SlideShare a Scribd company logo
Relations & Functions
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                          x
                                                note: actually two functions 
              function                                                       
                                                y  x and y   x 
Domain and Range y  f  x 
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
          To find a domain, look for values x could not be.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
           To find a domain, look for values x could not be.
e.g.
       y             x  y2


                    x
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2


                       x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0                        domain: x  0 and x  2
Things to look for:
1. Fractions:
Things to look for:
1. Fractions: bottom of fraction  0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0                                 x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0
        x 1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0         7x  0
        x 1                x7
Things to look for:
1. Fractions: bottom of fraction  0
               1                                           1
e.g.  i  y                                ii  y 
               x                                         x2 1
           x0                                      x2 1  0
domain: all real x except x  0
                                                     x2  1
                                                      x  1
                                        domain: all real x except x  1
                4x    3
  iii  y        
               x 1 7  x

    x 1  0         7x  0
        x 1                x7
 domain: all real x except x  1 or 7
2. Root Signs:
2. Root Signs: you can’t find the square root of a negative number.
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
         4  x2  0
            x2  4
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0
          x2  4                            x  3
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0        5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
     domain: x  2
Range: All possible y values obtained by substituting in the domain
Range: All possible y values obtained by substituting in the domain
         “Range is the OUTPUT of the function/relation”
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y             x  y2


                    x
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2


                        x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y                     range: y  1 and y  3
Things to look for:
1. Maximum/Minimum values:
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x   2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2


           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0                       y  03
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x
              2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x2
                                        ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50                              range: y  0
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x2
                                              ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
                            range: y  5
2. Restrictions on Domain:
2. Restrictions on Domain: sub in endpoints and centre of domain
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
  domain:  2  x  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2      when x  2, y  4  22
  domain:  2  x  2               0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                0                        2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2

3. Fractions:
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x   2
                          when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7
 iii  y 
              x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                                       x4
                                         3
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                 3                     x4
       y  1                            3
                x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                3                      x4
       y  1                            3
              x4
       y  1 0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x      2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

              x7                      1
 iii  y                         x4 x7
              x4
                3                      x4
       y  1                            3
              x4
       y  1 0
 range: all real y except y  1
Function Notation
Function Notation
e.g. f  x   3 x 2  4
Function Notation
e.g. f  x   3 x 2  4
  a) f  5
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a 
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a   3a 2  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4    b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x 
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                      2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2



             Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd,
                       10abdf, 11aceh, 12bd, 14*

More Related Content

PDF
Ssp notes
PDF
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
PDF
11 X1 T02 08 inverse functions (2010)
DOC
Chapter 5(partial differentiation)
PDF
Lesson 13: Exponential and Logarithmic Functions (slides)
PDF
12X1 T05 01 inverse functions (2010)
PDF
11 X1 T03 03 symmetry (2010)
PDF
Thesis defendence presentation
Ssp notes
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
11 X1 T02 08 inverse functions (2010)
Chapter 5(partial differentiation)
Lesson 13: Exponential and Logarithmic Functions (slides)
12X1 T05 01 inverse functions (2010)
11 X1 T03 03 symmetry (2010)
Thesis defendence presentation

What's hot (10)

PPT
Partial derivative1
PDF
Eigenvalues - Contd
PDF
PDF
Peta karnaugh
PDF
Lesson 19: Partial Derivatives
PDF
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
PPTX
4.1 inverse functions
PPT
Introduction to matlab
PDF
Module of algelbra analyses 2
PDF
Lesson 1: Functions and their Representations
Partial derivative1
Eigenvalues - Contd
Peta karnaugh
Lesson 19: Partial Derivatives
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
4.1 inverse functions
Introduction to matlab
Module of algelbra analyses 2
Lesson 1: Functions and their Representations
Ad

Viewers also liked (9)

PPT
Goodbye slideshare UPDATE
PDF
11 x1 t02 09 shifting curves i (2013)
PDF
11 x1 t15 02 sketching polynomials (2013)
PDF
11 x1 t02 10 shifting curves ii (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t12 05 curve sketching (2013)
PDF
11 x1 t02 07 sketching graphs (2012)
PDF
11 x1 t03 06 asymptotes (2013)
PDF
11X1 T03 04 absolute value (13)
Goodbye slideshare UPDATE
11 x1 t02 09 shifting curves i (2013)
11 x1 t15 02 sketching polynomials (2013)
11 x1 t02 10 shifting curves ii (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t12 05 curve sketching (2013)
11 x1 t02 07 sketching graphs (2012)
11 x1 t03 06 asymptotes (2013)
11X1 T03 04 absolute value (13)
Ad

Similar to 11 x1 t02 06 relations & functions (2013) (20)

PPTX
2 1 relationsfunctions
PPTX
7 functions
PPTX
Graphing linear relations and functions
PPT
Functions and graphs
PPT
Relations and functions
PPTX
Presentation1
PPT
384541910-Relations-and-Functions-ppt.ppt
PPT
384541910-relations-and-functions-ppt-241117114200-b268ed13.ppt
PPTX
Intro to Domain, Range, and Functions.
PPTX
Relations & functions.pps
PPT
Storyboard math
PPT
Module 1 Lesson 1 Remediation Notes
PPT
PPT
Relations and Functions-General Mathematics.ppt
PPT
Relations and functions
PPT
Relations and Functions for mathematics grade 8
PPT
Relationsvvvvvvvvvvvvvvvvvv andbbbb Functions.ppt
DOCX
Radical functions
PDF
Pre-Cal 20S January 12, 2009
PDF
CBSE - Grade 11 - Mathematics - Ch 2 - Relations And Functions - Notes (PDF F...
2 1 relationsfunctions
7 functions
Graphing linear relations and functions
Functions and graphs
Relations and functions
Presentation1
384541910-Relations-and-Functions-ppt.ppt
384541910-relations-and-functions-ppt-241117114200-b268ed13.ppt
Intro to Domain, Range, and Functions.
Relations & functions.pps
Storyboard math
Module 1 Lesson 1 Remediation Notes
Relations and Functions-General Mathematics.ppt
Relations and functions
Relations and Functions for mathematics grade 8
Relationsvvvvvvvvvvvvvvvvvv andbbbb Functions.ppt
Radical functions
Pre-Cal 20S January 12, 2009
CBSE - Grade 11 - Mathematics - Ch 2 - Relations And Functions - Notes (PDF F...

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
PDF
X2 t01 11 nth roots of unity (2012)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)
X2 t01 11 nth roots of unity (2012)

Recently uploaded (20)

PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PDF
RMMM.pdf make it easy to upload and study
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Computing-Curriculum for Schools in Ghana
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Classroom Observation Tools for Teachers
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
1_English_Language_Set_2.pdf probationary
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Lesson notes of climatology university.
PDF
Empowerment Technology for Senior High School Guide
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
IGGE1 Understanding the Self1234567891011
PDF
Trump Administration's workforce development strategy
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Indian roads congress 037 - 2012 Flexible pavement
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
RMMM.pdf make it easy to upload and study
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Computing-Curriculum for Schools in Ghana
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Classroom Observation Tools for Teachers
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
1_English_Language_Set_2.pdf probationary
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Paper A Mock Exam 9_ Attempt review.pdf.
Lesson notes of climatology university.
Empowerment Technology for Senior High School Guide
Final Presentation General Medicine 03-08-2024.pptx
IGGE1 Understanding the Self1234567891011
Trump Administration's workforce development strategy
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx

11 x1 t02 06 relations & functions (2013)

  • 2. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25
  • 3. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2
  • 4. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all.
  • 5. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 6. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 7. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x function
  • 8. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 9. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 10. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x function
  • 11. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x  note: actually two functions  function    y  x and y   x 
  • 12. Domain and Range y  f  x 
  • 13. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation.
  • 14. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation”
  • 15. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be.
  • 16. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x
  • 17. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x domain: x  0
  • 18. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0
  • 19. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0 domain: x  0 and x  2
  • 20. Things to look for: 1. Fractions:
  • 21. Things to look for: 1. Fractions: bottom of fraction  0
  • 22. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x
  • 23. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0
  • 24. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0 domain: all real x except x  0
  • 25. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 domain: all real x except x  0
  • 26. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1
  • 27. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1
  • 28. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x
  • 29. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 x 1
  • 30. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7
  • 31. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7 domain: all real x except x  1 or 7
  • 33. 2. Root Signs: you can’t find the square root of a negative number.
  • 34. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2
  • 35. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4
  • 36. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4 domain:  2  x  2
  • 37. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x2  4 domain:  2  x  2
  • 38. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 x2  4 x  3 domain:  2  x  2
  • 39. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2
  • 40. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5
  • 41. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2
  • 42. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20
  • 43. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20 domain: x  2
  • 44. Range: All possible y values obtained by substituting in the domain
  • 45. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation”
  • 46. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x
  • 47. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x range: all real y
  • 48. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y
  • 49. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y range: y  1 and y  3
  • 50. Things to look for: 1. Maximum/Minimum values:
  • 51. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0
  • 52. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2
  • 53. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2 range: y  0
  • 54. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0
  • 55. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03
  • 56. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3
  • 57. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2
  • 58. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50
  • 59. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50 range: y  5
  • 60. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  5
  • 61. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5
  • 62. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5
  • 63. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05
  • 64. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05 range: y  5
  • 66. 2. Restrictions on Domain: sub in endpoints and centre of domain
  • 67. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2
  • 68. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 domain:  2  x  2
  • 69. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 domain:  2  x  2 0
  • 70. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2
  • 71. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2
  • 72. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions:
  • 73. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0
  • 74. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x
  • 75. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0
  • 76. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0 range: all real y except y  0
  • 77. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 range: all real y except y  0
  • 78. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0
  • 79. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5
  • 80. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7  iii  y  x4
  • 81. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 x4 3
  • 82. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4
  • 83. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0
  • 84. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0 range: all real y except y  1
  • 86. Function Notation e.g. f  x   3 x 2  4
  • 87. Function Notation e.g. f  x   3 x 2  4 a) f  5
  • 88. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2
  • 89. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2  75  4  79
  • 90. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a  2  75  4  79
  • 91. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79
  • 92. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x 
  • 93. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2
  • 94. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2
  • 95. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2 Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd, 10abdf, 11aceh, 12bd, 14*