SlideShare a Scribd company logo
Triangle Theorems
Triangle Theorems
     A
             The angle sum of any triangle is 180

B

         C
Triangle Theorems
     A
                 The angle sum of any triangle is 180

B            A  B  C  180       sum ABC  180  




         C
Triangle Theorems
     A
                      The angle sum of any triangle is 180

B                 A  B  C  180       sum ABC  180  




           C
         Proof:
D
        Triangle Theorems
         A
                           The angle sum of any triangle is 180
                   E
B                      A  B  C  180       sum ABC  180  




               C
             Proof:
             Construct DE||BC passing through A
D
        Triangle Theorems
         A
                            The angle sum of any triangle is 180
                    E
B                       A  B  C  180       sum ABC  180  




                C
             Proof:
             Construct DE||BC passing through A
              DAB  ABC         alternate ' s , DE || BC 
D
        Triangle Theorems
         A
                            The angle sum of any triangle is 180
                    E
B                       A  B  C  180        sum ABC  180    




                C
             Proof:
             Construct DE||BC passing through A
              DAB  ABC        alternate ' s , DE || BC 
              EAC  ACB              alternate ' s , DE || BC 
D
         Triangle Theorems
           A
                                 The angle sum of any triangle is 180
                         E
B                            A  B  C  180        sum ABC  180    




                     C
                  Proof:
                  Construct DE||BC passing through A
                   DAB  ABC        alternate ' s , DE || BC 
                   EAC  ACB              alternate ' s , DE || BC 
        DAB  BAC  CAE  180            straight DAE  180   
D
         Triangle Theorems
           A
                                 The angle sum of any triangle is 180
                         E
B                            A  B  C  180        sum ABC  180    




                     C
                  Proof:
                  Construct DE||BC passing through A
                   DAB  ABC        alternate ' s , DE || BC 
                   EAC  ACB              alternate ' s , DE || BC 
        DAB  BAC  CAE  180            straight DAE  180   


     ABC  BAC  ACB  180
A


B

        C
            D
A
            The exterior angle of any triangle is equal
            to the sum of the two opposite interior
B           angles

        C
               D
A
            The exterior angle of any triangle is equal
            to the sum of the two opposite interior
B           angles
            ACD  A  B           exterior , CAB 
        C
               D
A
                 The exterior angle of any triangle is equal
                 to the sum of the two opposite interior
B                angles
                 ACD  A  B           exterior , CAB 
          C
                    D
        Proof:
A
                 The exterior angle of any triangle is equal
                 to the sum of the two opposite interior
B              E angles
                  ACD  A  B          exterior , CAB 
          C
                     D
        Proof:
        Construct CE||BA
A
                 The exterior angle of any triangle is equal
                 to the sum of the two opposite interior
B              E angles
                  ACD  A  B           exterior , CAB 
          C
                     D
        Proof:
        Construct CE||BA
        ABC  ECD         corresponding ' s , CE || BA
A
                 The exterior angle of any triangle is equal
                 to the sum of the two opposite interior
B              E angles
                  ACD  A  B           exterior , CAB 
          C
                     D
        Proof:
        Construct CE||BA
        ABC  ECD         corresponding ' s , CE || BA
        BAC  ACE         alternate ' s , CE || BA
A
                   The exterior angle of any triangle is equal
                   to the sum of the two opposite interior
B                E angles
                    ACD  A  B           exterior , CAB 
            C
                       D
          Proof:
          Construct CE||BA
          ABC  ECD         corresponding ' s , CE || BA
          BAC  ACE         alternate ' s , CE || BA
    ACD  ACE  ECD        common 
A
                     The exterior angle of any triangle is equal
                     to the sum of the two opposite interior
B                  E angles
                      ACD  A  B           exterior , CAB 
              C
                         D
            Proof:
            Construct CE||BA
            ABC  ECD         corresponding ' s , CE || BA
            BAC  ACE         alternate ' s , CE || BA
     ACD  ACE  ECD         common 
     ACD  ABC  BAC
A
        Polygon Theorems
             B




         C
D
A
        Polygon Theorems
             B   The angle sum of any quadrilateral is 360




         C
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360      sum ABCD  360    




         C
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360      sum ABCD  360    


                 Proof:
         C
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360      sum ABCD  360    


                 Proof:
         C
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360      sum ABCD  360    


                 Proof: sum ABC  180
         C
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360   sum ABCD  360 
                 Proof: sum ABC  180 (+)
         C              sum ADC  180
D
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360   sum ABCD  360 
                 Proof: sum ABC  180 (+)
         C              sum ADC  180
D
                        sum ABCD  360
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360   sum ABCD  360 
                 Proof: sum ABC  180 (+)
         C              sum ADC  180
D
                        sum ABCD  360

    B

             C
A
             D
    E
A
        Polygon Theorems
             B             The angle sum of any quadrilateral is 360

                 A  B  C  D  360   sum ABCD  360 
                 Proof: sum ABC  180 (+)
         C              sum ADC  180
D
                        sum ABCD  360

                            The angle sum of any pentagon is 540
    B

             C
A
             D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540     sum ABCDE  540        

               C
A
               D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540     sum ABCDE  540        

               C Proof:
A
               D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540     sum ABCDE  540        

               C Proof:
A
               D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540     sum ABCDE  540        

               C Proof:
A                       sum ABE  180

               D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540     sum ABCDE  540        

               C Proof:
A                       sum ABE  180
                        sum BED  180
               D
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540 sum ABCDE  540 
               C Proof:
A                       sum ABE  180 (+)
                        sum BED  180
               D        sum BDC  180
    E
A
        Polygon Theorems
              B             The angle sum of any quadrilateral is 360

                  A  B  C  D  360   sum ABCD  360 
                  Proof: sum ABC  180 (+)
         C               sum ADC  180
D
                         sum ABCD  360

                             The angle sum of any pentagon is 540
    B
             A  B  C  D  E  540 sum ABCDE  540 
               C Proof:
A                       sum ABE  180 (+)
                        sum BED  180
               D        sum BDC  180
    E
                       sum ABCDE  540
The angle sum of any polygon is 180n-2  ,
                                         


where n is the number of sides
The angle sum of any polygon is 180n-2  ,
                                             


    where n is the number of sides

             a
e                    b


                 c
         d
The angle sum of any polygon is 180n-2  ,
                                             


    where n is the number of sides

             a
e                    b
                               The exterior angle sum of
                                  any polygon is 360
                 c
         d
The angle sum of any polygon is 180n-2  ,
                                              


     where n is the number of sides

               a
e                       b
                                The exterior angle sum of
                                   any polygon is 360
                    c
           d

    a  b  c  d  e  360     exterior sum  360   
The angle sum of any polygon is 180n-2  ,
                                                  


         where n is the number of sides

                  a
e                          b
                                    The exterior angle sum of
                                       any polygon is 360
                       c
              d

       a  b  c  d  e  360      exterior sum  360   




    Exercise 8B; 1dg, 2c, 3dh, 5ace, 6ab (iii), 7b, 8bfh, 9ad, 10dh,
                        11ad, 12c, 16, 18, 20

More Related Content

PDF
11 x1 t13 03 angle theorems 2
PDF
Triangles class 9
PPTX
trigonometry
PPTX
Mathematics
PPT
Shivam goyal ix e
PPTX
ตรีโกณมิตินำเสนอOn demand
KEY
0608 ch 6 day 8
11 x1 t13 03 angle theorems 2
Triangles class 9
trigonometry
Mathematics
Shivam goyal ix e
ตรีโกณมิตินำเสนอOn demand
0608 ch 6 day 8

What's hot (13)

PPTX
INTERNAL AND EXTERNAL ANGLES
PPT
2.4 terms
KEY
0607 ch 6 day 7
PPSX
Construction and locus revision card
PPS
Projection of lines(new)(thedirectdata.com)
PPTX
Quadrilateral
PPT
PPTX
Geo 4.1 triangles
PPS
Projection of lines(new)(thedirectdata.com)
PDF
Using Orientation Information for Qualitative Spatial Reasoning
PDF
5 similar+triangles%26 power+of+a+point+%28solutions%29
PDF
PPT
Mathematics Project
INTERNAL AND EXTERNAL ANGLES
2.4 terms
0607 ch 6 day 7
Construction and locus revision card
Projection of lines(new)(thedirectdata.com)
Quadrilateral
Geo 4.1 triangles
Projection of lines(new)(thedirectdata.com)
Using Orientation Information for Qualitative Spatial Reasoning
5 similar+triangles%26 power+of+a+point+%28solutions%29
Mathematics Project
Ad

Viewers also liked (20)

PDF
4.3 Slideshow
PPTX
Geo 7.3
PPT
Structures of the Digestive System
PPT
Geometry 201 unit 5.5
PDF
orthographic projection
PPT
Geometry 201 unit 3.4
PPT
Geometry unit 5.6
PPTX
Inequalities in a triangle
PDF
Concept map geometry
PPTX
Math questions!!!
PPTX
Relationships in Triangles
DOCX
Theorems invloving inequalities in a triangle
PPT
Plane Geometry
PPT
Triangle inequalities
PPTX
Ang unang digmaang pandaigdig
PDF
K to 12 Curriculum Guide for Araling Panlipunan
PPTX
Unang digmaang pandaigdig
PDF
Araling Panlipunan K to 12 Curriculum Guide
PPTX
Geometry in Real Life
PDF
Araling panlipunan grades 1 10 01.17.2014 edited march 25 2014
4.3 Slideshow
Geo 7.3
Structures of the Digestive System
Geometry 201 unit 5.5
orthographic projection
Geometry 201 unit 3.4
Geometry unit 5.6
Inequalities in a triangle
Concept map geometry
Math questions!!!
Relationships in Triangles
Theorems invloving inequalities in a triangle
Plane Geometry
Triangle inequalities
Ang unang digmaang pandaigdig
K to 12 Curriculum Guide for Araling Panlipunan
Unang digmaang pandaigdig
Araling Panlipunan K to 12 Curriculum Guide
Geometry in Real Life
Araling panlipunan grades 1 10 01.17.2014 edited march 25 2014
Ad

Similar to 11X1 T07 02 triangle theorems (2010) (20)

PPT
11 X1 T06 02 Triangle Theorems
PDF
11 x1 t07 02 triangle theorems (2013)
PPT
Quadrilateral and triangle for class VII & VIII
PPT
Triangles
PPTX
Plane Figures.pptx
PPT
8 2 Triangle Sum Theorem
PDF
Ch4.1 Triangles Theorems
PPTX
a very nice ppt for learning theorems
PPTX
Properties of a triangle
PPTX
MATHS WORK BOOK
PPT
sum of angles of triangles
PPTX
Triangle's Lesson
PPT
Congruent triangles
PPT
POLYGON PROPERTIES @ 9B
PPTX
theorem of isosceles triangle
PPT
Quadrilaterals
PDF
class-9-math-triangles_1595671835220.pdf
PPT
Lecture 4.1 4.2
PPTX
Triangle Sum Theorem
PPTX
Wk 2 powerpoint
11 X1 T06 02 Triangle Theorems
11 x1 t07 02 triangle theorems (2013)
Quadrilateral and triangle for class VII & VIII
Triangles
Plane Figures.pptx
8 2 Triangle Sum Theorem
Ch4.1 Triangles Theorems
a very nice ppt for learning theorems
Properties of a triangle
MATHS WORK BOOK
sum of angles of triangles
Triangle's Lesson
Congruent triangles
POLYGON PROPERTIES @ 9B
theorem of isosceles triangle
Quadrilaterals
class-9-math-triangles_1595671835220.pdf
Lecture 4.1 4.2
Triangle Sum Theorem
Wk 2 powerpoint

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Cell Types and Its function , kingdom of life
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Lesson notes of climatology university.
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Pharma ospi slides which help in ospi learning
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Complications of Minimal Access Surgery at WLH
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Cell Types and Its function , kingdom of life
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Lesson notes of climatology university.
Yogi Goddess Pres Conference Studio Updates
O7-L3 Supply Chain Operations - ICLT Program
VCE English Exam - Section C Student Revision Booklet
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Pharma ospi slides which help in ospi learning
Anesthesia in Laparoscopic Surgery in India
Complications of Minimal Access Surgery at WLH
Supply Chain Operations Speaking Notes -ICLT Program
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
O5-L3 Freight Transport Ops (International) V1.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Module 4: Burden of Disease Tutorial Slides S2 2025
Final Presentation General Medicine 03-08-2024.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

11X1 T07 02 triangle theorems (2010)

  • 2. Triangle Theorems A The angle sum of any triangle is 180 B C
  • 3. Triangle Theorems A The angle sum of any triangle is 180 B A  B  C  180 sum ABC  180   C
  • 4. Triangle Theorems A The angle sum of any triangle is 180 B A  B  C  180 sum ABC  180   C Proof:
  • 5. D Triangle Theorems A The angle sum of any triangle is 180 E B A  B  C  180 sum ABC  180   C Proof: Construct DE||BC passing through A
  • 6. D Triangle Theorems A The angle sum of any triangle is 180 E B A  B  C  180 sum ABC  180   C Proof: Construct DE||BC passing through A DAB  ABC alternate ' s , DE || BC 
  • 7. D Triangle Theorems A The angle sum of any triangle is 180 E B A  B  C  180 sum ABC  180   C Proof: Construct DE||BC passing through A DAB  ABC alternate ' s , DE || BC  EAC  ACB alternate ' s , DE || BC 
  • 8. D Triangle Theorems A The angle sum of any triangle is 180 E B A  B  C  180 sum ABC  180   C Proof: Construct DE||BC passing through A DAB  ABC alternate ' s , DE || BC  EAC  ACB alternate ' s , DE || BC  DAB  BAC  CAE  180 straight DAE  180  
  • 9. D Triangle Theorems A The angle sum of any triangle is 180 E B A  B  C  180 sum ABC  180   C Proof: Construct DE||BC passing through A DAB  ABC alternate ' s , DE || BC  EAC  ACB alternate ' s , DE || BC  DAB  BAC  CAE  180 straight DAE  180    ABC  BAC  ACB  180
  • 10. A B C D
  • 11. A The exterior angle of any triangle is equal to the sum of the two opposite interior B angles C D
  • 12. A The exterior angle of any triangle is equal to the sum of the two opposite interior B angles ACD  A  B exterior , CAB  C D
  • 13. A The exterior angle of any triangle is equal to the sum of the two opposite interior B angles ACD  A  B exterior , CAB  C D Proof:
  • 14. A The exterior angle of any triangle is equal to the sum of the two opposite interior B E angles ACD  A  B exterior , CAB  C D Proof: Construct CE||BA
  • 15. A The exterior angle of any triangle is equal to the sum of the two opposite interior B E angles ACD  A  B exterior , CAB  C D Proof: Construct CE||BA ABC  ECD corresponding ' s , CE || BA
  • 16. A The exterior angle of any triangle is equal to the sum of the two opposite interior B E angles ACD  A  B exterior , CAB  C D Proof: Construct CE||BA ABC  ECD corresponding ' s , CE || BA BAC  ACE alternate ' s , CE || BA
  • 17. A The exterior angle of any triangle is equal to the sum of the two opposite interior B E angles ACD  A  B exterior , CAB  C D Proof: Construct CE||BA ABC  ECD corresponding ' s , CE || BA BAC  ACE alternate ' s , CE || BA ACD  ACE  ECD common 
  • 18. A The exterior angle of any triangle is equal to the sum of the two opposite interior B E angles ACD  A  B exterior , CAB  C D Proof: Construct CE||BA ABC  ECD corresponding ' s , CE || BA BAC  ACE alternate ' s , CE || BA ACD  ACE  ECD common   ACD  ABC  BAC
  • 19. A Polygon Theorems B C D
  • 20. A Polygon Theorems B The angle sum of any quadrilateral is 360 C D
  • 21. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360   C D
  • 22. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360   Proof: C D
  • 23. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360   Proof: C D
  • 24. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360   Proof: sum ABC  180 C D
  • 25. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D
  • 26. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360
  • 27. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 B C A D E
  • 28. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B C A D E
  • 29. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540   C A D E
  • 30. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540   C Proof: A D E
  • 31. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540   C Proof: A D E
  • 32. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540   C Proof: A sum ABE  180 D E
  • 33. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540   C Proof: A sum ABE  180 sum BED  180 D E
  • 34. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540  C Proof: A sum ABE  180 (+) sum BED  180 D sum BDC  180 E
  • 35. A Polygon Theorems B The angle sum of any quadrilateral is 360 A  B  C  D  360 sum ABCD  360  Proof: sum ABC  180 (+) C sum ADC  180 D sum ABCD  360 The angle sum of any pentagon is 540 B A  B  C  D  E  540 sum ABCDE  540  C Proof: A sum ABE  180 (+) sum BED  180 D sum BDC  180 E sum ABCDE  540
  • 36. The angle sum of any polygon is 180n-2  ,  where n is the number of sides
  • 37. The angle sum of any polygon is 180n-2  ,  where n is the number of sides a e b c d
  • 38. The angle sum of any polygon is 180n-2  ,  where n is the number of sides a e b The exterior angle sum of any polygon is 360 c d
  • 39. The angle sum of any polygon is 180n-2  ,  where n is the number of sides a e b The exterior angle sum of any polygon is 360 c d a  b  c  d  e  360 exterior sum  360  
  • 40. The angle sum of any polygon is 180n-2  ,  where n is the number of sides a e b The exterior angle sum of any polygon is 360 c d a  b  c  d  e  360 exterior sum  360   Exercise 8B; 1dg, 2c, 3dh, 5ace, 6ab (iii), 7b, 8bfh, 9ad, 10dh, 11ad, 12c, 16, 18, 20