5z) = 3x(2z – 5z) + x(2z – 5z)
= (2z – 5z) (3x + x)
mnx + mny - mnz = mnx + mny – mnz
= mn (x + y – z)
Algunos Ejercicios:
Factor común monomio:
12m2n + 24m3n2 - 36m4n3 =
10p2q3 + 14p3q2 - 18p4q3 - 16p5q4=

 2
2
9
8
4
3
xy
y
x



 2
4
5
2
4
3
3
2
16
1
8
1
4
1
2
1
b
a
b
a
b
a
b
a



 b
a
b
a
ab
b
a 3
3
2
2
25
16
15
8
5
12
35
4



 5
3
4
3
3
2
2
3
35
21
14
9
28
27
21
15
y
x
y
x
y
x
y
x
Factor común polinomio:
x2( p + q ) + y2( p + q )=
a(2 + x ) - ( 2 + x )=
(x + y )(n + 1 ) - 3 (n + 1 )=
(a + 1 )(a - 1 ) - 2 ( a - 1 )=
Factor Común.
Factor Común por agrupación de
términos
Explicación:
Aquí utilizaremos el caso anterior:
adicionando que uniremos los factores que se
parezcan, es decir, los que tengan un factor común.
Ejemplos:
Casos de factorización.
3a + 5a + 3b + 5b = (3a + 5a) + (3b + 5b)
= a (3 + 5) + b (3 + 5)
= (a + b)(3 + 5)
2m – 5m + 2n – 5n = (2m – 5m) + (2n – 5n)
= m (2 – 5) + n (2 - 5)
= (m + n) (2 – 5)
Algunos Ejercicios:
6ab + 4a - 15b - 10 =
ac - a - bc + b + c2 - c =
a3 + a2 + a + 1 =
18x - 12 - 3xy + 2y + 15xz - 10z =
3am - 8bp - 2bm + 12 ap =
15
4
21
4
10
3
143
3
5 7
2
x xz xy yz x z
     
Factor Común por agrupación de términos.
Casos para Trinomios
Explicación:
Trinomio cuadrado perfecto: Este nombre es otorgado a los
trinomios que cumplen con las siguientes características:
El primer y tercer término se tiene raíz cuadrada exacta y
son positivos.
El segundo término es igual a dos veces el producto de las
raíces cuadradas y puede ser positivo o negativo. y se
factoriza como una suma o diferencia, dependiendo del
segundo término, elevado al cuadrado, se factoriza así:
Casos de factorización.
Ejemplos:
 x2 + 8x + 16 = (x + 4)2
 9x2 + 42x + 49 = (3x + 7)2
 4x2 – 4x + 1 = (2x – 1)2
Aquí tienes
algunos ejemplos
aclaratorios!!
Algunos ejercicios:
 25x2 + 55x + 121/4 =
 x2 + x + ¼ =
 a2 + 8a + 16 =
 4b2 – 4b + 1 =
 z2 + 12z + 36 =
 25m2 + 18m + 81 =
 n2 + 14n + 49 =
Casos para Trinomios.
Vamos amigo trabaja
con todas las ganas!
Diferencia de cuadrados
Explicación:
Para esto debemos tener en cuenta que un binomio es una
diferencia de cuadrados siempre y cuando los términos que la
componen tengan diferentes signos y ambos términos tengan
raíz cuadrada exacta.
Ejemplo:
Casos de factorización.
Suma o diferencia de potencias iguales: Para solucionar este
caso debes tener en cuenta los conocimientos adquiridos sobre
cocientes notables, es decir: donde n pertenece a z;
si n es par :
si n es impar :
y
se factoriza así: si n pertenece a z
si n es par :
si n es impar :
Ejemplos:
25 - 9 = (5 – 3) (5 + 3)
a2 – b2 = (a – b) (a + b)
(7x – 9) (7x + 9) = 49x – 81
Algunos Ejercicios:
36m2n2 - 25 =
121x2 - 144k2 =
3x2 - 12 =
9
25
49
36
2 2
a b
 
1
25
9
16
4 4
x y
 
5 - 180f2 =
Diferencia de cuadrados.
Trinomio cuadrado perfecto por adición
o sustracción
Explicación:
En este caso se intenta transformar una expresión (binomio o
trinomio), en otra igual en la que se pueda aplicar trinomio
cuadrado perfecto.
Ejercicio:
Casos de factorización.
Resolviéndolo nos queda:
Aplicamos diferencia de cuadrados:
Ejemplos:
 16m2 – 40mn + 25n2 = (4m – 5n)2
 (4m )( 2) ( 5n) = 40 mn
 4b2 + 4b + 1 = (2b + 1)2
 (2b) (2) ( 1) = 4b
 1 + 6x + 9x2 = (1 + 3x)2
 (1) ( 2 ) (3x) = 6x
Algunos ejercicios:
1. x2 + 6x + 9 =
2. 16x2 + 8x + 1 =
3. y2 + 10y + 25 =
4. 81y2 - 180y + 100 =
5. 81z2+ 108zw + 36w2 =
6. 49x2 + 112x + 64 =
7. 4y2 - 24y + 36 =
Trinomio cuadrado perfecto por
adición o sustracción.
Trinomio cuadrado de la forma
Explicación:
Este trinomio debe cumplir con las siguientes
características:
Debe estar organizado de forma correspondiente
(es decir, debe coincidir con la formula).
El primer término debe ser positivo y tener raíz
cuadrada exacta.
La variable que esta acompañando el segundo
término debe ser la raíz cuadrada del término
número uno.
Casos de factorización.
 Existen dos números que :
es decir:
Ejemplos:
1.x2 + 6x + 8 = (x + 4) (x + 2)
 4 x 2 = 8 Multiplicados dan 8
 4 + 2 = 6 Sumados dan 6
1.x2 – 11x – 26 = (x – 13) (x + 2)
 -13 x 2 = -26 Multiplicados dan -26
 -13 + 2= -11 Sumados dan -11
1.x2 -17x + 30 = (x – 15) (x – 2)
 -15 x -2 = 30 Multiplicados dan 30
 -15 + -2 = -17 Sumados dan -17
Algunos Ejercicios:
1. x2 + 12x + 6 =
2. a2 – 24a + 15 =
3. f2 – 15f + 18=
4. x2 + 6x +5=
5. r2 – 12r +27=
6. m2 + 19m + 48=
7. w2 + 20w – 6=
Trinomio cuadrado de la forma:
Trinomio cuadrado de la forma
Explicación:
Debe cumplir con las siguientes características:
Debe estar organizado de forma correspondiente
(es decir, debe coincidir con la fórmula).
El primer término debe ser positivo, tener un
coeficiente a diferente de 1 y la parte literal debe
tener raíz cuadrada exacta.
La variable que esta acompañando el segundo
término debe ser la raíz cuadrada del término
número uno.
Casos de factorización.
Cumpliendo con todas las características anteriores
se procede a factorizar transformando el trinomio
dado en uno de la forma
De la siguiente forma:
luego se procede a multiplicar y dividir por la variable
que acompaña al primer término (esto con el fin de no
alterar el ejercicio) de la siguiente forma:
y se opera, dando como resultado:
y de esta forma nos queda como un trinomio de la
forma anterior.
Ejemplo:
 (12x2 + 16x – 3) =
 12 (12x2 + 16x – 3) =
 (12x)2 + 16(12x) – 36 = (12x + 18) (12x – 2)
18 x -2 = -36 multiplicados dan -36
18 + -2 = 16 sumados dan 16
(12x + 18)(12x – 2) 6(2x + 3) 2(6x – 1)
______________ = ______________ = (2x + 3)(6x – 1)
12 12
Algunos Ejercicios:
1. 4x2 + 7x + 3 =
2. 4h2 + 5h + 1 =
3. 2x2 + 5x -12 =
4. 6x2 + 7x – 5 =
5. 8x2 – 14x + 3 =
6. 6a2 + 23ab – 4b2 =
Trinomio cuadrado de la forma:
Cubo perfecto de Binomios
Explicación:
Teniendo en cuenta que los productos notables nos
dicen que:
y
Casos de factorización.
Es decir que debe cumplir con las siguientes
características:
•Debe tener cuatro términos.
•Que tanto el primero como el último término sean cubos
perfectos
•Que el segundo término sea aproximadamente el triple
del cuadrado de la raíz cúbica del primer término
multiplicado por la raíz cúbica del último término.
•Que el tercer término sea más que el triple de la raíz
cúbica del último .
Raíz cúbica de un monomio: Esta se obtiene tomando la raíz
cúbica de su coeficiente y dividiendo el exponente de cada letra
entre 3. Factorizar una expresión que es el cubo de un
binomio:
Ejemplos:
• x3 + 3x2z + 3xz2 + z3 = / se saca raíz cúbica del 1º termino = x
se saca raíz cúbica del 4to. término = z
x3 + 3x2z + 3xz2 + z3 = (x + z)3
• 8m6n3 + 48m5n4 + 96m4n5 + 64m3n6 =
Raíz cúbica 1º término = 2m2n
Raíz cúbica 4to término = 4mn2
8m6n3 + 48m5n4 + 96m4n5 + 64m3n6 = (2m2n + 4mn2)3
(x + z)3 = x3 + 3x2z + 3ab2 + b3
Algunos ejercicios:
1. (2x – 3z)3 =
2. (5y + 1)3 =
3. (2 + a2)3 =
4. (1 – a)3 =
5. m3 + 3m2n + 3mn2 + n3=
6. 27 – 27x + 9x2 – x3 =
7. c2 + 3c2 +3c + 1 =
Cubo perfecto de Binomios.
Aquí tienes ejercicios
para trabajar!! Haz tu
mayor esfuerzo!!
Suma o Diferencia de Cubos perfectos
Explicación:
Para esto debemos recordar que:
y
Casos de factorización.
Tenemos que tener en cuenta las siguientes reglas
para desarrollarlo:
• La de sus cubos perfectos se descompone en dos
factores: 1. La suma de sus raíces cúbicas 2. El
cuadrado de la primera raíz, menos el producto de las
dos raíces, más el cuadrado de la segunda raíz.
• La diferencia de dos cubos perfectos se
descompone en dos factores: 1. La diferencia de sus
raíces cúbicas. 2. El cuadrado de la primera raíz, más
el producto de las dos raíces, más el cuadrado de la
segunda raíz.
Ejemplos:
• x3 + z3 = (x + z)(x2 – xz + z2)
x3 – z3 = (x – z)(x2 + xz + z2)
• 8m3 + z3 = (2m + z)(2m2 - 2mz + z2)
8m3 – z3 = (2m – z)(2m2 + 2mz + z2)
• (b + 3)(b2 – 3b + 9) = b3 + 27
(b - 3)(b2 + 3b + 9) = b3 - 27
Algunos Ejercicios:
1. 9x3 + 27 =
2. 16m3 + 25n3 =
3. 4b3 – 1 =
4. 1 + 9x3 =
5. 9m3 – 3n3 =
6. 4w3 + 64z3 =
7. 25f3 + g3 =
Suma o Diferencia de Cubos perfectos.
Suma o Diferencia de dos potencias
iguales
Explicación:
Debemos tener en cuenta una pequeña
recapitulación de:
• es divisible por siendo n un número par o impar
• es divisible por siendo n impar
• es divisible por siendo n par
• nunca es divisible por
Casos de factorización.
Demostración:
se divide por:
y tenemos:
y obtenemos como respuesta:
)
Ejemplos:
x4 + z4 = x4 + z4/x + z
= x3 – x2z + xz2 – z3
x4 + z4 = (x + z)(x3 –x2z + xz2 –z3)
m6 + n6 = m6 + n6/m + n
= m5 - m4n + m3n2 – m2n3 + mn4 – n5
m6 + n6 = (m + n)(m5 - m4n + m3n2 – m2n3 + mn4 – n5)
b3 + c3 = b3 + c3/b+c
= b2 – bc + c2
b3 + c3 = (b + c)(b2 – bc + c2)
Algunos ejercicios:
1. m3 + n3 =
2. x4 – z4 =
3. b2 + c2 =
4. f6 – g6 =
5. 27x3 + z3 =
6. 4m2 – 2n2 =
7. 6x3 + 12n3 =
Suma o Diferencia de dos potencias iguales.
Casos para Polinomios
Explicación:
Agrupación de términos: Aquí se intenta agrupar los
diferentes términos de una expresión para factorizar
utilizando los diferentes métodos vistos. Para utilizar este
método se debe tener en cuenta que la expresión debe tener
un número de términos que al agruparlos deben quedar todos
con la misma cantidad de términos.
Casos de factorización.
Demostración:
resolviéndolo nos queda:
Ejemplos:
• Factorizar: ax + bx + aw + bw
Agrupamos: (ax + bx) + (aw + bw)
Factor común en cada binomio: x (a + b) + w (a + b)
Factor común polinomio: (a + b)
Entonces: ax + bx + aw + bw = (a + b)(x + w)
• Factorizar: 2x2 - 4xy + 4x - 8y
Agrupamos: ( 2x2 - 4xy ) + ( 4x - 8y )
Factor común en cada binomio: 2x(x - 2y) + 4(x - 2y)
Factor común polinomio: (x - 2y)
Entonces: 2x2 - 4xy + 4x - 8y = (x - 2y)(2x + 4)
• Factorizar 2m+n + 8m+n + 2m8m + 2n8n
Agrupamos ( 2m+n + 2m8m ) + ( 8m+n + 2n8n )
Factor común en cada binomio: 2m( 2n + 8m ) + 8n( 8m + 2n )
Factor común polinomio: ( 2n + 8m )
Entonces: 2m+n + 8m+n + 2m8m + 2n8n = ( 2n + 8m )(2m + 8n)
Algunos ejercicios:
mx + nx + mw + nw =
af + bf + ag + bg =
3x2 - 6xy + 3xy - 2y =
2m2 – 7my + 3m - 9y =
4x2 - 8xn + 2x – 6n =
4x+y + 10x+y + 4x8x + 4y8y =
2b+c + 8b+c + 3b8b + 3c8c =
Casos para Polinomios.
Relación con la Geometría
El cuadrado: Polígono de 4 lados iguales.
Sus segmentos se sacan ocupando la factorizacion de
cuadrados perfectos.
Es decir, si el área de un cuadrado es:
A2 + 2ab + b2. ¿Cuánto será el valor de sus lados?
Área del cuadrado = lado2
a2 + 2ab + b = (a + b)(a + b) / factorizacion.
= (a + b)2
(a + b)
(a + b)
Casos de factorización.
El rectángulo: Polígono de 4 lados. 2 y 2 lados iguales.
Sus segmentos se sacan factorizando su área por una
diferencia de cuadrados.
Área rectángulo = base x altura
(a2 – b2) = (a + b)(a – b) / factorizacion.
Segmento 1= (a + b)
Segmento 2= (a – b)
(a – b)
(a + b)
Prueba Diagnostico: I parte.
Factorizar completamente cada polinomio:
1. 2x2 - 12x + 10
2. 3x3 - 27x2 + 54x
3. 4x2 - 32x + 60
4. 2x3y + 4x2y2 - 6xy3
5. 4x2 - 30x + 14
6. 9y3 + 3y2 - 6y
7. 20x3 - 5x
8. 3x2 - 27
9. 2x3 - 16
10. 24x3 + 3
Ver Respuestas
Casos de factorización.
Factorizar completamente cada polinomio: Respuestas:
1. 2x2 - 12x + 10 = 2(x - 5)(x - 1)
2. 3x3 - 27x2 + 54x = 3x(x - 3)(x - 6)
3. 4x2 - 32x + 60 = 4(x - 5)(x - 3)
4. 2x3y + 4x2y2 - 6xy3 = 2xy(x + 3y)(x - y)
5. 4x2 - 30x + 14 = 2(2x - 1)(x - 7)
6. 9y3 + 3y2 - 6y = 3y(3y - 2)(y + 1)
7. 20x3 - 5x = 5x(2x + 1)(2x - 1)
8. 3x2 - 27 = 3(x + 3)(x - 3)
9. 2x3 - 16 = 2(x - 2)(x2 + 2x + 4)
10. 24x3 + 3 = 3(2x + 1)(4x2 - 2x + 1)
Atrás.
Prueba diagnostico: II parte.
Factorizar completamente cada polinomio
1. 2x2 - 12x + 10
2. 3x3 - 27x2 + 54x
3. 4x2 - 32x + 60
4. 2x3y + 4x2y2 - 6xy3
5. 4x2 - 30x + 14
6. 9y3 + 3y2 - 6y
7. 20x3 - 5x
8. 3x2 - 27
9. 2x3 - 16
10. 24x3 + 3
Ver Respuestas
Casos de factorización.
Factorizar completamente cada polinomio: Respuestas:
1. 2x2 - 12x + 10 = 2(x - 5)(x - 1)
2. 3x3 - 27x2 + 54x = 3x(x - 3)(x - 6)
3. 4x2 - 32x + 60 = 4(x - 5)(x - 3)
4. 2x3y + 4x2y2 - 6xy3 = 2xy(x + 3y)(x - y)
5. 4x2 - 30x + 14 = 2(2x - 1)(x - 7)
6. 9y3 + 3y2 - 6y = 3y(3y - 2)(y + 1)
7. 20x3 - 5x = 5x(2x + 1)(2x - 1)
8. 3x2 - 27 = 3(x + 3)(x - 3)
9. 2x3 - 16 = 2(x - 2)(x2 + 2x + 4)
10. 24x3 + 3 = 3(2x + 1)(4x2 - 2x + 1)
Atrás.

Más contenido relacionado

PPTX
Función cuadrática
PPS
Evaluación de Funciones - EMdH
PPT
funciones
PPTX
Transformaciones lineales
PPS
Funcion Afin
PPTX
Módulo de un número
PPTX
División Algebraica
Función cuadrática
Evaluación de Funciones - EMdH
funciones
Transformaciones lineales
Funcion Afin
Módulo de un número
División Algebraica

La actualidad más candente (20)

PDF
Inecuaciones con Valor Absoluto calculo I .pdf
PPTX
Suceción de Fibonacci
PDF
Expresiones Algebraicas
PPTX
Studio di una funzione
PPTX
PPTX
Expresiones algebraicas
DOCX
Matrices simétricas y anti simétrica
PPSX
PPTX
Presentaciòn de funciones matemàticas..
PPTX
Conceptos básicos de funciones
PPT
Funciones PolinóMicas
PPT
4.radicación de números reales
PPTX
Derivación por incrementos
PPT
ECUACIONES DE SEGUNDO GRADO
PPTX
Concepto y representación de funciones
PPT
Inecuaciones cuadráticas
PPTX
La parábola
PDF
Adaptacion Curricular Matemáticas 2 ESO.pdf
PPT
Geometria analitica
PPT
Las inecuaciones
Inecuaciones con Valor Absoluto calculo I .pdf
Suceción de Fibonacci
Expresiones Algebraicas
Studio di una funzione
Expresiones algebraicas
Matrices simétricas y anti simétrica
Presentaciòn de funciones matemàticas..
Conceptos básicos de funciones
Funciones PolinóMicas
4.radicación de números reales
Derivación por incrementos
ECUACIONES DE SEGUNDO GRADO
Concepto y representación de funciones
Inecuaciones cuadráticas
La parábola
Adaptacion Curricular Matemáticas 2 ESO.pdf
Geometria analitica
Las inecuaciones
Publicidad

Similar a Presentación repaso factorización.ppt (20)

PPT
Modulo factorizacion
PPT
modulo-factorizacion.ppt Bachillerato internacional
PPT
Modulo factorizacion
PPS
Modulo factorización
PPS
Modulo factorización
PPS
Modulo factorización
PPT
Modulofactorizacion2
PPT
Modulofactorizacion2
PPT
Modulo factorizacion
PPTX
Factorización
PDF
Factorización tema-1 (1)
PPTX
Mogollon
PPTX
PPTX
Factorizacion trabajo
PPTX
Factorizacion trabajo
PDF
factorizacion.pdf
PPTX
Taller casos de factorizacion
PPTX
Tipos de factorización
PPTX
Elementos, características y procedimientos de la Unidad 1.pptx
PPTX
APRENDIENDO A FACTORIZAR
Modulo factorizacion
modulo-factorizacion.ppt Bachillerato internacional
Modulo factorizacion
Modulo factorización
Modulo factorización
Modulo factorización
Modulofactorizacion2
Modulofactorizacion2
Modulo factorizacion
Factorización
Factorización tema-1 (1)
Mogollon
Factorizacion trabajo
Factorizacion trabajo
factorizacion.pdf
Taller casos de factorizacion
Tipos de factorización
Elementos, características y procedimientos de la Unidad 1.pptx
APRENDIENDO A FACTORIZAR
Publicidad

Último (20)

PDF
2.0 Introduccion a processing, y como obtenerlo
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PPTX
MATEMATICAS GEOMETRICA USO TRANSPORTADOR
PDF
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
DOCX
PLANES DE área ciencias naturales y aplicadas
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PDF
EL aprendizaje adaptativo bajo STEM+H.pdf
PDF
Modelo Educativo SUB 2023versión final.pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
PDF
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PPTX
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx
2.0 Introduccion a processing, y como obtenerlo
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
MATEMATICAS GEOMETRICA USO TRANSPORTADOR
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
PLANES DE área ciencias naturales y aplicadas
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
EL aprendizaje adaptativo bajo STEM+H.pdf
Modelo Educativo SUB 2023versión final.pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
PLAN DE CASTELLANO 2021 actualizado a la normativa
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx

Presentación repaso factorización.ppt

  • 1. Algo de historia: Los primeros vestigios del desarrollo de la ciencia matemática se encuentran 5000-500 AC en Egipto. Pitágoras, Tales de Mileto, Euclides son algunos de los matemáticos que fueron dando realce al estudio de la matemática. Establecieron un método riguroso para la demostración geométrica e hicieron del número el principio universal por excelencia.
  • 2. Métodos para factorizar un polinomio Antes de comenzar debes tener en claro que la factorización lo que se busca es expresar una o varias cantidades como el producto de dos o más factores, dando la posibilidad de factorizar de diferentes formas expresiones algebraicas denominando a este proceso casos de factorización. Pero … ¿Qué es factorizar? En pocas palabras, la factorización de expresiones algebraicas consiste en buscar el origen de las mismas, en descomponerlas.
  • 3. Casos de Factorización Subsecciones : 1.- Factor Común 2.- Factor Común por agrupación de términos 3.- Casos para Trinomios 4.- Diferencia de cuadrados 5.- Trinomio cuadrado perfecto por adición o sustracción 6.- Trinomio cuadrado de la forma 7.- Trinomio cuadrado de la forma 8.- Cubo perfecto de Binomios 9.- Suma o Diferencia de Cubos perfectos 10.- Suma o Diferencia de dos potencias iguales 11.- Casos para Polinomios 12.- Relación con la Geometría. 12.- Prueba de diagnostico: I parte 13.- Prueba diagnostico: II parte
  • 4. Factor Común Explicación: Este es el primer caso y se emplea para factorizar una expresión en la cual todos los términos tienen algo en común (puede ser un número, una letra, o la combinación de los dos). Factor común monomio: Es el factor que está presente en cada término del polinomio : Ejemplo: Casos de factorización.
  • 5. Factor común polinomio: Es el polinomio que aparece en cada término de la expresión : Ejemplos: 2a(m - 2n) - b (m - 2n ) = 2a(m - 2n) - b (m - 2n ) = (m - 2n )( 2a - b ) 3x(2z - 5z) + x (2z – 5z) = 3x(2z – 5z) + x(2z – 5z) = (2z – 5z) (3x + x) mnx + mny - mnz = mnx + mny – mnz = mn (x + y – z)
  • 6. Algunos Ejercicios: Factor común monomio: 12m2n + 24m3n2 - 36m4n3 = 10p2q3 + 14p3q2 - 18p4q3 - 16p5q4=   2 2 9 8 4 3 xy y x     2 4 5 2 4 3 3 2 16 1 8 1 4 1 2 1 b a b a b a b a     b a b a ab b a 3 3 2 2 25 16 15 8 5 12 35 4     5 3 4 3 3 2 2 3 35 21 14 9 28 27 21 15 y x y x y x y x
  • 7. Factor común polinomio: x2( p + q ) + y2( p + q )= a(2 + x ) - ( 2 + x )= (x + y )(n + 1 ) - 3 (n + 1 )= (a + 1 )(a - 1 ) - 2 ( a - 1 )= Factor Común.
  • 8. Factor Común por agrupación de términos Explicación: Aquí utilizaremos el caso anterior: adicionando que uniremos los factores que se parezcan, es decir, los que tengan un factor común. Ejemplos: Casos de factorización.
  • 9. 3a + 5a + 3b + 5b = (3a + 5a) + (3b + 5b) = a (3 + 5) + b (3 + 5) = (a + b)(3 + 5) 2m – 5m + 2n – 5n = (2m – 5m) + (2n – 5n) = m (2 – 5) + n (2 - 5) = (m + n) (2 – 5)
  • 10. Algunos Ejercicios: 6ab + 4a - 15b - 10 = ac - a - bc + b + c2 - c = a3 + a2 + a + 1 = 18x - 12 - 3xy + 2y + 15xz - 10z = 3am - 8bp - 2bm + 12 ap = 15 4 21 4 10 3 143 3 5 7 2 x xz xy yz x z       Factor Común por agrupación de términos.
  • 11. Casos para Trinomios Explicación: Trinomio cuadrado perfecto: Este nombre es otorgado a los trinomios que cumplen con las siguientes características: El primer y tercer término se tiene raíz cuadrada exacta y son positivos. El segundo término es igual a dos veces el producto de las raíces cuadradas y puede ser positivo o negativo. y se factoriza como una suma o diferencia, dependiendo del segundo término, elevado al cuadrado, se factoriza así: Casos de factorización.
  • 12. Ejemplos:  x2 + 8x + 16 = (x + 4)2  9x2 + 42x + 49 = (3x + 7)2  4x2 – 4x + 1 = (2x – 1)2 Aquí tienes algunos ejemplos aclaratorios!!
  • 13. Algunos ejercicios:  25x2 + 55x + 121/4 =  x2 + x + ¼ =  a2 + 8a + 16 =  4b2 – 4b + 1 =  z2 + 12z + 36 =  25m2 + 18m + 81 =  n2 + 14n + 49 = Casos para Trinomios. Vamos amigo trabaja con todas las ganas!
  • 14. Diferencia de cuadrados Explicación: Para esto debemos tener en cuenta que un binomio es una diferencia de cuadrados siempre y cuando los términos que la componen tengan diferentes signos y ambos términos tengan raíz cuadrada exacta. Ejemplo: Casos de factorización.
  • 15. Suma o diferencia de potencias iguales: Para solucionar este caso debes tener en cuenta los conocimientos adquiridos sobre cocientes notables, es decir: donde n pertenece a z; si n es par : si n es impar : y
  • 16. se factoriza así: si n pertenece a z si n es par : si n es impar :
  • 17. Ejemplos: 25 - 9 = (5 – 3) (5 + 3) a2 – b2 = (a – b) (a + b) (7x – 9) (7x + 9) = 49x – 81
  • 18. Algunos Ejercicios: 36m2n2 - 25 = 121x2 - 144k2 = 3x2 - 12 = 9 25 49 36 2 2 a b   1 25 9 16 4 4 x y   5 - 180f2 = Diferencia de cuadrados.
  • 19. Trinomio cuadrado perfecto por adición o sustracción Explicación: En este caso se intenta transformar una expresión (binomio o trinomio), en otra igual en la que se pueda aplicar trinomio cuadrado perfecto. Ejercicio: Casos de factorización.
  • 20. Resolviéndolo nos queda: Aplicamos diferencia de cuadrados:
  • 21. Ejemplos:  16m2 – 40mn + 25n2 = (4m – 5n)2  (4m )( 2) ( 5n) = 40 mn  4b2 + 4b + 1 = (2b + 1)2  (2b) (2) ( 1) = 4b  1 + 6x + 9x2 = (1 + 3x)2  (1) ( 2 ) (3x) = 6x
  • 22. Algunos ejercicios: 1. x2 + 6x + 9 = 2. 16x2 + 8x + 1 = 3. y2 + 10y + 25 = 4. 81y2 - 180y + 100 = 5. 81z2+ 108zw + 36w2 = 6. 49x2 + 112x + 64 = 7. 4y2 - 24y + 36 = Trinomio cuadrado perfecto por adición o sustracción.
  • 23. Trinomio cuadrado de la forma Explicación: Este trinomio debe cumplir con las siguientes características: Debe estar organizado de forma correspondiente (es decir, debe coincidir con la formula). El primer término debe ser positivo y tener raíz cuadrada exacta. La variable que esta acompañando el segundo término debe ser la raíz cuadrada del término número uno. Casos de factorización.
  • 24.  Existen dos números que : es decir:
  • 25. Ejemplos: 1.x2 + 6x + 8 = (x + 4) (x + 2)  4 x 2 = 8 Multiplicados dan 8  4 + 2 = 6 Sumados dan 6 1.x2 – 11x – 26 = (x – 13) (x + 2)  -13 x 2 = -26 Multiplicados dan -26  -13 + 2= -11 Sumados dan -11 1.x2 -17x + 30 = (x – 15) (x – 2)  -15 x -2 = 30 Multiplicados dan 30  -15 + -2 = -17 Sumados dan -17
  • 26. Algunos Ejercicios: 1. x2 + 12x + 6 = 2. a2 – 24a + 15 = 3. f2 – 15f + 18= 4. x2 + 6x +5= 5. r2 – 12r +27= 6. m2 + 19m + 48= 7. w2 + 20w – 6= Trinomio cuadrado de la forma:
  • 27. Trinomio cuadrado de la forma Explicación: Debe cumplir con las siguientes características: Debe estar organizado de forma correspondiente (es decir, debe coincidir con la fórmula). El primer término debe ser positivo, tener un coeficiente a diferente de 1 y la parte literal debe tener raíz cuadrada exacta. La variable que esta acompañando el segundo término debe ser la raíz cuadrada del término número uno. Casos de factorización.
  • 28. Cumpliendo con todas las características anteriores se procede a factorizar transformando el trinomio dado en uno de la forma De la siguiente forma:
  • 29. luego se procede a multiplicar y dividir por la variable que acompaña al primer término (esto con el fin de no alterar el ejercicio) de la siguiente forma: y se opera, dando como resultado: y de esta forma nos queda como un trinomio de la forma anterior.
  • 30. Ejemplo:  (12x2 + 16x – 3) =  12 (12x2 + 16x – 3) =  (12x)2 + 16(12x) – 36 = (12x + 18) (12x – 2) 18 x -2 = -36 multiplicados dan -36 18 + -2 = 16 sumados dan 16 (12x + 18)(12x – 2) 6(2x + 3) 2(6x – 1) ______________ = ______________ = (2x + 3)(6x – 1) 12 12
  • 31. Algunos Ejercicios: 1. 4x2 + 7x + 3 = 2. 4h2 + 5h + 1 = 3. 2x2 + 5x -12 = 4. 6x2 + 7x – 5 = 5. 8x2 – 14x + 3 = 6. 6a2 + 23ab – 4b2 = Trinomio cuadrado de la forma:
  • 32. Cubo perfecto de Binomios Explicación: Teniendo en cuenta que los productos notables nos dicen que: y Casos de factorización.
  • 33. Es decir que debe cumplir con las siguientes características: •Debe tener cuatro términos. •Que tanto el primero como el último término sean cubos perfectos •Que el segundo término sea aproximadamente el triple del cuadrado de la raíz cúbica del primer término multiplicado por la raíz cúbica del último término. •Que el tercer término sea más que el triple de la raíz cúbica del último .
  • 34. Raíz cúbica de un monomio: Esta se obtiene tomando la raíz cúbica de su coeficiente y dividiendo el exponente de cada letra entre 3. Factorizar una expresión que es el cubo de un binomio:
  • 35. Ejemplos: • x3 + 3x2z + 3xz2 + z3 = / se saca raíz cúbica del 1º termino = x se saca raíz cúbica del 4to. término = z x3 + 3x2z + 3xz2 + z3 = (x + z)3 • 8m6n3 + 48m5n4 + 96m4n5 + 64m3n6 = Raíz cúbica 1º término = 2m2n Raíz cúbica 4to término = 4mn2 8m6n3 + 48m5n4 + 96m4n5 + 64m3n6 = (2m2n + 4mn2)3 (x + z)3 = x3 + 3x2z + 3ab2 + b3
  • 36. Algunos ejercicios: 1. (2x – 3z)3 = 2. (5y + 1)3 = 3. (2 + a2)3 = 4. (1 – a)3 = 5. m3 + 3m2n + 3mn2 + n3= 6. 27 – 27x + 9x2 – x3 = 7. c2 + 3c2 +3c + 1 = Cubo perfecto de Binomios. Aquí tienes ejercicios para trabajar!! Haz tu mayor esfuerzo!!
  • 37. Suma o Diferencia de Cubos perfectos Explicación: Para esto debemos recordar que: y Casos de factorización.
  • 38. Tenemos que tener en cuenta las siguientes reglas para desarrollarlo: • La de sus cubos perfectos se descompone en dos factores: 1. La suma de sus raíces cúbicas 2. El cuadrado de la primera raíz, menos el producto de las dos raíces, más el cuadrado de la segunda raíz. • La diferencia de dos cubos perfectos se descompone en dos factores: 1. La diferencia de sus raíces cúbicas. 2. El cuadrado de la primera raíz, más el producto de las dos raíces, más el cuadrado de la segunda raíz.
  • 39. Ejemplos: • x3 + z3 = (x + z)(x2 – xz + z2) x3 – z3 = (x – z)(x2 + xz + z2) • 8m3 + z3 = (2m + z)(2m2 - 2mz + z2) 8m3 – z3 = (2m – z)(2m2 + 2mz + z2) • (b + 3)(b2 – 3b + 9) = b3 + 27 (b - 3)(b2 + 3b + 9) = b3 - 27
  • 40. Algunos Ejercicios: 1. 9x3 + 27 = 2. 16m3 + 25n3 = 3. 4b3 – 1 = 4. 1 + 9x3 = 5. 9m3 – 3n3 = 6. 4w3 + 64z3 = 7. 25f3 + g3 = Suma o Diferencia de Cubos perfectos.
  • 41. Suma o Diferencia de dos potencias iguales Explicación: Debemos tener en cuenta una pequeña recapitulación de: • es divisible por siendo n un número par o impar • es divisible por siendo n impar • es divisible por siendo n par • nunca es divisible por Casos de factorización.
  • 42. Demostración: se divide por: y tenemos: y obtenemos como respuesta: )
  • 43. Ejemplos: x4 + z4 = x4 + z4/x + z = x3 – x2z + xz2 – z3 x4 + z4 = (x + z)(x3 –x2z + xz2 –z3) m6 + n6 = m6 + n6/m + n = m5 - m4n + m3n2 – m2n3 + mn4 – n5 m6 + n6 = (m + n)(m5 - m4n + m3n2 – m2n3 + mn4 – n5) b3 + c3 = b3 + c3/b+c = b2 – bc + c2 b3 + c3 = (b + c)(b2 – bc + c2)
  • 44. Algunos ejercicios: 1. m3 + n3 = 2. x4 – z4 = 3. b2 + c2 = 4. f6 – g6 = 5. 27x3 + z3 = 6. 4m2 – 2n2 = 7. 6x3 + 12n3 = Suma o Diferencia de dos potencias iguales.
  • 45. Casos para Polinomios Explicación: Agrupación de términos: Aquí se intenta agrupar los diferentes términos de una expresión para factorizar utilizando los diferentes métodos vistos. Para utilizar este método se debe tener en cuenta que la expresión debe tener un número de términos que al agruparlos deben quedar todos con la misma cantidad de términos. Casos de factorización.
  • 47. Ejemplos: • Factorizar: ax + bx + aw + bw Agrupamos: (ax + bx) + (aw + bw) Factor común en cada binomio: x (a + b) + w (a + b) Factor común polinomio: (a + b) Entonces: ax + bx + aw + bw = (a + b)(x + w) • Factorizar: 2x2 - 4xy + 4x - 8y Agrupamos: ( 2x2 - 4xy ) + ( 4x - 8y ) Factor común en cada binomio: 2x(x - 2y) + 4(x - 2y) Factor común polinomio: (x - 2y) Entonces: 2x2 - 4xy + 4x - 8y = (x - 2y)(2x + 4)
  • 48. • Factorizar 2m+n + 8m+n + 2m8m + 2n8n Agrupamos ( 2m+n + 2m8m ) + ( 8m+n + 2n8n ) Factor común en cada binomio: 2m( 2n + 8m ) + 8n( 8m + 2n ) Factor común polinomio: ( 2n + 8m ) Entonces: 2m+n + 8m+n + 2m8m + 2n8n = ( 2n + 8m )(2m + 8n)
  • 49. Algunos ejercicios: mx + nx + mw + nw = af + bf + ag + bg = 3x2 - 6xy + 3xy - 2y = 2m2 – 7my + 3m - 9y = 4x2 - 8xn + 2x – 6n = 4x+y + 10x+y + 4x8x + 4y8y = 2b+c + 8b+c + 3b8b + 3c8c = Casos para Polinomios.
  • 50. Relación con la Geometría El cuadrado: Polígono de 4 lados iguales. Sus segmentos se sacan ocupando la factorizacion de cuadrados perfectos. Es decir, si el área de un cuadrado es: A2 + 2ab + b2. ¿Cuánto será el valor de sus lados? Área del cuadrado = lado2 a2 + 2ab + b = (a + b)(a + b) / factorizacion. = (a + b)2 (a + b) (a + b) Casos de factorización.
  • 51. El rectángulo: Polígono de 4 lados. 2 y 2 lados iguales. Sus segmentos se sacan factorizando su área por una diferencia de cuadrados. Área rectángulo = base x altura (a2 – b2) = (a + b)(a – b) / factorizacion. Segmento 1= (a + b) Segmento 2= (a – b) (a – b) (a + b)
  • 52. Prueba Diagnostico: I parte. Factorizar completamente cada polinomio: 1. 2x2 - 12x + 10 2. 3x3 - 27x2 + 54x 3. 4x2 - 32x + 60 4. 2x3y + 4x2y2 - 6xy3 5. 4x2 - 30x + 14 6. 9y3 + 3y2 - 6y 7. 20x3 - 5x 8. 3x2 - 27 9. 2x3 - 16 10. 24x3 + 3 Ver Respuestas Casos de factorización.
  • 53. Factorizar completamente cada polinomio: Respuestas: 1. 2x2 - 12x + 10 = 2(x - 5)(x - 1) 2. 3x3 - 27x2 + 54x = 3x(x - 3)(x - 6) 3. 4x2 - 32x + 60 = 4(x - 5)(x - 3) 4. 2x3y + 4x2y2 - 6xy3 = 2xy(x + 3y)(x - y) 5. 4x2 - 30x + 14 = 2(2x - 1)(x - 7) 6. 9y3 + 3y2 - 6y = 3y(3y - 2)(y + 1) 7. 20x3 - 5x = 5x(2x + 1)(2x - 1) 8. 3x2 - 27 = 3(x + 3)(x - 3) 9. 2x3 - 16 = 2(x - 2)(x2 + 2x + 4) 10. 24x3 + 3 = 3(2x + 1)(4x2 - 2x + 1) Atrás.
  • 54. Prueba diagnostico: II parte. Factorizar completamente cada polinomio 1. 2x2 - 12x + 10 2. 3x3 - 27x2 + 54x 3. 4x2 - 32x + 60 4. 2x3y + 4x2y2 - 6xy3 5. 4x2 - 30x + 14 6. 9y3 + 3y2 - 6y 7. 20x3 - 5x 8. 3x2 - 27 9. 2x3 - 16 10. 24x3 + 3 Ver Respuestas Casos de factorización.
  • 55. Factorizar completamente cada polinomio: Respuestas: 1. 2x2 - 12x + 10 = 2(x - 5)(x - 1) 2. 3x3 - 27x2 + 54x = 3x(x - 3)(x - 6) 3. 4x2 - 32x + 60 = 4(x - 5)(x - 3) 4. 2x3y + 4x2y2 - 6xy3 = 2xy(x + 3y)(x - y) 5. 4x2 - 30x + 14 = 2(2x - 1)(x - 7) 6. 9y3 + 3y2 - 6y = 3y(3y - 2)(y + 1) 7. 20x3 - 5x = 5x(2x + 1)(2x - 1) 8. 3x2 - 27 = 3(x + 3)(x - 3) 9. 2x3 - 16 = 2(x - 2)(x2 + 2x + 4) 10. 24x3 + 3 = 3(2x + 1)(4x2 - 2x + 1) Atrás.