SlideShare a Scribd company logo
Integrating Trig
Integrating Trig
   cosax  b dx
Integrating Trig
                   1
                   sin ax  b   c
   cosax  b dx a
Integrating Trig
                   1
                   sin ax  b   c
   cosax  b dx a
   sinax  b dx
Integrating Trig
                     1
                    sin ax  b   c
   cosax  b dx a
                       1
   sinax  b dx   a cosax  b   c
Integrating Trig
                     1
                    sin ax  b   c
   cosax  b dx a
                       1
   sinax  b dx   a cosax  b   c
   sec 2 ax  b dx
Integrating Trig
                      1
   cosax  b dx a sin ax  b   c
                        1
   sinax  b dx   a cosax  b   c
                      1
   sec ax  b dx  a tanax  b   c
       2
Integrating Trig
                                   1
                cosax  b dx a sin ax  b   c
                                     1
                sinax  b dx   a cosax  b   c
                                   1
                sec ax  b dx  a tanax  b   c
                    2




e.g. i   sin 3 xdx
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5
                x dx
  iii   sec  
             2

               2
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5
                x dx  2 tan x   c
  iii   sec               
             2

               2             2

     2
iv   sin 2 xdx
    
     6
                             
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
    6
                          
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
      6               1             
                     cos   cos 
                      2             3
                          
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
      6               1             
                     cos   cos 
                      2             3
                      1       1
                     1  
                      2       2
                    3
                  
                    4
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1
                     1  
                      2     2
                    3
                  
                    4
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1  
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4
                        
                     1        2   v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                 6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1
                                               2 units 3
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1
                                               2 units 3
 vi   x sec 2 x 2 dx
                            
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1

                        1                      2 units 3
 vi   x sec x dx 
                        2
            2   2
                           2 x sec 2 x 2 dx
                         
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1

                     1                         2 units 3
 vi   x sec x dx 
                     2
            2   2
                        2 x sec 2 x 2 dx

                     1
                     tan x 2  c
                     2
vii   sin 2 xdx
vii   sin 2 xdx   cos2 
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
                                                1
                          1  2 sin   sin   1  cos 2 
                                    2       2

                                                2
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
                                                1
                          1  2 sin   sin   1  cos 2 
                                    2       2

                                                2
                                                 1
                          2 cos   1  cos   1  cos 2 
                                  2           2

                                                 2
vii   sin xdx
            2
                               cos2  cos 2  sin 2 
                                                            1
        1                             1  2 sin   sin   1  cos 2 
                                                2       2

    
        2  1  cos 2 x dx                                2
                                                             1
                                      2 cos   1  cos   1  cos 2 
                                              2           2

                                                             2
vii   sin xdx
          2
                            cos2  cos 2  sin 2 
                                                         1
     1                             1  2 sin   sin   1  cos 2 
                                             2       2

    
     2  1  cos 2 x dx                                2
                                                          1
                                   2 cos   1  cos   1  cos 2 
                                           2           2

      x  sin 2 x   c
     1       1                                           2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4
vii   sin xdx
          2
                            cos2  cos 2  sin 2 
                                                         1
     1                             1  2 sin   sin   1  cos 2 
                                             2       2

    
     2  1  cos 2 x dx                                2
                                                          1
                                   2 cos   1  cos   1  cos 2 
                                           2           2

      x  sin 2 x   c
     1       1                                           2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                              1
     1                                  1  2 sin   sin   1  cos 2 
                                                  2       2

    
     2  1  cos 2 x dx                                     2
                                                               1
                                        2 cos   1  cos   1  cos 2 
                                                2           2

      x  sin 2 x   c
     1       1                                                2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                     cos x
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                              1
     1                                  1  2 sin   sin   1  cos 2 
                                                  2       2

    
     2  1  cos 2 x dx                                     2
                                                               1
                                        2 cos   1  cos   1  cos 2 
                                                2           2

      x  sin 2 x   c
     1       1                                                2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                      cos x
                         sin x
                             dx
                        cos x
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                              1
     1                                  1  2 sin   sin   1  cos 2 
                                                  2       2

    
     2  1  cos 2 x dx                                     2
                                                               1
                                        2 cos   1  cos   1  cos 2 
                                                2           2

      x  sin 2 x   c
     1       1                                                2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                       cos x
                          sin x
                              dx
                         cos x
                     log cos x  c
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                              1
     1                                  1  2 sin   sin   1  cos 2 
                                                  2       2

    
     2  1  cos 2 x dx                                     2
                                                               1
                                        2 cos   1  cos   1  cos 2 
                                                2           2

      x  sin 2 x   c
     1       1                                                2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                       cos x
                          sin x
                              dx
                         cos x
                     log cos x  c
                    logcos x   c
                                 1


                    log sec x  c
π
    2
ix   cos x sin 7 xdx
     0
π
    2
ix   cos x sin 7 xdx   u  sin x
     0
π
    2
ix   cos x sin 7 xdx    u  sin x
     0                    du  cos xdx
π
    2
ix   cos x sin 7 xdx    u  sin x
     0                    du  cos xdx
                          x  0 ,u  0
                               
                          x       ,u 1
                               2
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
                          x       ,u 1
                               2
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
      1 8 
              1
                          x       ,u 1
      u                     2
      8  0
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
       1 8 
              1
                          x       ,u 1
      u                     2
       8  0
      1  0 
       1 8
       8
       1
     
       8
π
    2
ix   cos x sin 7 xdx                  u  sin x
     0
         1                              du  cos xdx
       u 7 du                         x  0 ,u  0
         0                                  
       1 8 
              1
                                  x  ,u 1
      u                             2
       8  0
      1  0 
       1 8
       8
       1
     
       8
               Exercise 14I; 2ace etc, 3ace etc, 4, 6, 8a, 9ac, 10a,
                           12ace, 13b(i), 14df, 15ace

                  Exercise 14J; 2b, 3bfh, 4a, 5ac, 7, 9, 10, 13, 14, 21, 26

More Related Content

PDF
12X1 T03 04 integrating trig functions
PDF
X2 T05 02 trig integrals (2010)
PDF
11 X1 T04 03 pythagorean trig identities (2010)
PDF
X2 T05 05 trig substitutions (2010)
PDF
12X1 T05 05 integration with inverse trig (2010)
PPTX
3.2.nenoteiktais integraalis
PDF
X2 T01 10 locus & complex numbers 1
PDF
X2 T01 11 locus & complex numbers 2
12X1 T03 04 integrating trig functions
X2 T05 02 trig integrals (2010)
11 X1 T04 03 pythagorean trig identities (2010)
X2 T05 05 trig substitutions (2010)
12X1 T05 05 integration with inverse trig (2010)
3.2.nenoteiktais integraalis
X2 T01 10 locus & complex numbers 1
X2 T01 11 locus & complex numbers 2

Viewers also liked (9)

PDF
12X1 T03 03 differentiating trig functions
PDF
11X1 T02 06 relations & functions (2011)
PDF
12 x1 t03 02 graphing trig functions (2013)
PDF
12 x1 t03 01 arcs & sectors (2013)
PDF
11 x1 t03 04 absolute value (2012)
PDF
X2 t01 06 geometrical representation (2013)
PDF
11 x1 t03 01 inequations & inequalities (2013)
PDF
12 x1 t08 04 greatest coefficients & terms (2012)
PPT
Goodbye slideshare UPDATE
12X1 T03 03 differentiating trig functions
11X1 T02 06 relations & functions (2011)
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 01 arcs & sectors (2013)
11 x1 t03 04 absolute value (2012)
X2 t01 06 geometrical representation (2013)
11 x1 t03 01 inequations & inequalities (2013)
12 x1 t08 04 greatest coefficients & terms (2012)
Goodbye slideshare UPDATE
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)
Ad

Recently uploaded (9)

PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PDF
levelling full chapter with examples and questions
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Presentation on chemistry class 11 and class 12
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
فورمولر عمومی مضمون فزیک برای همه انجنیران
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
levelling full chapter with examples and questions
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Presentation on chemistry class 11 and class 12
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe

12 x1 t03 04 integrating trig (2013)

  • 2. Integrating Trig  cosax  b dx
  • 3. Integrating Trig 1  sin ax  b   c  cosax  b dx a
  • 4. Integrating Trig 1  sin ax  b   c  cosax  b dx a  sinax  b dx
  • 5. Integrating Trig 1  sin ax  b   c  cosax  b dx a 1  sinax  b dx   a cosax  b   c
  • 6. Integrating Trig 1  sin ax  b   c  cosax  b dx a 1  sinax  b dx   a cosax  b   c  sec 2 ax  b dx
  • 7. Integrating Trig 1  cosax  b dx a sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2
  • 8. Integrating Trig 1  cosax  b dx a sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 e.g. i   sin 3 xdx
  • 9. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3
  • 10. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx
  • 11. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5
  • 12. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5  x dx iii   sec   2 2
  • 13. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5  x dx  2 tan x   c iii   sec     2 2  2
  • 14. 2 iv   sin 2 xdx  6
  • 15.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6
  • 16.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6 1     cos   cos  2 3
  • 17.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6 1     cos   cos  2 3 1 1    1   2 2 3  4
  • 18.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1    1   2 2 3  4
  • 19.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1   2 2 1 3    sin xdx  0 4
  • 20.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0 
  • 21.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1  2 units 3
  • 22.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1  2 units 3 vi   x sec 2 x 2 dx
  • 23.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1 1  2 units 3 vi   x sec x dx  2 2 2 2 x sec 2 x 2 dx
  • 24.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1 1  2 units 3 vi   x sec x dx  2 2 2 2 x sec 2 x 2 dx 1  tan x 2  c 2
  • 25. vii   sin 2 xdx
  • 26. vii   sin 2 xdx cos2 
  • 27. vii   sin xdx 2 cos2  cos 2  sin 2 
  • 28. vii   sin xdx 2 cos2  cos 2  sin 2  1  1  2 sin   sin   1  cos 2  2 2 2
  • 29. vii   sin xdx 2 cos2  cos 2  sin 2  1  1  2 sin   sin   1  cos 2  2 2 2 1  2 cos   1  cos   1  cos 2  2 2 2
  • 30. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2 2
  • 31. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4
  • 32. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx
  • 33. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x
  • 34. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x
  • 35. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x   log cos x  c
  • 36. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin   sin   1  cos 2  2 2  2  1  cos 2 x dx 2 1  2 cos   1  cos   1  cos 2  2 2   x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x   log cos x  c  logcos x   c 1  log sec x  c
  • 37. π 2 ix   cos x sin 7 xdx 0
  • 38. π 2 ix   cos x sin 7 xdx u  sin x 0
  • 39. π 2 ix   cos x sin 7 xdx u  sin x 0 du  cos xdx
  • 40. π 2 ix   cos x sin 7 xdx u  sin x 0 du  cos xdx x  0 ,u  0  x ,u 1 2
  • 41. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  x ,u 1 2
  • 42. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x ,u 1  u  2 8  0
  • 43. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x ,u 1  u  2 8  0  1  0  1 8 8 1  8
  • 44. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x  ,u 1  u  2 8  0  1  0  1 8 8 1  8 Exercise 14I; 2ace etc, 3ace etc, 4, 6, 8a, 9ac, 10a, 12ace, 13b(i), 14df, 15ace Exercise 14J; 2b, 3bfh, 4a, 5ac, 7, 9, 10, 13, 14, 21, 26