SlideShare una empresa de Scribd logo
Introducción a la Programación
Lineal
Cada muñeco:
• Produce un beneficio neto de 3 €.
• Requiere 2 horas de trabajo de acabado.
• Requiere 1 hora de trabajo de carpinteria.
Cada tren:
• Produce un beneficio neto de 2 €.
• Requiere 1 hora de trabajo de acabado.
• Requiere 1 hora trabajo de carpinteria.
Ejemplo
Gepetto S.L., manufactura muñecos y trenes de madera.
Cada semana Gepetto puede disponer de:
• Todo el material que necesite.
• Solamente 100 horas de acabado.
• Solamente 80 horas de carpinteria.
También:
• La demanda de trenes puede ser cualquiera (sin límite).
• La demanda de muñecos es como mucho 40.
Gepetto quiere maximizar sus beneficios.
¿Cuántos muñecos y cuántos trenes debe fabricar?
Variables de
Decisión
x = nº de muñecos
producidos a la
semana
y = nº de trenes
producidos a la
semana
Función Objetivo. En cualquier
PPL, la decisión a tomar es
como maximizar (normalmente el
beneficio) o minimizar (el coste)
de alguna función de las
variables de decisión. Esta
función a maximizar o minimizar
se llama función objetivo.
Max z = 3x + 2y
El objetivo de Gepetto es elegir
valores de x e y para
maximizar 3x + 2y. Usaremos
la variable z para denotar el
valor de la función objetivo. La
función objetivo de Gepetto es:
Este problema es un ejemplo típico de un problema de programación lineal (PPL).
Restricciones
Son desigualdades que
limitan los posibles
valores de las variables
de decisión.
En este problema las
restricciones vienen
dadas por la
disponibilidad de horas
de acabado y carpintería
y por la demanda de
muñecos.
También suele haber
restricciones de signo o
no negatividad:
x ≥ 0
y ≥ 0
Restricción 1: no más de 100 horas de tiempo de acabado pueden ser usadas.
Restricción 2: no más de 80 horas de tiempo de carpinteria pueden ser usadas.
Restricción 3: limitación de demanda, no deben fabricarse más de 40 muñecos.
Estas tres restricciones pueden expresarse matematicamente
por las siguientes desigualdades:
Restricción 1: 2 x + y ≤ 100
Restricción 2: x + y ≤ 80
Restricción 3: x ≤ 40
Cuando x e y crecen, la función objetivo de Gepetto también crece.
Pero no puede crecer indefinidamente porque, para Gepetto, los
valores de x e y están limitados por las siguientes tres restricciones:
Restricciones
Además, tenemos las restricciones de signo: x ≥ 0 e y ≥ 0
x ≥ 0 (restricción de signo)
y ≥ 0 (restricción de signo)
Muñeco Tren
Beneficio 3 2
Acabado 2 1 ≤ 100
Carpintería 1 1 ≤ 80
Demanda ≤ 40
Formulación matemática del PPL
Max z = 3x + 2y (función objetivo)
2 x + y ≤ 100 (acabado)
x + y ≤ 80 (carpinteria)
x ≤ 40 (demanda muñecos)
Variables de Decisión x = nº de muñecos producidos a la semana
y = nº de trenes producidos a la semana
Max z = 3x + 2y (función objetivo)
Sujeto a (s.a:)
2 x + y ≤ 100 (restricción de acabado)
x + y ≤ 80 (restricción de carpinteria)
x ≤ 40 (restricción de demanda de muñecos)
x ≥ 0 (restricción de signo)
y ≥ 0 (restricción de signo)
Para el problema de Gepetto, combinando las restricciones de
signo x ≥ 0 e y ≥ 0 con la función objetivo y las restricciones,
tenemos el siguiente modelo de optimización:
Formulación matemática del PPL
Región factible
x = 40 e y = 20 está en la región
factible porque satisfacen todas
las restricciones de Gepetto.
Sin embargo, x = 15, y = 70 no
está en la región factible porque
este punto no satisface la
restricción de carpinteria
[15 + 70 > 80].
Restricciones de Gepetto
2x + y ≤ 100 (restricción finalizado)
x + y ≤ 80 (restricción carpintería)
x ≤ 40 (restricción demanda)
x ≥ 0 (restricción signo)
y ≥ 0 (restricción signo)
La región factible de un PPL es el conjunto de todos los puntos
que satisfacen todas las restricciones. Es la región del plano
delimitada por el sistema de desigualdades que forman las
restricciones.
Solución óptima
La mayoría de PPL tienen solamente una solución
óptima. Sin embargo, algunos PPL no tienen
solución óptima, y otros PPL tienen un número
infinito de soluciones.
Más adelante veremos que la solución del PPL de
Gepetto es x = 20 e y = 60. Esta solución da un
valor de la función objetivo de:
z = 3x + 2y = 3·20 + 2·60 = 180 €
Cuando decimos que x = 20 e y = 60 es la solución óptima,
estamos diciendo que, en ningún punto en la región factible, la
función objetivo tiene un valor (beneficio) superior a 180.
Para un problema de maximización, una solución
óptima es un punto en la región factible en el cual
la función objetivo tiene un valor máximo. Para un
problema de minimización, una solución óptima es
un punto en la región factible en el cual la función
objetivo tiene un valor mínimo.
Se puede demostrar
que la solución
óptima de un PPL
está siempre en la
frontera de la región
factible, en un
vértice (si la
solución es única) o
en un segmento
entre dos vértices
contiguos (si hay
infinitas soluciones)
Representación Gráfica de las restricciones
2x + y = 100
Cualquier PPL con sólo dos
variables puede resolverse
gráficamente.
Por ejemplo, para representar
gráficamente la primera
restricción, 2x + y ≤ 100 :
Dibujamos la recta 2x + y = 100
20
20 40 60 80
40
60
80
100
Y
X
Elegimos el semiplano que
cumple la desigualdad: el
punto (0, 0) la cumple
(2·0 + 0 ≤ 100),
así que tomamos el
semiplano que lo contiene.
Dibujar la región factible
Puesto que el PPL de Gepetto tiene dos variables, se puede resolver
gráficamente. La región factible es el conjunto de todos los puntos
que satisfacen las restricciones:
2 x + y ≤ 100 (restricción de acabado)
x + y ≤ 80 (restricción de carpintería)
x ≤ 40 (restricción de demanda)
x ≥ 0 (restricción de signo)
y ≥ 0 (restricción de signo)
Vamos a dibujar la región factible que satisface estas restricciones.
Y
X
20
20 40 60 80
40
60
80
100
2x + y = 100
Restricciones
2 x + y ≤ 100
x + y ≤ 80
x ≤ 40
x ≥ 0
y ≥ 0
Dibujar la región factible
Teniendo en
cuenta las
restricciones de
signo (x ≥ 0, y ≥ 0),
nos queda:
Y
X
20
20 40 60 80
40
60
80
100
x + y = 80
Restricciones
2 x + y ≤ 100
x + y ≤ 80
x ≤ 40
x ≥ 0
y ≥ 0
Dibujar la región factible
Y
X
20
20 40 60 80
40
60
80
100
x = 40
Restricciones
2 x + y ≤ 100
x + y ≤ 80
x ≤ 40
x ≥ 0
y ≥ 0
Dibujar la región factible
Y
X
20
20 40 60 80
40
60
80
100
2x + y = 100
x + y = 80
x = 40
La intersección
de todos estos
semiplanos
(restricciones)
nos da la región
factible
Dibujar la región factible
Región
Factible
Y
X
20
20 40 60 80
40
60
80
100
2x + y = 100
x + y = 80
x = 40
Región
Factible
La región factible (al
estar limitada por
rectas) es un polígono.
En esta caso, el
polígono ABCDE.
A
B
C
D
E
Como la solución
óptima está en alguno
de los vértices (A, B,
C, D o E) de la región
factible, calculamos
esos vértices.
Vértices de la región factible
Restricciones
2 x + y ≤ 100
x + y ≤ 80
x ≤ 40
x ≥ 0
y ≥ 0
Región
Factible
E(0, 80)
(20, 60)
C(40, 20)
B(40, 0)
A(0, 0)
Vértices de la región factible
Los vértices de la región
factible son intersecciones de
dos rectas. El punto D es la
intersección de las rectas
2x + y = 100
x + y = 80
La solución del sistema x = 20,
y = 60 nos da el punto D.
20
20 40 60 80
40
60
80
100
Y
X
D
B es solución de
x = 40
y = 0
2x + y = 100
x = 40
x + y = 80
C es solución de
x = 40
2x + y = 100
E es solución de
x + y = 80
x = 0
Y
X
20
20 40 60 80
40
60
80
100
Región
Factible
(0, 80)
(20, 60)
(40, 20)
(40, 0)
(0, 0)
Max z = 3x + 2y
z = 0 z = 100
z = 180
Para hallar la
solución óptima,
dibujamos las
rectas en las
cuales los puntos
tienen el mismo
valor de z.
La figura muestra
estas lineas para
z = 0, z = 100, y z
= 180
Resolución gráfica
Región
Factible
(0, 80)
(20, 60)
(40, 20)
(40, 0)
(0, 0)
Max z = 3x + 2y
z = 0 z = 100
z = 180
La última recta de
z que interseca
(toca) la región
factible indica la
solución óptima
para el PPL. Para
el problema de
Gepetto, esto
ocurre en el
punto D (x = 20, y
= 60, z = 180).
20
20 40 60 80
40
60
80
100
Y
X
Resolución gráfica
Región
Factible
(0, 80)
(20, 60)
(40, 20)
(40, 0)
(0, 0)
Max z = 3x + 2y
También podemos encontrar la
solución óptima calculando el
valor de z en los vértices de la
región factible.
Vértice z = 3x + 2y
(0, 0) z = 3·0+2·0 = 0
(40, 0) z = 3·40+2·0 = 120
(40, 20) z = 3·40+2·20 = 160
(20, 60) z = 3·20+2·60 = 180
(0, 80) z = 3·0+2·80 = 160
20
20 40 60 80
40
60
80
100
Y
X
La solución óptima es:
x = 20 muñecos
y = 60 trenes
z = 180 € de beneficio
Resolución analítica
Hemos identificado la región factible para
el problema de Gepetto y buscado la
solución óptima, la cual era el punto en la
región factible con el mayor valor posible
de z.
Recuerda que:
• La región factible en cualquier PPL
está limitada por segmentos (es un
polígono, acotado o no).
• La región factible de cualquier PPL
tiene solamente un número finito de
vértices.
• Cualquier PPL que tenga solución
óptima tiene un vértice que es óptimo.
Un problema de minimización
Dorian Auto fabrica y vende coches y
furgonetas.La empresa quiere emprender una
campaña publicitaria en TV y tiene que decidir
comprar los tiempos de anuncios en dos tipos
de programas: del corazón y fútbol.
• Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2
millones de hombres.
• Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres.
• Un anuncio en el programa de corazón cuesta 50.000 € y un anuncio del fútbol
cuesta 100.000 €.
• Dorian Auto quisiera que los anuncios sean vistos por por lo menos 30 millones de
mujeres y 24 millones de hombres.
Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de
programa para que el coste de la campaña publicitaria sea mínimo.
• Cada anuncio del programa del
corazón es visto por 6 millones de
mujeres y 2 millones de hombres.
• Cada partido de fútbol es visto por 3
millones de mujeres y 8 millones de
hombres.
• Un anuncio en el programa de
corazón cuesta 50.000 € y un anuncio
del fútbol cuesta 100.000 €.
• Dorian Auto quisiera que los
anuncios sean vistos por por lo menos
30 millones de mujeres y 24 millones
de hombres.
Dorian Auto quiere saber cuántos
anuncios debe contratar en cada tipo
de programa para que el coste de la
campaña publicitaria sea mínimo.
Corazón
(x)
Fútbol
(y)
mujeres 6 3 6x + 3y ≥ 30
hombres 2 8 2x + 8y ≥ 24
Coste
1.000€
50 100 50x +100y
Formulación del problema:
Variables de decisión: x = nº de anuncios en programa de
corazón
y = nº de anuncios en fútbol
Min z = 50x + 100y (función objetivo en 1.000 €)
s.a: 6x + 3y ≥ 30 (mujeres)
2x + 8y ≥ 24 (hombres)
x, y ≥ 0 (no negatividad)
Formulación del problema:
X
Y
2 4 6 8 10 12 14
14
12
10
8
6
4
2
Min z = 50 x + 100y
s.a. 6x + 3y ≥ 30
2x + 8y ≥ 24
x, y ≥ 0
6x + 3y = 30
2x + 8y = 24
Dibujamos la región factible.
X
Y
2 4 6 8 10 12 14
14
12
10
8
6
4
2
La región factible
no está acotada
Región
Factible
Calculamos los vértices de la región factible:
A
B
C
El vértice A es solución del
sistema
6x + 3y = 30
x = 0
Por tanto, A(0, 10)
El vértice B es solución de
6x + 3y = 30
2x + 8y = 24
Por tanto, B(4, 2)
El vértice C es solución de
2x + 8y = 24
y = 0
Por tanto, C(12, 0)
Región
Factible
Resolvemos por el método analítico
A(0, 10)
B(4, 2)
C(12, 0)
X
Y
2 4 6 8 10 12 14
14
12
10
8
6
4
2
Vértice z = 50x + 100y
A(0, 10)
z = 50·0 + 100·10 =
= 0+10000 = 10 000
B(4, 2)
z = 50·4 + 100·2 =
= 200+200 = 400
C(12, 0)
z = 50·12 + 100·0 =
= 6000+0 = 6 000
El coste mínimo se obtiene en B.
Solución:
x = 4 anuncios en pr. corazón
y = 2 anuncios en futbol
Coste z = 400 (mil €)
Evaluamos la función objetivo z en los vértices.
Región
Factible
Resolvemos por el método gráfico
A(0, 10)
B(4, 2)
C(12, 0)
X
Y
2 4 6 8 10 12 14
14
12
10
8
6
4
2
El coste mínimo
se obtiene en el
punto B.
Solución:
x = 4 anuncios en pr. corazón
y = 2 anuncios en futbol
Coste z = 400 (mil €)
Min z = 50 x + 100y
s.a. 6x + 3y ≥ 30
2x + 8y ≥ 24
x, y ≥ 0
Z = 600
Z = 400
Número de Soluciones de un PPL
• Algunos PPL tienen un número infinito de
soluciones óptimas (alternativas o múltiples
soluciones óptimas).
• Algunos PPL no tienen soluciones factibles (no
tienen región factible).
• Algunos PPL son no acotados: Existen puntos en
la región factible con valores de z arbitrariamente
grandes (en un problema de maximización).
Los dos ejemplos anteriores, Gepetto y Dorian Auto,
tienen, cada uno, una única solución óptima.
No en todos los PPL ocurre esto. Se pueden dar
también las siguientes posibilidades:
Veamos un ejemplo de cada caso.
Número infinito de soluciones óptimas
max z = 3x + 2y
s.a:
Cualquier punto (solución)
situado en el segmento AB
puede ser una solución óptima
de z =120.
Consideremos el siguiente
problema:
3x + 2y ≤ 120
x + y ≤ 50
x , y ≥ 0
10
10 20 30 40
20
30
40
50
50
60
Y
X
z = 60
z = 100
z = 120
A
B
C
Región
Factible
Sin soluciones factibles
s.a:
max z = 3x1 + 2x2
No existe región factible
Consideremos el siguiente
problema:
3x + 2y ≤ 120
x + y ≤ 50
x ≥ 30
y ≥ 30
x , y ≥ 0
10
10 20 30 40
20
30
40
50
50
60
Y
X
No existe
Región Factible
y ≥ 30
x ≥ 30
x + y ≤ 50
3x + 2y ≤ 120
PPL no acotado
max z = 2x – y
s.a: x – y ≤ 1
2x + y ≥ 6
x, y ≥ 0
La región factible es no
acotada. Se muestran en el
gráfico las rectas de nivel
para z = 4 y z = 6. Pero
podemos desplazar las
rectas de nivel hacia la
derecha indefinidamente sin
abandonar la región factible.
Por tanto, el valor de z
puede crecer
indefinidamente.
1
1 2 3 4
2
3
4
5
5
6
Y
X
z = 4
z = 6
Región Factible

Más contenido relacionado

PDF
ORG FUERZA DE VENTAS.pdf
PDF
Promociones en el canal de distribucion parte i
PPT
Programación lineal
PPTX
CAPITULO 6 ESTRATEGIA OCEANO AZUL
PPT
The marketing mix
DOCX
Ensayo de mercadotecnia revizado
PPTX
Ligie presentacion
PPTX
El ciclo de vida del producto
ORG FUERZA DE VENTAS.pdf
Promociones en el canal de distribucion parte i
Programación lineal
CAPITULO 6 ESTRATEGIA OCEANO AZUL
The marketing mix
Ensayo de mercadotecnia revizado
Ligie presentacion
El ciclo de vida del producto

La actualidad más candente (10)

PPSX
Diseno publicitario-estrategias del mensaje
PPT
programacion lineal
PPT
Captacion de recursos mediante patrocinio y mecenazgo. Curso de gestión de en...
PPT
Presentación absolut
PPTX
Caso Pablosky: El Plan de Marketing Internacional
PPTX
MERCADO DE REVENTA
PPTX
Aceite de oliva en perú
PDF
Investigación de Mercados - Caso L'Oréal
PPTX
Modalidad de los Negocios Internacionales
PPT
Capítulo 2. Mercado de referencia, segmentación y posicionamiento estratégico...
Diseno publicitario-estrategias del mensaje
programacion lineal
Captacion de recursos mediante patrocinio y mecenazgo. Curso de gestión de en...
Presentación absolut
Caso Pablosky: El Plan de Marketing Internacional
MERCADO DE REVENTA
Aceite de oliva en perú
Investigación de Mercados - Caso L'Oréal
Modalidad de los Negocios Internacionales
Capítulo 2. Mercado de referencia, segmentación y posicionamiento estratégico...
Publicidad

Similar a Programacion lineal (20)

PPT
Programacion Lineal
PPT
Programacion lineal 2
PPT
Programacion lineal
PPT
Programacion lineal
PPT
Programacion lineal 2
PPT
SESION CLASE 2 IO - PROG LINEAL_METODO GRAFICO caso maxim.ppt
PPT
ejemplo 1 a mano de GEPPETTO CON PPT.ppt
PPT
Ppl clase01
PDF
Programacion lineal 2014
PPT
presentacion para la clase.ppt
PDF
PL - METODO GRAFICO - TIPOS.pdf
PPT
Uai io-pl bitmap (1)
PPT
Uai io-pl bitmap
PDF
2 Programación Lineal investigacion operativa
PPTX
2 modelos de programación lineal
PDF
Introduccion a la Programación Lineal inv
PDF
Programación Lineal.pdf si si ya lo se m
PDF
Programación Lineal.pdfjsjwjwjwnnwnwjwjjwjwjwj
PPTX
Programacion lineal
PDF
TALLER DE METODO GRAFICO.pdf
Programacion Lineal
Programacion lineal 2
Programacion lineal
Programacion lineal
Programacion lineal 2
SESION CLASE 2 IO - PROG LINEAL_METODO GRAFICO caso maxim.ppt
ejemplo 1 a mano de GEPPETTO CON PPT.ppt
Ppl clase01
Programacion lineal 2014
presentacion para la clase.ppt
PL - METODO GRAFICO - TIPOS.pdf
Uai io-pl bitmap (1)
Uai io-pl bitmap
2 Programación Lineal investigacion operativa
2 modelos de programación lineal
Introduccion a la Programación Lineal inv
Programación Lineal.pdf si si ya lo se m
Programación Lineal.pdfjsjwjwjwnnwnwjwjjwjwjwj
Programacion lineal
TALLER DE METODO GRAFICO.pdf
Publicidad

Más de Ing_Yarelis_Vargas (16)

PPTX
Programacionnolineal
PPTX
Programación no lineal
PPTX
Programacion no numerica2
PPT
Ley del ejercicio de la ingenieria
PDF
Introduccion a la auditoria informatica
PPTX
mapa mental
PPTX
JOEL RODRIGUEZ
PPTX
EUDO HERNANDEZ
PPTX
Fernando Yepez
PPTX
Calidad de la informacion y su importancia en la auditoria
PPTX
Mapa MentalPresentación1
PPT
Logica difusa
PPTX
Logica difusa
PPTX
Ingnieria de sistema, Logica Difusa
PPTX
Sistemas operativos
Programacionnolineal
Programación no lineal
Programacion no numerica2
Ley del ejercicio de la ingenieria
Introduccion a la auditoria informatica
mapa mental
JOEL RODRIGUEZ
EUDO HERNANDEZ
Fernando Yepez
Calidad de la informacion y su importancia en la auditoria
Mapa MentalPresentación1
Logica difusa
Logica difusa
Ingnieria de sistema, Logica Difusa
Sistemas operativos

Último (20)

PDF
biología es un libro sobre casi todo el tema de biología
PDF
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
DOCX
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
TOMO II - LITERATURA.pd plusenmas ultras
PDF
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
PPTX
Presentación de la Cetoacidosis diabetica.pptx
PDF
Punto Critico - Brian Tracy Ccesa007.pdf
DOCX
PLANES DE área ciencias naturales y aplicadas
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
PDF
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
DOCX
PROYECTO DE APRENDIZAJE para la semana de fiestas patrias
biología es un libro sobre casi todo el tema de biología
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
Híper Mega Repaso Histológico Bloque 3.pdf
TOMO II - LITERATURA.pd plusenmas ultras
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
Presentación de la Cetoacidosis diabetica.pptx
Punto Critico - Brian Tracy Ccesa007.pdf
PLANES DE área ciencias naturales y aplicadas
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
PLAN DE CASTELLANO 2021 actualizado a la normativa
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
PROYECTO DE APRENDIZAJE para la semana de fiestas patrias

Programacion lineal

  • 1. Introducción a la Programación Lineal
  • 2. Cada muñeco: • Produce un beneficio neto de 3 €. • Requiere 2 horas de trabajo de acabado. • Requiere 1 hora de trabajo de carpinteria. Cada tren: • Produce un beneficio neto de 2 €. • Requiere 1 hora de trabajo de acabado. • Requiere 1 hora trabajo de carpinteria. Ejemplo Gepetto S.L., manufactura muñecos y trenes de madera. Cada semana Gepetto puede disponer de: • Todo el material que necesite. • Solamente 100 horas de acabado. • Solamente 80 horas de carpinteria. También: • La demanda de trenes puede ser cualquiera (sin límite). • La demanda de muñecos es como mucho 40. Gepetto quiere maximizar sus beneficios. ¿Cuántos muñecos y cuántos trenes debe fabricar?
  • 3. Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Función Objetivo. En cualquier PPL, la decisión a tomar es como maximizar (normalmente el beneficio) o minimizar (el coste) de alguna función de las variables de decisión. Esta función a maximizar o minimizar se llama función objetivo. Max z = 3x + 2y El objetivo de Gepetto es elegir valores de x e y para maximizar 3x + 2y. Usaremos la variable z para denotar el valor de la función objetivo. La función objetivo de Gepetto es: Este problema es un ejemplo típico de un problema de programación lineal (PPL). Restricciones Son desigualdades que limitan los posibles valores de las variables de decisión. En este problema las restricciones vienen dadas por la disponibilidad de horas de acabado y carpintería y por la demanda de muñecos. También suele haber restricciones de signo o no negatividad: x ≥ 0 y ≥ 0
  • 4. Restricción 1: no más de 100 horas de tiempo de acabado pueden ser usadas. Restricción 2: no más de 80 horas de tiempo de carpinteria pueden ser usadas. Restricción 3: limitación de demanda, no deben fabricarse más de 40 muñecos. Estas tres restricciones pueden expresarse matematicamente por las siguientes desigualdades: Restricción 1: 2 x + y ≤ 100 Restricción 2: x + y ≤ 80 Restricción 3: x ≤ 40 Cuando x e y crecen, la función objetivo de Gepetto también crece. Pero no puede crecer indefinidamente porque, para Gepetto, los valores de x e y están limitados por las siguientes tres restricciones: Restricciones Además, tenemos las restricciones de signo: x ≥ 0 e y ≥ 0
  • 5. x ≥ 0 (restricción de signo) y ≥ 0 (restricción de signo) Muñeco Tren Beneficio 3 2 Acabado 2 1 ≤ 100 Carpintería 1 1 ≤ 80 Demanda ≤ 40 Formulación matemática del PPL Max z = 3x + 2y (función objetivo) 2 x + y ≤ 100 (acabado) x + y ≤ 80 (carpinteria) x ≤ 40 (demanda muñecos) Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana
  • 6. Max z = 3x + 2y (función objetivo) Sujeto a (s.a:) 2 x + y ≤ 100 (restricción de acabado) x + y ≤ 80 (restricción de carpinteria) x ≤ 40 (restricción de demanda de muñecos) x ≥ 0 (restricción de signo) y ≥ 0 (restricción de signo) Para el problema de Gepetto, combinando las restricciones de signo x ≥ 0 e y ≥ 0 con la función objetivo y las restricciones, tenemos el siguiente modelo de optimización: Formulación matemática del PPL
  • 7. Región factible x = 40 e y = 20 está en la región factible porque satisfacen todas las restricciones de Gepetto. Sin embargo, x = 15, y = 70 no está en la región factible porque este punto no satisface la restricción de carpinteria [15 + 70 > 80]. Restricciones de Gepetto 2x + y ≤ 100 (restricción finalizado) x + y ≤ 80 (restricción carpintería) x ≤ 40 (restricción demanda) x ≥ 0 (restricción signo) y ≥ 0 (restricción signo) La región factible de un PPL es el conjunto de todos los puntos que satisfacen todas las restricciones. Es la región del plano delimitada por el sistema de desigualdades que forman las restricciones.
  • 8. Solución óptima La mayoría de PPL tienen solamente una solución óptima. Sin embargo, algunos PPL no tienen solución óptima, y otros PPL tienen un número infinito de soluciones. Más adelante veremos que la solución del PPL de Gepetto es x = 20 e y = 60. Esta solución da un valor de la función objetivo de: z = 3x + 2y = 3·20 + 2·60 = 180 € Cuando decimos que x = 20 e y = 60 es la solución óptima, estamos diciendo que, en ningún punto en la región factible, la función objetivo tiene un valor (beneficio) superior a 180. Para un problema de maximización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor máximo. Para un problema de minimización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor mínimo. Se puede demostrar que la solución óptima de un PPL está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones)
  • 9. Representación Gráfica de las restricciones 2x + y = 100 Cualquier PPL con sólo dos variables puede resolverse gráficamente. Por ejemplo, para representar gráficamente la primera restricción, 2x + y ≤ 100 : Dibujamos la recta 2x + y = 100 20 20 40 60 80 40 60 80 100 Y X Elegimos el semiplano que cumple la desigualdad: el punto (0, 0) la cumple (2·0 + 0 ≤ 100), así que tomamos el semiplano que lo contiene.
  • 10. Dibujar la región factible Puesto que el PPL de Gepetto tiene dos variables, se puede resolver gráficamente. La región factible es el conjunto de todos los puntos que satisfacen las restricciones: 2 x + y ≤ 100 (restricción de acabado) x + y ≤ 80 (restricción de carpintería) x ≤ 40 (restricción de demanda) x ≥ 0 (restricción de signo) y ≥ 0 (restricción de signo) Vamos a dibujar la región factible que satisface estas restricciones.
  • 11. Y X 20 20 40 60 80 40 60 80 100 2x + y = 100 Restricciones 2 x + y ≤ 100 x + y ≤ 80 x ≤ 40 x ≥ 0 y ≥ 0 Dibujar la región factible Teniendo en cuenta las restricciones de signo (x ≥ 0, y ≥ 0), nos queda:
  • 12. Y X 20 20 40 60 80 40 60 80 100 x + y = 80 Restricciones 2 x + y ≤ 100 x + y ≤ 80 x ≤ 40 x ≥ 0 y ≥ 0 Dibujar la región factible
  • 13. Y X 20 20 40 60 80 40 60 80 100 x = 40 Restricciones 2 x + y ≤ 100 x + y ≤ 80 x ≤ 40 x ≥ 0 y ≥ 0 Dibujar la región factible
  • 14. Y X 20 20 40 60 80 40 60 80 100 2x + y = 100 x + y = 80 x = 40 La intersección de todos estos semiplanos (restricciones) nos da la región factible Dibujar la región factible Región Factible
  • 15. Y X 20 20 40 60 80 40 60 80 100 2x + y = 100 x + y = 80 x = 40 Región Factible La región factible (al estar limitada por rectas) es un polígono. En esta caso, el polígono ABCDE. A B C D E Como la solución óptima está en alguno de los vértices (A, B, C, D o E) de la región factible, calculamos esos vértices. Vértices de la región factible Restricciones 2 x + y ≤ 100 x + y ≤ 80 x ≤ 40 x ≥ 0 y ≥ 0
  • 16. Región Factible E(0, 80) (20, 60) C(40, 20) B(40, 0) A(0, 0) Vértices de la región factible Los vértices de la región factible son intersecciones de dos rectas. El punto D es la intersección de las rectas 2x + y = 100 x + y = 80 La solución del sistema x = 20, y = 60 nos da el punto D. 20 20 40 60 80 40 60 80 100 Y X D B es solución de x = 40 y = 0 2x + y = 100 x = 40 x + y = 80 C es solución de x = 40 2x + y = 100 E es solución de x + y = 80 x = 0
  • 17. Y X 20 20 40 60 80 40 60 80 100 Región Factible (0, 80) (20, 60) (40, 20) (40, 0) (0, 0) Max z = 3x + 2y z = 0 z = 100 z = 180 Para hallar la solución óptima, dibujamos las rectas en las cuales los puntos tienen el mismo valor de z. La figura muestra estas lineas para z = 0, z = 100, y z = 180 Resolución gráfica
  • 18. Región Factible (0, 80) (20, 60) (40, 20) (40, 0) (0, 0) Max z = 3x + 2y z = 0 z = 100 z = 180 La última recta de z que interseca (toca) la región factible indica la solución óptima para el PPL. Para el problema de Gepetto, esto ocurre en el punto D (x = 20, y = 60, z = 180). 20 20 40 60 80 40 60 80 100 Y X Resolución gráfica
  • 19. Región Factible (0, 80) (20, 60) (40, 20) (40, 0) (0, 0) Max z = 3x + 2y También podemos encontrar la solución óptima calculando el valor de z en los vértices de la región factible. Vértice z = 3x + 2y (0, 0) z = 3·0+2·0 = 0 (40, 0) z = 3·40+2·0 = 120 (40, 20) z = 3·40+2·20 = 160 (20, 60) z = 3·20+2·60 = 180 (0, 80) z = 3·0+2·80 = 160 20 20 40 60 80 40 60 80 100 Y X La solución óptima es: x = 20 muñecos y = 60 trenes z = 180 € de beneficio Resolución analítica
  • 20. Hemos identificado la región factible para el problema de Gepetto y buscado la solución óptima, la cual era el punto en la región factible con el mayor valor posible de z.
  • 21. Recuerda que: • La región factible en cualquier PPL está limitada por segmentos (es un polígono, acotado o no). • La región factible de cualquier PPL tiene solamente un número finito de vértices. • Cualquier PPL que tenga solución óptima tiene un vértice que es óptimo.
  • 22. Un problema de minimización Dorian Auto fabrica y vende coches y furgonetas.La empresa quiere emprender una campaña publicitaria en TV y tiene que decidir comprar los tiempos de anuncios en dos tipos de programas: del corazón y fútbol. • Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. • Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. • Un anuncio en el programa de corazón cuesta 50.000 € y un anuncio del fútbol cuesta 100.000 €. • Dorian Auto quisiera que los anuncios sean vistos por por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo.
  • 23. • Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. • Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. • Un anuncio en el programa de corazón cuesta 50.000 € y un anuncio del fútbol cuesta 100.000 €. • Dorian Auto quisiera que los anuncios sean vistos por por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo. Corazón (x) Fútbol (y) mujeres 6 3 6x + 3y ≥ 30 hombres 2 8 2x + 8y ≥ 24 Coste 1.000€ 50 100 50x +100y Formulación del problema:
  • 24. Variables de decisión: x = nº de anuncios en programa de corazón y = nº de anuncios en fútbol Min z = 50x + 100y (función objetivo en 1.000 €) s.a: 6x + 3y ≥ 30 (mujeres) 2x + 8y ≥ 24 (hombres) x, y ≥ 0 (no negatividad) Formulación del problema:
  • 25. X Y 2 4 6 8 10 12 14 14 12 10 8 6 4 2 Min z = 50 x + 100y s.a. 6x + 3y ≥ 30 2x + 8y ≥ 24 x, y ≥ 0 6x + 3y = 30 2x + 8y = 24 Dibujamos la región factible.
  • 26. X Y 2 4 6 8 10 12 14 14 12 10 8 6 4 2 La región factible no está acotada Región Factible Calculamos los vértices de la región factible: A B C El vértice A es solución del sistema 6x + 3y = 30 x = 0 Por tanto, A(0, 10) El vértice B es solución de 6x + 3y = 30 2x + 8y = 24 Por tanto, B(4, 2) El vértice C es solución de 2x + 8y = 24 y = 0 Por tanto, C(12, 0)
  • 27. Región Factible Resolvemos por el método analítico A(0, 10) B(4, 2) C(12, 0) X Y 2 4 6 8 10 12 14 14 12 10 8 6 4 2 Vértice z = 50x + 100y A(0, 10) z = 50·0 + 100·10 = = 0+10000 = 10 000 B(4, 2) z = 50·4 + 100·2 = = 200+200 = 400 C(12, 0) z = 50·12 + 100·0 = = 6000+0 = 6 000 El coste mínimo se obtiene en B. Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = 400 (mil €) Evaluamos la función objetivo z en los vértices.
  • 28. Región Factible Resolvemos por el método gráfico A(0, 10) B(4, 2) C(12, 0) X Y 2 4 6 8 10 12 14 14 12 10 8 6 4 2 El coste mínimo se obtiene en el punto B. Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = 400 (mil €) Min z = 50 x + 100y s.a. 6x + 3y ≥ 30 2x + 8y ≥ 24 x, y ≥ 0 Z = 600 Z = 400
  • 29. Número de Soluciones de un PPL • Algunos PPL tienen un número infinito de soluciones óptimas (alternativas o múltiples soluciones óptimas). • Algunos PPL no tienen soluciones factibles (no tienen región factible). • Algunos PPL son no acotados: Existen puntos en la región factible con valores de z arbitrariamente grandes (en un problema de maximización). Los dos ejemplos anteriores, Gepetto y Dorian Auto, tienen, cada uno, una única solución óptima. No en todos los PPL ocurre esto. Se pueden dar también las siguientes posibilidades: Veamos un ejemplo de cada caso.
  • 30. Número infinito de soluciones óptimas max z = 3x + 2y s.a: Cualquier punto (solución) situado en el segmento AB puede ser una solución óptima de z =120. Consideremos el siguiente problema: 3x + 2y ≤ 120 x + y ≤ 50 x , y ≥ 0 10 10 20 30 40 20 30 40 50 50 60 Y X z = 60 z = 100 z = 120 A B C Región Factible
  • 31. Sin soluciones factibles s.a: max z = 3x1 + 2x2 No existe región factible Consideremos el siguiente problema: 3x + 2y ≤ 120 x + y ≤ 50 x ≥ 30 y ≥ 30 x , y ≥ 0 10 10 20 30 40 20 30 40 50 50 60 Y X No existe Región Factible y ≥ 30 x ≥ 30 x + y ≤ 50 3x + 2y ≤ 120
  • 32. PPL no acotado max z = 2x – y s.a: x – y ≤ 1 2x + y ≥ 6 x, y ≥ 0 La región factible es no acotada. Se muestran en el gráfico las rectas de nivel para z = 4 y z = 6. Pero podemos desplazar las rectas de nivel hacia la derecha indefinidamente sin abandonar la región factible. Por tanto, el valor de z puede crecer indefinidamente. 1 1 2 3 4 2 3 4 5 5 6 Y X z = 4 z = 6 Región Factible