SlideShare uma empresa Scribd logo
Matemática
              Fascículo 03
Álvaro Zimmermann Aranha
Índice

Progressão Aritmética e Geométrica

Resumo Teórico .................................................................................................................................1
Exercícios ...........................................................................................................................................3
Dicas .................................................................................................................................................4
Resoluções ........................................................................................................................................5
Progressão Aritmética e Geométrica

Resumo teórico

Progressão Aritmética (P.A.)
Definição

Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.A. se um termo qualquer
(an), a partir do segundo (a2 ) for obtido pela soma do termo imediatamente anterior (an–1) com um
valor constante (r) denominado razão da P.A.; ou seja, numa P.A.:

an = an–1+r           para          n Î IN / n ³ 2

Exemplo: (1,3,5,7,9,....)           seqüência dos números ímpares positivos é uma P.A. de razão r = 2 e
                                    primeiro termo a1 = 1
Conseqüências:
1. A diferença entre dois termos consecutivos é constante e igual à razão da P.A., ou seja:

  a4 – a3 = a3 – a2 = an – an–1 = r

2. Um termo qualquer, a partir do segundo, é a média aritmética dos termos que lhe são
   eqüidistantes, ou seja:

          a1 + a3         a + a 13        a n–p + a n+ p
   a2 =           ; a 10 = 7       ; an =
             2               2                  2

Fórmula do Termo Geral da P.A. (an)

Numa P.A. de razão r e primeiro termo a1 , podemos obter um termo qualquer an através da seguinte
relação:

 an = a1 + (n – 1).r         para        n Î IN / n ³ 1

Exemplo: para encontrarmos o 10º termo fazemos n = 10, logo: a10 = a1 + 9.r
Conseqüência:
1. Para obtermos um termo qualquer an, a partir de um termo de ordem p (ap) devemos fazer:

    an = ap + (n – p).r

  Exemplo: a10 = a7 + 3r ou a10 = a4 + 6r, etc...




                                                                                                          1
Soma dos Termos de uma P.A.

A soma dos n primeiros termos de uma P.A. pode ser obtida pela seguinte relação:

     (a 1 + a n ) × n
S=
           2

onde a1 é o primeiro termo,
an é o último termo,
n é o n.o de termos somados e
S é o valor da soma dos termos.


Progressão Geométrica (P.G.)
Definição

Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.G. se um termo qualquer
(an), a partir do segundo (a2) for obtido pela multiplicação do termo imediatamente anterior (an–1) por
uma constante numérica (q) denominada razão da P.G.; ou seja, numa P.G.:

an = an–1 . q             para           n Î IN / n ³ 2

Exemplo: (2, 6, 18, 54, 162) é uma P.G. onde q=3

Conseqüências:
1. O quociente entre dois termos consecutivos é constante e é igual à razão (q) da P.G., ou ainda:

    a3 a2    a
       =   = n =q                           (para q ¹ 0)
    a 2 a 1 a n–1

2. Um termo qualquer, a partir do segundo (a2) é a média geométrica dos termos que lhe são
   eqüidistantes, ou:

    (a 3 ) 2 = a 2 × a 4 ou (a n ) 2 = a n –p × a n+ p


Fórmula do Termo Geral da P.G. (an)

Numa P.G. de primeiro termo a1 e razão q, um termo qualquer pode ser obtido através da seguinte
relação:

an = a1 . qn–1          para        n Î IN / n ³ 1

Exemplo: para obtermos o quinto termo fazemos n=5, daí: a5=a1.q4

Conseqüência: Para obtermos um termo qualquer (an) a partir de um termo de ordem p devemos usar
a seguinte relação:

an = ap . qn–p

Exemplo: a10 = a7 . q3 ou a10=a6 . q4, etc...




2
Soma Finita de Termos de uma P.G.

   A soma dos n primeiros termos de uma P.G. é dada pela seguinte relação:

          a 1(qn – 1)
   S=
              q–1

   Soma Infinita de Termos de uma P.G. Convergente

   Quando a soma infinita converge, ou seja, na P.G. |q|< 1 , podemos obter o limite da soma fazendo

         a1
   S=
        1– q

   Produto dos n Primeiros Termos de uma PG.

   É dado pelas seguintes relações:
                  n(n–1)                            n
            n
   IP = a 1 × q     2      ou      IP = (a 1 × a n ) 2



   Exercícios

01. (FUV-83-Modificado) Calculando um dos ângulos de um triângulo retângulo, sabendo que os mesmos
    estão em P.G. obtemos:
   a. ( 2 – 1).90º         b. ( 3 – 1).45º           c. ( 5 – 1).45º   d. ( 7 – 1).90º   e. (2+ 2).45º


02. (FUV-85-Modificado) Os números x, x, log210x são, nesta ordem, os três primeiros termos de uma
    progressão geométrica. Calculando o valor de x obtemos:
        1                                                                   1                 1
   a.                      b. 2                      c. 5              d.                e.
        2                                                                   5                 3


03. (FUV-92-Modificado) Três números distintos formam uma P.A. crescente, cuja soma é três. Seus
    quadrados, mantendo a respectiva ordem, formam uma P.G.. Qual é a razão da P.A.?
                                                                                               2
   a. 1                    b. 2                      c. 2              d. 3              e.
                                                                                              2


04. Em uma progressão aritmética de termos positivos, os três primeiros termos são 1 – a, – a, 11- a .
    O quarto termo desta P.A. é:
   a. 2                    b. 3                      c. 4              d. 5              e. 6


05. A seqüência de números reais a, b, c, d forma, nessa ordem, uma progressão aritmética cuja soma dos
    termos é 110; a seqüência de números reais a, b, e, f forma, nessa ordem, uma progressão
    geométrica de razão 2. A soma d + f é igual a:
   a. 96                   b.102                     c. 120            d. 132            e. 142



                                                                                                         3
06. Se a soma dos termos da progressão geométrica dada por 0,3 : 0,03 : 0,003 : ... é igual ao termo
    médio de uma progressão aritmética de três termos, então a soma dos termos da progressão
    aritmética vale
         1                            2                                                     1
    a.                           b.                   c. 1            d. 2             e.
         3                            3                                                     2


07. Para todo n natural não nulo, sejam as sequências

    (3, 5, 7, 9, ..., an, ...)
    (3, 6, 9, 12, ..., bn, ...)
    (c1, c2, c3, ..., cn, ...)
    com cn = an + bn. Nessas condições, c20 é igual a
    a. 25                        b. 37                c. 101          d. 119           e. 149


    Dicas

01. Use a P.G. de 3 termos (x, xq, xq2)
    Num triângulo retângulo o maior ângulo mede 90º
    (faça x = 90º, acima, e note que q < 1)
    Faça a soma dos termos acima igual a 180º (soma dos ângulos internos num triângulo).


                                      a3 a2
02. Numa P.G. (a1, a2, a3):             =
                                      a2 a1

    Lembre-se das condições de existência para os valores de x


03. Use a P.A. de três termos (1– r, { , 1+ r )
                               x23 x x2    3
                                a1 a2     a3
                                                        a2       a2
    Pelo enunciado (a12; a22; a32) é P.G., então:        3
                                                             =    2
                                                        a2
                                                         2       a2
                                                                  1

    Se a P.A. é crescente, então r > 0
    Calcule a razão, fazendo r = a2 – a1, (por exemplo)


04. Dados três termos consecutivos de uma P.A., o termo do meio é igual à média aritmética dos outros
                                                  a +c
    dois, ou seja, se (a, b, c) é P.A., então b =      .
                                                    2


05. Numa PA qualquer an – an–1 = r, onde r é a razão da PA
                                  an
    Numa PG qualquer                   = q, onde q é a razão da PG
                                 a n–1




    4
06.
                                                                          a1
      1. A soma dos termos de uma P.G. infinita é dada por S =                , –1 < q < 1
                                                                         1– q
      2. Para três termos em P.A. vale a propriedade: “o termo do meio é a média aritmética dos outros
         dois”.


07. A primeira seqüência dada é uma P.A. de razão 2 e a segunda seqüência dada é uma P.A. de razão 3.
      O termo geral de uma P.A. é dado pela fórmula an = a1 + (n – 1)r.


      Resoluções

01. Alternativa c.
      Usando a P.G. de 3 termos: (x, xq, xq2 ) faremos x = 90º; então as medidas serão (90º, 90ºq, 90ºq2)
      onde 0 < q < 1, pois o maior ângulo no triângulo retângulo mede 90º.
      Mas: 90º + 90ºq + 90ºq2 = 180º (Soma dos ângulos no triângulo)
                –1 + 5                    –1– 5
      daí q =                   ou q =          (não convém)
                   2                        2
      Logo, os ângulos medirão:
      (90º; 45º ( 5 – 1 45º(3 – 5)
                       ),


02. Alternativa d.
      Se (x, x, log210x) é P.G., então:
      log2 10x           x
                    =      Þ x × log2 10x = ( x) 2
            x           x
      Þ x × log2 10x = x , mas             x = x pois x > 0 (condição de existência)
      Þ x × log2 10x = x
                                                  1
      Þ log2 10x = 1 Þ 10x = 2 Þ x =
                                                  5


03. Alternativa c.
      Usando a P.A. de três termos (x – r, x, x + r) teremos:
      x – r + x + x + r = 3 (enunciado),
      onde x = 1
      Logo, a P.A. fica (1– r, 1, 1 + r)
      mas ((1– r) 2 ,1,(1 + r) 2 ) é P.G. (enunciado)

                1           (1+ r) 2
      daí               =            Þ (1+ r) 2 × (1– r) 2 = 1
            (1– r) 2           1




                                                                                                            5
ì r = 0,ou
            2 2         ï
   Þ (1 – r ) = 1, logo ír = 2,ou
                        ïr = – 2
                        î
    então r = 2 ou r = – 2


04. Alternativa b.
    Como (1 – a, – a, 11- a) é uma P.A., temos:
              (1 - a) + 11 - a
        –a=                    Þ
                       2
    Þ – 2a = 1 – a + 11- a Þ – a – 1 = 11- a (*)
    Elevando ao quadrado os dois membros, temos:
                                            ìa' = 2
    a2 + 2a + 1 = 11 – a Þ a2 + 3a – 10 = 0 í
                                            îa' ' = -5
    Como elevamos ao quadrado, temos que fazer a verificação dos valores encontrados na equação (*).
    Para a = 2, temos: – 2 – 1 = 11- 2 (falso)
    Para a = – 5, temos: + 5 – 1 = 11 + 5 (verdadeiro)
    Como a = – 5, a P.A. fica (6, 5, 4). O quarto termo será 3.


05. Alternativa d.
    Seja (a, b, c, d) uma PA de razão r Þ b – a = r (I)
                                               b
    Seja (a, b, e, f) uma PG de razão q = 2 Þ = 2 Þ b = 2a (II)
                                               a
    Substituindo II em I, temos 2a – a = r Þ r = a
    Assim sendo a PA poderá ser escrita como (a, 2a, 3a, 4a), cuja soma dos termos é igual a 110.
    a + 2a + 3a + 4a = 110 Þ 10a = 110 Þ a = 11
    A PG fica com primeiro termo a = 11 e razão q = 2 e pode ser escrita como
    (11, 22, 44, 88). Assim d + f = 44 + 88 = 132
     a b d f


06. Alternativa c.
                                                                                  a1   0,3     0,3 1
    A soma dos termos da PG infinita (0,3 ; 0,03 ; 0,003 ; ...) é dada por S =       =       =    =
                                                                                 1– q 1 - 0,1 0,9 3
    Uma PA de três termos com termo médio x e razão r pode ser escrita como (x – r, x, x + r).
                   1               1   1 1
    Sabendo que x = , temos a PA æ - r, , + r ö então a soma de seus termos vale
                                 ç            ÷
                   3             è3    3 3 ø
    1     1 1      3
      -r+ + +r = =1
    3     3 3      3




    6
07. Alternativa c.
    A sequência (3, 5, 7, 9, ... an, ...) é uma PA de razão 2, então
    an = a1 + (n – 1) . r Þ an = 3 + (n – 1) . 2
    A sequência (3, 6, 9, 12, ... bn, ...) é uma PA de razão 3, então
    bn = b1 + (n – 1) . r Þ bn = 3 + (n – 1) . 3
    Como cn = an + bn
    c20 = a20 + b20
    c20 = [3 + (20 – 1) . 2] + [3 + (20 – 1) . 3]
    c20 = 101




                                                                        7

Mais conteúdo relacionado

PDF
Mat progressao aritmetica ( pa ) i
DOCX
P.a. e p.g.
PDF
Sequências - pa e pg - definições e exercícios - AP 15
PDF
PPS
Progressão aritmética
PDF
04 pa e pg
PPTX
P.a e p.g.
PDF
PA e PG 2015 termo geral e soma
Mat progressao aritmetica ( pa ) i
P.a. e p.g.
Sequências - pa e pg - definições e exercícios - AP 15
Progressão aritmética
04 pa e pg
P.a e p.g.
PA e PG 2015 termo geral e soma

Mais procurados (20)

PPT
Pa E Pg Feito Por Min
PDF
Questões de progressão geometrica 01
PPT
P.a. e p.g.
PPT
Progressão geométrica
DOC
Progressão aritmética
PPS
Aula progressão geométrica slides.
PDF
Mat progressoes geometricas p g
ODP
Matemática - PA e PG
PPT
Progressao Aritmetica (PA)
PPT
Progressões Aritméticas NTEM
PDF
Progressão geométrica
PPT
Progressões
PDF
Intro teoria dos numerros cap3
PDF
Transformações geométricas no plano
PDF
Penge2 mat2
PPT
Sequências e progressões
PPSX
Progressão geometrica
Pa E Pg Feito Por Min
Questões de progressão geometrica 01
P.a. e p.g.
Progressão geométrica
Progressão aritmética
Aula progressão geométrica slides.
Mat progressoes geometricas p g
Matemática - PA e PG
Progressao Aritmetica (PA)
Progressões Aritméticas NTEM
Progressão geométrica
Progressões
Intro teoria dos numerros cap3
Transformações geométricas no plano
Penge2 mat2
Sequências e progressões
Progressão geometrica
Anúncio

Destaque (20)

PDF
Ap mat em questoes gabarito 001 resolvidos
DOC
Pg Lista
PDF
Mat progressao aritmetica ( pa ) ii
PDF
Mat progressao aritmetica ( pa ) iii
PDF
7216809 testes-anpad-jun-e-set-20041
DOC
Lista de exercícios de Matemática Vestibular
PDF
Exercicios e problemas conjuntos final
PDF
Ap matemática m1
PDF
Conjuntos numéricos gabarito
PDF
Exercício 01 PA - Resolvido
PDF
Exercicios 7 ano
PDF
Exercícios: noções de conjuntos e conjuntos numéricos
PDF
Resolução exercicios 01 Trigonometria
PDF
Exercícios teoria dos conjuntos
PDF
Trigonometria exercicios resolvidos
PPSX
8º ano - 1 - Quiz - Conjuntos Numéricos
DOCX
Exercícios 8º ano - conjunto dos números irracionais e racionais
PDF
I lista de exercícios de matemática 7ano - gabarito
PDF
Matematica questões resolvidas i
PDF
Banco de-atividades-de-matematica-7c2ba-ano
Ap mat em questoes gabarito 001 resolvidos
Pg Lista
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iii
7216809 testes-anpad-jun-e-set-20041
Lista de exercícios de Matemática Vestibular
Exercicios e problemas conjuntos final
Ap matemática m1
Conjuntos numéricos gabarito
Exercício 01 PA - Resolvido
Exercicios 7 ano
Exercícios: noções de conjuntos e conjuntos numéricos
Resolução exercicios 01 Trigonometria
Exercícios teoria dos conjuntos
Trigonometria exercicios resolvidos
8º ano - 1 - Quiz - Conjuntos Numéricos
Exercícios 8º ano - conjunto dos números irracionais e racionais
I lista de exercícios de matemática 7ano - gabarito
Matematica questões resolvidas i
Banco de-atividades-de-matematica-7c2ba-ano
Anúncio

Semelhante a Mat sequencias e progressoes 005 (20)

PDF
Progressões
PDF
08 - Progressões
PPTX
PDF PA e PG.pptx
PPTX
Matematica_Segunda_Serie_EM_PA_PG25.pptx
PDF
C users_rey_desktop_blog_quest
PPT
www.TutoresNaWebCom.Br - Matemática - Progressão Aritimética
PPT
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
PPT
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
PPT
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
PPSX
Matemática - PA e PG
PDF
Aula 02 sequências
DOC
Progressões geométricas
PDF
Mat progressoes ( pg) ii
PDF
Fórmulas matemáticas
DOC
Apostila Matematica Col Fundamental 2 8
DOC
Apostila Matematica Col Fundamental 2 8
PDF
Progressão.pdf
Progressões
08 - Progressões
PDF PA e PG.pptx
Matematica_Segunda_Serie_EM_PA_PG25.pptx
C users_rey_desktop_blog_quest
www.TutoresNaWebCom.Br - Matemática - Progressão Aritimética
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
www.AulasDeMatematicApoio.com - Matemática - Progressão Aritmética
Matemática - PA e PG
Aula 02 sequências
Progressões geométricas
Mat progressoes ( pg) ii
Fórmulas matemáticas
Apostila Matematica Col Fundamental 2 8
Apostila Matematica Col Fundamental 2 8
Progressão.pdf

Mais de trigono_metrico (20)

PDF
Pro cefet fasciculo 03 resolução comentada
PDF
Pro cefet fasciculo 04 resolução comentada
PDF
Ap geometria resolvidos
PDF
Ap matemática m2
PDF
Ap geometria plana resolvidos
PDF
Ap matemática m3
PDF
Dfato vestibular fasciculo 3
PDF
Apostila 3 funções
PDF
Ap geometria analitica resolvidos
PDF
Dfato vestibular fasciculo 5
PDF
Apostila 1 calculo i
PDF
Ap trigonometria numeros complexo
PDF
Apostila 3 calculo i integrais
PDF
Dfato vestibular fasciculo 2
PDF
Apostila trigonometria
PDF
Dfato vestibular fasciculo 4
PDF
Apostila 2 matematica basica
PDF
Apostila 2 calculo i derivadas
PDF
Mat exercicios resolvidos 011
PDF
Apostila 1 ec
Pro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 04 resolução comentada
Ap geometria resolvidos
Ap matemática m2
Ap geometria plana resolvidos
Ap matemática m3
Dfato vestibular fasciculo 3
Apostila 3 funções
Ap geometria analitica resolvidos
Dfato vestibular fasciculo 5
Apostila 1 calculo i
Ap trigonometria numeros complexo
Apostila 3 calculo i integrais
Dfato vestibular fasciculo 2
Apostila trigonometria
Dfato vestibular fasciculo 4
Apostila 2 matematica basica
Apostila 2 calculo i derivadas
Mat exercicios resolvidos 011
Apostila 1 ec

Último (20)

PPTX
Aula 13 - Tópico Frasal - Argumentação.pptx
PDF
Fiqh da adoração (islamismo)
PDF
Ebook - Matemática_Ensino_Médio_Saeb_V1.pdf
PDF
[Slides] A Literatura no ENEM 2017 (1).pdf
PDF
Organizador Curricular da Educação em Tempo Integral.pdf
PDF
A relação entre funções executivas e desempenho acadêmico em crianças com Tra...
PPTX
INDÚSTRIA_ Histórico da industrialização.pptx
PPTX
Lição 8 EBD.pptxtudopossonaquelequemimfortalece
PPTX
norma regulamentadora numero vinte nr 20
PPTX
Ocupação e transformação dos territórios.pptx
PPTX
O Romantismo e a identidade brasileira..
PPTX
biossegurança e segurança no trabalho (6).pptx
PPTX
NR11 - Treinamento Direcao Defensiva - 2023.pptx
PPTX
ACIDOS NUCLEICOS - REPLICAÇÃO DO DNA - E.M.
PDF
Um dia na casa do Mensageiro (que a paz e benção de Deus estejam com ele)
PPTX
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
PDF
A provisão de jojuador (ramadã) islamismo
PDF
RELATÓRIO DE ESTÁGIO SURVISIONADO: NEUROPSICOPEDAGOGIA INSTITUCIONAL, CLÍNIC...
PPTX
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.
PDF
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...
Aula 13 - Tópico Frasal - Argumentação.pptx
Fiqh da adoração (islamismo)
Ebook - Matemática_Ensino_Médio_Saeb_V1.pdf
[Slides] A Literatura no ENEM 2017 (1).pdf
Organizador Curricular da Educação em Tempo Integral.pdf
A relação entre funções executivas e desempenho acadêmico em crianças com Tra...
INDÚSTRIA_ Histórico da industrialização.pptx
Lição 8 EBD.pptxtudopossonaquelequemimfortalece
norma regulamentadora numero vinte nr 20
Ocupação e transformação dos territórios.pptx
O Romantismo e a identidade brasileira..
biossegurança e segurança no trabalho (6).pptx
NR11 - Treinamento Direcao Defensiva - 2023.pptx
ACIDOS NUCLEICOS - REPLICAÇÃO DO DNA - E.M.
Um dia na casa do Mensageiro (que a paz e benção de Deus estejam com ele)
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
A provisão de jojuador (ramadã) islamismo
RELATÓRIO DE ESTÁGIO SURVISIONADO: NEUROPSICOPEDAGOGIA INSTITUCIONAL, CLÍNIC...
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...

Mat sequencias e progressoes 005

  • 1. Matemática Fascículo 03 Álvaro Zimmermann Aranha
  • 2. Índice Progressão Aritmética e Geométrica Resumo Teórico .................................................................................................................................1 Exercícios ...........................................................................................................................................3 Dicas .................................................................................................................................................4 Resoluções ........................................................................................................................................5
  • 3. Progressão Aritmética e Geométrica Resumo teórico Progressão Aritmética (P.A.) Definição Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.A. se um termo qualquer (an), a partir do segundo (a2 ) for obtido pela soma do termo imediatamente anterior (an–1) com um valor constante (r) denominado razão da P.A.; ou seja, numa P.A.: an = an–1+r para n Î IN / n ³ 2 Exemplo: (1,3,5,7,9,....) seqüência dos números ímpares positivos é uma P.A. de razão r = 2 e primeiro termo a1 = 1 Conseqüências: 1. A diferença entre dois termos consecutivos é constante e igual à razão da P.A., ou seja: a4 – a3 = a3 – a2 = an – an–1 = r 2. Um termo qualquer, a partir do segundo, é a média aritmética dos termos que lhe são eqüidistantes, ou seja: a1 + a3 a + a 13 a n–p + a n+ p a2 = ; a 10 = 7 ; an = 2 2 2 Fórmula do Termo Geral da P.A. (an) Numa P.A. de razão r e primeiro termo a1 , podemos obter um termo qualquer an através da seguinte relação: an = a1 + (n – 1).r para n Î IN / n ³ 1 Exemplo: para encontrarmos o 10º termo fazemos n = 10, logo: a10 = a1 + 9.r Conseqüência: 1. Para obtermos um termo qualquer an, a partir de um termo de ordem p (ap) devemos fazer: an = ap + (n – p).r Exemplo: a10 = a7 + 3r ou a10 = a4 + 6r, etc... 1
  • 4. Soma dos Termos de uma P.A. A soma dos n primeiros termos de uma P.A. pode ser obtida pela seguinte relação: (a 1 + a n ) × n S= 2 onde a1 é o primeiro termo, an é o último termo, n é o n.o de termos somados e S é o valor da soma dos termos. Progressão Geométrica (P.G.) Definição Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.G. se um termo qualquer (an), a partir do segundo (a2) for obtido pela multiplicação do termo imediatamente anterior (an–1) por uma constante numérica (q) denominada razão da P.G.; ou seja, numa P.G.: an = an–1 . q para n Î IN / n ³ 2 Exemplo: (2, 6, 18, 54, 162) é uma P.G. onde q=3 Conseqüências: 1. O quociente entre dois termos consecutivos é constante e é igual à razão (q) da P.G., ou ainda: a3 a2 a = = n =q (para q ¹ 0) a 2 a 1 a n–1 2. Um termo qualquer, a partir do segundo (a2) é a média geométrica dos termos que lhe são eqüidistantes, ou: (a 3 ) 2 = a 2 × a 4 ou (a n ) 2 = a n –p × a n+ p Fórmula do Termo Geral da P.G. (an) Numa P.G. de primeiro termo a1 e razão q, um termo qualquer pode ser obtido através da seguinte relação: an = a1 . qn–1 para n Î IN / n ³ 1 Exemplo: para obtermos o quinto termo fazemos n=5, daí: a5=a1.q4 Conseqüência: Para obtermos um termo qualquer (an) a partir de um termo de ordem p devemos usar a seguinte relação: an = ap . qn–p Exemplo: a10 = a7 . q3 ou a10=a6 . q4, etc... 2
  • 5. Soma Finita de Termos de uma P.G. A soma dos n primeiros termos de uma P.G. é dada pela seguinte relação: a 1(qn – 1) S= q–1 Soma Infinita de Termos de uma P.G. Convergente Quando a soma infinita converge, ou seja, na P.G. |q|< 1 , podemos obter o limite da soma fazendo a1 S= 1– q Produto dos n Primeiros Termos de uma PG. É dado pelas seguintes relações: n(n–1) n n IP = a 1 × q 2 ou IP = (a 1 × a n ) 2 Exercícios 01. (FUV-83-Modificado) Calculando um dos ângulos de um triângulo retângulo, sabendo que os mesmos estão em P.G. obtemos: a. ( 2 – 1).90º b. ( 3 – 1).45º c. ( 5 – 1).45º d. ( 7 – 1).90º e. (2+ 2).45º 02. (FUV-85-Modificado) Os números x, x, log210x são, nesta ordem, os três primeiros termos de uma progressão geométrica. Calculando o valor de x obtemos: 1 1 1 a. b. 2 c. 5 d. e. 2 5 3 03. (FUV-92-Modificado) Três números distintos formam uma P.A. crescente, cuja soma é três. Seus quadrados, mantendo a respectiva ordem, formam uma P.G.. Qual é a razão da P.A.? 2 a. 1 b. 2 c. 2 d. 3 e. 2 04. Em uma progressão aritmética de termos positivos, os três primeiros termos são 1 – a, – a, 11- a . O quarto termo desta P.A. é: a. 2 b. 3 c. 4 d. 5 e. 6 05. A seqüência de números reais a, b, c, d forma, nessa ordem, uma progressão aritmética cuja soma dos termos é 110; a seqüência de números reais a, b, e, f forma, nessa ordem, uma progressão geométrica de razão 2. A soma d + f é igual a: a. 96 b.102 c. 120 d. 132 e. 142 3
  • 6. 06. Se a soma dos termos da progressão geométrica dada por 0,3 : 0,03 : 0,003 : ... é igual ao termo médio de uma progressão aritmética de três termos, então a soma dos termos da progressão aritmética vale 1 2 1 a. b. c. 1 d. 2 e. 3 3 2 07. Para todo n natural não nulo, sejam as sequências (3, 5, 7, 9, ..., an, ...) (3, 6, 9, 12, ..., bn, ...) (c1, c2, c3, ..., cn, ...) com cn = an + bn. Nessas condições, c20 é igual a a. 25 b. 37 c. 101 d. 119 e. 149 Dicas 01. Use a P.G. de 3 termos (x, xq, xq2) Num triângulo retângulo o maior ângulo mede 90º (faça x = 90º, acima, e note que q < 1) Faça a soma dos termos acima igual a 180º (soma dos ângulos internos num triângulo). a3 a2 02. Numa P.G. (a1, a2, a3): = a2 a1 Lembre-se das condições de existência para os valores de x 03. Use a P.A. de três termos (1– r, { , 1+ r ) x23 x x2 3 a1 a2 a3 a2 a2 Pelo enunciado (a12; a22; a32) é P.G., então: 3 = 2 a2 2 a2 1 Se a P.A. é crescente, então r > 0 Calcule a razão, fazendo r = a2 – a1, (por exemplo) 04. Dados três termos consecutivos de uma P.A., o termo do meio é igual à média aritmética dos outros a +c dois, ou seja, se (a, b, c) é P.A., então b = . 2 05. Numa PA qualquer an – an–1 = r, onde r é a razão da PA an Numa PG qualquer = q, onde q é a razão da PG a n–1 4
  • 7. 06. a1 1. A soma dos termos de uma P.G. infinita é dada por S = , –1 < q < 1 1– q 2. Para três termos em P.A. vale a propriedade: “o termo do meio é a média aritmética dos outros dois”. 07. A primeira seqüência dada é uma P.A. de razão 2 e a segunda seqüência dada é uma P.A. de razão 3. O termo geral de uma P.A. é dado pela fórmula an = a1 + (n – 1)r. Resoluções 01. Alternativa c. Usando a P.G. de 3 termos: (x, xq, xq2 ) faremos x = 90º; então as medidas serão (90º, 90ºq, 90ºq2) onde 0 < q < 1, pois o maior ângulo no triângulo retângulo mede 90º. Mas: 90º + 90ºq + 90ºq2 = 180º (Soma dos ângulos no triângulo) –1 + 5 –1– 5 daí q = ou q = (não convém) 2 2 Logo, os ângulos medirão: (90º; 45º ( 5 – 1 45º(3 – 5) ), 02. Alternativa d. Se (x, x, log210x) é P.G., então: log2 10x x = Þ x × log2 10x = ( x) 2 x x Þ x × log2 10x = x , mas x = x pois x > 0 (condição de existência) Þ x × log2 10x = x 1 Þ log2 10x = 1 Þ 10x = 2 Þ x = 5 03. Alternativa c. Usando a P.A. de três termos (x – r, x, x + r) teremos: x – r + x + x + r = 3 (enunciado), onde x = 1 Logo, a P.A. fica (1– r, 1, 1 + r) mas ((1– r) 2 ,1,(1 + r) 2 ) é P.G. (enunciado) 1 (1+ r) 2 daí = Þ (1+ r) 2 × (1– r) 2 = 1 (1– r) 2 1 5
  • 8. ì r = 0,ou 2 2 ï Þ (1 – r ) = 1, logo ír = 2,ou ïr = – 2 î então r = 2 ou r = – 2 04. Alternativa b. Como (1 – a, – a, 11- a) é uma P.A., temos: (1 - a) + 11 - a –a= Þ 2 Þ – 2a = 1 – a + 11- a Þ – a – 1 = 11- a (*) Elevando ao quadrado os dois membros, temos: ìa' = 2 a2 + 2a + 1 = 11 – a Þ a2 + 3a – 10 = 0 í îa' ' = -5 Como elevamos ao quadrado, temos que fazer a verificação dos valores encontrados na equação (*). Para a = 2, temos: – 2 – 1 = 11- 2 (falso) Para a = – 5, temos: + 5 – 1 = 11 + 5 (verdadeiro) Como a = – 5, a P.A. fica (6, 5, 4). O quarto termo será 3. 05. Alternativa d. Seja (a, b, c, d) uma PA de razão r Þ b – a = r (I) b Seja (a, b, e, f) uma PG de razão q = 2 Þ = 2 Þ b = 2a (II) a Substituindo II em I, temos 2a – a = r Þ r = a Assim sendo a PA poderá ser escrita como (a, 2a, 3a, 4a), cuja soma dos termos é igual a 110. a + 2a + 3a + 4a = 110 Þ 10a = 110 Þ a = 11 A PG fica com primeiro termo a = 11 e razão q = 2 e pode ser escrita como (11, 22, 44, 88). Assim d + f = 44 + 88 = 132 a b d f 06. Alternativa c. a1 0,3 0,3 1 A soma dos termos da PG infinita (0,3 ; 0,03 ; 0,003 ; ...) é dada por S = = = = 1– q 1 - 0,1 0,9 3 Uma PA de três termos com termo médio x e razão r pode ser escrita como (x – r, x, x + r). 1 1 1 1 Sabendo que x = , temos a PA æ - r, , + r ö então a soma de seus termos vale ç ÷ 3 è3 3 3 ø 1 1 1 3 -r+ + +r = =1 3 3 3 3 6
  • 9. 07. Alternativa c. A sequência (3, 5, 7, 9, ... an, ...) é uma PA de razão 2, então an = a1 + (n – 1) . r Þ an = 3 + (n – 1) . 2 A sequência (3, 6, 9, 12, ... bn, ...) é uma PA de razão 3, então bn = b1 + (n – 1) . r Þ bn = 3 + (n – 1) . 3 Como cn = an + bn c20 = a20 + b20 c20 = [3 + (20 – 1) . 2] + [3 + (20 – 1) . 3] c20 = 101 7