SlideShare a Scribd company logo
Relations & Functions
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                          x
                                                note: actually two functions 
              function                                                       
                                                y  x and y   x 
Domain and Range y  f  x 
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
          To find a domain, look for values x could not be.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
           To find a domain, look for values x could not be.
e.g.
       y             x  y2


                    x
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2


                       x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0                        domain: x  0 and x  2
Things to look for:
1. Fractions:
Things to look for:
1. Fractions: bottom of fraction  0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0                                 x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0
       x 1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
Things to look for:
1. Fractions: bottom of fraction  0
               1                                           1
e.g.  i  y                                ii  y 
               x                                         x2 1
           x0                                      x2 1  0
domain: all real x except x  0
                                                     x2  1
                                                      x  1
                                        domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
 domain: all real x except x  1 or 7
2. Root Signs:
2. Root Signs: you can’t find the square root of a negative number.
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
         4  x2  0
            x2  4
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0
          x2  4                            x  3
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0        5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
     domain: x  2
Range: All possible y values obtained by substituting in the domain
Range: All possible y values obtained by substituting in the domain
         “Range is the OUTPUT of the function/relation”
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y             x  y2


                    x
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2


                        x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y                     range: y  1 and y  3
Things to look for:
1. Maximum/Minimum values:
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50                              range: y  0
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
                            range: y  5
2. Restrictions on Domain:
2. Restrictions on Domain: sub in endpoints and centre of domain
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
  domain:  2  x  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2      when x  2, y  4  22
  domain:  2  x  2               0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                0                        2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                        when x  2, y  4  22  when x  0, y  4  02
  domain:  2  x  2                0                       2
                                            range: 0  y  2

3. Fractions:
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x     2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x   2
                          when x  2, y  4  22   when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x  2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7
 iii  y 
            x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2                  0                        2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
                                       x4
                                         3
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
              3                        x4
      y  1                             3
             x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
 range: all real y except y  1
Function Notation
Function Notation
e.g. f  x   3 x 2  4
Function Notation
e.g. f  x   3 x 2  4
  a) f  5
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a 
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a   3a 2  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4    b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x 
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                      2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2



             Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd,
                       10abdf, 11aceh, 12bd, 14*

More Related Content

PDF
Ssp notes
PDF
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
PDF
11 X1 T02 08 inverse functions (2010)
DOC
Chapter 5(partial differentiation)
PDF
Lesson 13: Exponential and Logarithmic Functions (slides)
PDF
12X1 T05 01 inverse functions (2010)
PDF
11 X1 T03 03 symmetry (2010)
PDF
Thesis defendence presentation
Ssp notes
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
11 X1 T02 08 inverse functions (2010)
Chapter 5(partial differentiation)
Lesson 13: Exponential and Logarithmic Functions (slides)
12X1 T05 01 inverse functions (2010)
11 X1 T03 03 symmetry (2010)
Thesis defendence presentation

What's hot (10)

PPT
Partial derivative1
PDF
Eigenvalues - Contd
PDF
PDF
Peta karnaugh
PDF
Lesson 19: Partial Derivatives
PDF
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
PPTX
4.1 inverse functions
PPT
Introduction to matlab
PDF
Module of algelbra analyses 2
PDF
Lesson 1: Functions and their Representations
Partial derivative1
Eigenvalues - Contd
Peta karnaugh
Lesson 19: Partial Derivatives
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
4.1 inverse functions
Introduction to matlab
Module of algelbra analyses 2
Lesson 1: Functions and their Representations
Ad

Viewers also liked (9)

PPT
Goodbye slideshare UPDATE
PDF
12 x1 t03 04 integrating trig (2013)
PDF
12X1 T03 03 differentiating trig functions
PDF
12 x1 t03 02 graphing trig functions (2013)
PDF
12 x1 t03 01 arcs & sectors (2013)
PDF
X2 t01 06 geometrical representation (2013)
PDF
11 x1 t03 04 absolute value (2012)
PDF
11 x1 t03 01 inequations & inequalities (2013)
PDF
12 x1 t08 04 greatest coefficients & terms (2012)
Goodbye slideshare UPDATE
12 x1 t03 04 integrating trig (2013)
12X1 T03 03 differentiating trig functions
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 01 arcs & sectors (2013)
X2 t01 06 geometrical representation (2013)
11 x1 t03 04 absolute value (2012)
11 x1 t03 01 inequations & inequalities (2013)
12 x1 t08 04 greatest coefficients & terms (2012)
Ad

Similar to 11X1 T02 06 relations & functions (2011) (20)

DOC
Chapter 1 (functions).
PPT
PDF
Functions
PDF
Functions
PPT
Limits and derivatives
DOCX
Radical functions
PDF
Lecture 1
ODP
U1 Cn2 Functions
PDF
Calculus 1 Lecture Notes (Functions and Their Graphs)
PPTX
7.4 inverse functions
PPTX
function
PPTX
R lecture co4_math 21-1
PDF
12X1 05 01 inverse functions (2011)
PDF
12 x1 t05 01 inverse functions (2012)
PDF
12 x1 t05 01 inverse functions (2013)
PDF
Difcalc10week3
PPTX
Exponential and logarithmic functions
DOCX
237654933 mathematics-t-form-6
ODP
U1 Cn5 Inverse And Log Functions
PDF
11 x1 t02 08 inverse functions (2013)
Chapter 1 (functions).
Functions
Functions
Limits and derivatives
Radical functions
Lecture 1
U1 Cn2 Functions
Calculus 1 Lecture Notes (Functions and Their Graphs)
7.4 inverse functions
function
R lecture co4_math 21-1
12X1 05 01 inverse functions (2011)
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2013)
Difcalc10week3
Exponential and logarithmic functions
237654933 mathematics-t-form-6
U1 Cn5 Inverse And Log Functions
11 x1 t02 08 inverse functions (2013)

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Introduction to Building Materials
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
1_English_Language_Set_2.pdf probationary
PDF
Trump Administration's workforce development strategy
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
RMMM.pdf make it easy to upload and study
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PDF
Empowerment Technology for Senior High School Guide
Cell Types and Its function , kingdom of life
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Introduction to Building Materials
Digestion and Absorption of Carbohydrates, Proteina and Fats
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
1_English_Language_Set_2.pdf probationary
Trump Administration's workforce development strategy
History, Philosophy and sociology of education (1).pptx
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Complications of Minimal Access Surgery at WLH
RMMM.pdf make it easy to upload and study
Orientation - ARALprogram of Deped to the Parents.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Indian roads congress 037 - 2012 Flexible pavement
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
Empowerment Technology for Senior High School Guide

11X1 T02 06 relations & functions (2011)

  • 2. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25
  • 3. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2
  • 4. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all.
  • 5. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 6. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 7. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x function
  • 8. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 9. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 10. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x function
  • 11. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x  note: actually two functions  function    y  x and y   x 
  • 12. Domain and Range y  f  x 
  • 13. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation.
  • 14. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation”
  • 15. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be.
  • 16. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x
  • 17. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x domain: x  0
  • 18. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0
  • 19. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0 domain: x  0 and x  2
  • 20. Things to look for: 1. Fractions:
  • 21. Things to look for: 1. Fractions: bottom of fraction  0
  • 22. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x
  • 23. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0
  • 24. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0 domain: all real x except x  0
  • 25. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 domain: all real x except x  0
  • 26. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1
  • 27. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1
  • 28. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x
  • 29. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 x 1
  • 30. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7
  • 31. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7 domain: all real x except x  1 or 7
  • 33. 2. Root Signs: you can’t find the square root of a negative number.
  • 34. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2
  • 35. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4
  • 36. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4 domain:  2  x  2
  • 37. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x2  4 domain:  2  x  2
  • 38. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 x2  4 x  3 domain:  2  x  2
  • 39. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2
  • 40. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5
  • 41. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2
  • 42. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20
  • 43. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20 domain: x  2
  • 44. Range: All possible y values obtained by substituting in the domain
  • 45. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation”
  • 46. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x
  • 47. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x range: all real y
  • 48. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y
  • 49. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y range: y  1 and y  3
  • 50. Things to look for: 1. Maximum/Minimum values:
  • 51. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0
  • 52. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2
  • 53. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2 range: y  0
  • 54. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0
  • 55. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03
  • 56. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3
  • 57. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2
  • 58. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50
  • 59. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50 range: y  5
  • 60. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  5
  • 61. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5
  • 62. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5
  • 63. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05
  • 64. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05 range: y  5
  • 66. 2. Restrictions on Domain: sub in endpoints and centre of domain
  • 67. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2
  • 68. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 domain:  2  x  2
  • 69. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 domain:  2  x  2 0
  • 70. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2
  • 71. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2
  • 72. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions:
  • 73. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0
  • 74. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x
  • 75. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0
  • 76. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0 range: all real y except y  0
  • 77. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 range: all real y except y  0
  • 78. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0
  • 79. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5
  • 80. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7  iii  y  x4
  • 81. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 x4 3
  • 82. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4
  • 83. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0
  • 84. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0 range: all real y except y  1
  • 86. Function Notation e.g. f  x   3 x 2  4
  • 87. Function Notation e.g. f  x   3 x 2  4 a) f  5
  • 88. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2
  • 89. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2  75  4  79
  • 90. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a  2  75  4  79
  • 91. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79
  • 92. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x 
  • 93. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2
  • 94. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2
  • 95. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2 Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd, 10abdf, 11aceh, 12bd, 14*