SlideShare a Scribd company logo
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $.
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
The expressions “3x” or “3x + 10” are linear,
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $.
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
The expressions “3x” or “3x + 10” are linear,
the expressions “x2 + 1” or “1/x” are not linear.
Expressions
Combining Linear Expressions
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
There are two terms in the linear expression ax + b.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
There are two terms in the linear expression ax + b.
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x,
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
The x-terms can't be combined with the number terms because
they are different type of items just as
2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B),
i.e. the expression can’t be condensed further.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
The x-terms can't be combined with the number terms because
they are different type of items just as
2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B),
i.e. the expression can’t be condensed further.
Hence the expression “2 + 3x” stays as “2 + 3x”, it's not “5x”.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
= –5(2x) – (–5)(4)
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
= –5(2x) – (–5)(4)
= –10x + 20
b. 3(2x – 4) + 2(4 – 5x)
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
= 36A + 24B + 96A + 96B = 132A + 120B
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
= 36A + 24B + 96A + 96B = 132A + 120B
Hence we have 132 apples and 120 bananas.
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4}
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
= –3{–11x – 21}
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
= –3{–11x – 21} expand,
= 33x + 63
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as )
p
qx
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Hence is the same as .2x
3
2
3
x
*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
Hence is the same as .2x
3
2
3
x
*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6)
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6)
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
Example H. Combine
4
3
x + 5
4
x
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4
3
x + 5
4
x
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
= (4*4 x + 5*3x) / 12
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
31x
12
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
= (4*4 x + 5*3x) / 12 = (16x + 15x) /12 =
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Exercise A. Combine like terms and simplify the expressions.
Expressions
1. 3x + 5x 2. 3x – 5x 3. –3x – 5x 4. –3x + 5x
5. 3x + 5x + 4 6. 3x – 5 + 2x 7. 8 – 3x – 5
8. 8 – 3x – 5 – x 9. 8x – 4x – 5 – 2x 10. 6 – 4x – 5x – 2
11. 3A + 4B – 5A + 2B 12. –8B + 4A – 9A – B
B. Expand then simplify the expressions.
13. 3(x + 5) 14. –3(x – 5) 15. –4(–3x – 5) 16. –3(6 + 5x)
25. 3(A + 4B) – 5(A + 2B) 26. –8(B + 4A) + 9(2A – B)
17. 3(x + 5) + 3(x – 5) 18. 3(x + 5) – 4(–3x – 5)
19. –9(x – 6) + 4(–3 + 5x) 20. –12(4x + 5) – 4(–7 – 5x)
21. 7(8 – 6x) + 4(–3x + 5) 22. 2(–14x + 5) – 4(–7x – 5)
23. –7(–8 – 6x) – 4(–3 – 5x) 24. –2(–14x – 5) – 6(–9x – 2)
27. 11(A – 4B) – 2(A – 12B) 28. –6(B – 7A) – 8(A – 4B)
Expressions
C. Starting from the innermost ( ) expand and simplify.
29. x + 2[6 + 4(–3 + 5x)] 30. –5[ x – 4(–7 – 5x)] + 6
31. 8 – 2[4(–3x + 5) + 6x] + x 32. –14x + 5[x – 4(–5x + 15)]
33. –7x + 3{8 – [6(x – 2) –3] – 5x}
34. –3{8 – [6(x – 2) –3] – 5x} – 5[x – 3(–5x + 4)]
35. 4[5(3 – 2x) – 6x] – 3{x – 2[x – 3(–5x + 4)]}
2
3
x + 3
4
x36.
4
3
x – 3
4
x37.
3
8
x – 5
6
x39.5
8
x + 1
6
x38. – –
D. Combine using the LCD-multiplication method
40. Do 36 – 39 by the cross–multiplication method.
Expressions
42. As in example D with gift boxes Regular and Deluxe, the
Regular contains12 apples and 8 bananas, the Deluxe has 24
apples and 24 bananas. For large orders we may ship them in
crates or freight-containers where a crate contains 100 boxes
Regular and 80 boxes Deluxe and a container holds 150
Regular boxes and 100 Deluxe boxes.
King Kong ordered 4 crates and 5 containers, how many of
each type of fruit does King Kong have?
41. As in example D with gift boxes Regular and Deluxe, the
Regular contains12 apples and 8 bananas, the Deluxe has 24
apples and 24 bananas. Joe has 6 Regular boxes and 8
Deluxe boxes. How many of each type of fruit does he have?

More Related Content

PPT
Permutasi.....ppt
PPT
Combining Like Terms
DOCX
Bab i 5. sifat-sifat operasi perkalian dan pembagian bilangan bulat
PPTX
Lesson 1 addition and subtraction of radicals
PPTX
Bab 1 peluang
PPT
Systemsof3 equations
PPTX
Equations with Fractions on Both Sides
PPTX
8.4 properties of logarithms
Permutasi.....ppt
Combining Like Terms
Bab i 5. sifat-sifat operasi perkalian dan pembagian bilangan bulat
Lesson 1 addition and subtraction of radicals
Bab 1 peluang
Systemsof3 equations
Equations with Fractions on Both Sides
8.4 properties of logarithms

What's hot (20)

PPTX
Advanced algebra
PPTX
ppt materi Refleksi terhadap y = mx + c.pptx
PPTX
Evaluating algebraic expressions with substitution (answers)
PPTX
Classifying triangles
PPT
Properties Of Exponents
PPT
Algebra 1 unit 1.1
PPT
Simplifying algebraic expressions
PPTX
Order of operations
PDF
Lesson 9: The Product and Quotient Rule
PPT
bentuk akar.ppt
PPT
Translating Expressions
PPT
Systems of linear equations
PPT
Rules of Exponents
PPT
Polynomial 
PPT
Evaluating Algebraic Expressions
PPTX
Multiplying Polynomials
PPT
Surface Area and Volume PowerPoint.ppt helping
PPTX
Vertical angles
PPTX
Simplifying Ratios
PPT
Order of Operations.powerpoint presentation
Advanced algebra
ppt materi Refleksi terhadap y = mx + c.pptx
Evaluating algebraic expressions with substitution (answers)
Classifying triangles
Properties Of Exponents
Algebra 1 unit 1.1
Simplifying algebraic expressions
Order of operations
Lesson 9: The Product and Quotient Rule
bentuk akar.ppt
Translating Expressions
Systems of linear equations
Rules of Exponents
Polynomial 
Evaluating Algebraic Expressions
Multiplying Polynomials
Surface Area and Volume PowerPoint.ppt helping
Vertical angles
Simplifying Ratios
Order of Operations.powerpoint presentation
Ad

Similar to 2 expressions and linear expressions (20)

PPTX
2 1 expressions
PPTX
1 expressions x
PPTX
41 expressions
PPTX
41 expressions
PPTX
1.2 algebraic expressions y
PPTX
3 algebraic expressions y
PPTX
1.2 algebraic expressions y
PPTX
1.2 algebraic expressions
PPTX
1.2Algebraic Expressions-x
PPTX
2 solving equations nat-e
PPTX
42 linear equations
PPTX
3 linear equations
PPTX
42 linear equations
PPTX
1.1 review on algebra 1
PDF
Grade 7 Mathematics Week 4 2nd Quarter
PPTX
Algebraic Expression and Expansion.pptx
PPTX
Gr. 7- ALGEBRA- Presentation- An Introduction
PPTX
Gr. 7- ALGEBRA- Presentation- An Introduction
PPTX
Lesson 1
PDF
001 introduction algebra
2 1 expressions
1 expressions x
41 expressions
41 expressions
1.2 algebraic expressions y
3 algebraic expressions y
1.2 algebraic expressions y
1.2 algebraic expressions
1.2Algebraic Expressions-x
2 solving equations nat-e
42 linear equations
3 linear equations
42 linear equations
1.1 review on algebra 1
Grade 7 Mathematics Week 4 2nd Quarter
Algebraic Expression and Expansion.pptx
Gr. 7- ALGEBRA- Presentation- An Introduction
Gr. 7- ALGEBRA- Presentation- An Introduction
Lesson 1
001 introduction algebra
Ad

More from elem-alg-sample (20)

PPTX
6 equations and applications of lines
PPTX
5 slopes of lines
PPTX
4 linear equations and graphs of lines
PPTX
3 rectangular coordinate system
PPTX
2 the real line, inequalities and comparative phrases
PPTX
1 basic geometry and formulas
PPTX
18 variations
PPTX
17 applications of proportions and the rational equations
PPTX
16 the multiplier method for simplifying complex fractions
PPTX
15 proportions and the multiplier method for solving rational equations
PPTX
14 the lcm and the multiplier method for addition and subtraction of rational...
PPTX
13 multiplication and division of rational expressions
PPTX
12 rational expressions
PPTX
11 applications of factoring
PPTX
10 more on factoring trinomials and factoring by formulas
PPTX
9 factoring trinomials
PPTX
8 factoring out gcf
PPTX
7 special binomial operations and formulas
PPTX
6 polynomial expressions and operations
PPTX
5 exponents and scientific notation
6 equations and applications of lines
5 slopes of lines
4 linear equations and graphs of lines
3 rectangular coordinate system
2 the real line, inequalities and comparative phrases
1 basic geometry and formulas
18 variations
17 applications of proportions and the rational equations
16 the multiplier method for simplifying complex fractions
15 proportions and the multiplier method for solving rational equations
14 the lcm and the multiplier method for addition and subtraction of rational...
13 multiplication and division of rational expressions
12 rational expressions
11 applications of factoring
10 more on factoring trinomials and factoring by formulas
9 factoring trinomials
8 factoring out gcf
7 special binomial operations and formulas
6 polynomial expressions and operations
5 exponents and scientific notation

Recently uploaded (20)

PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Cell Structure & Organelles in detailed.
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Complications of Minimal Access Surgery at WLH
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Lesson notes of climatology university.
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Computing-Curriculum for Schools in Ghana
Final Presentation General Medicine 03-08-2024.pptx
Cell Structure & Organelles in detailed.
FourierSeries-QuestionsWithAnswers(Part-A).pdf
RMMM.pdf make it easy to upload and study
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Complications of Minimal Access Surgery at WLH
102 student loan defaulters named and shamed – Is someone you know on the list?
O5-L3 Freight Transport Ops (International) V1.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPH.pptx obstetrics and gynecology in nursing
Lesson notes of climatology university.
GDM (1) (1).pptx small presentation for students
human mycosis Human fungal infections are called human mycosis..pptx
TR - Agricultural Crops Production NC III.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Sports Quiz easy sports quiz sports quiz
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx

2 expressions and linear expressions

  • 2. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? Expressions
  • 3. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, Expressions
  • 4. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. Expressions
  • 5. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? Expressions
  • 6. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions
  • 7. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics.
  • 8. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols.
  • 9. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes.
  • 10. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers.
  • 11. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions.
  • 12. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions. The expressions “3x” or “3x + 10” are linear,
  • 13. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions. The expressions “3x” or “3x + 10” are linear, the expressions “x2 + 1” or “1/x” are not linear.
  • 15. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term.
  • 16. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. There are two terms in the linear expression ax + b.
  • 17. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. There are two terms in the linear expression ax + b. There are three terms in the expression ax2 + bx + c
  • 18. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. There are three terms in the expression ax2 + bx + c
  • 19. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c
  • 20. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term
  • 21. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 22. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 23. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 24. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. The x-terms can't be combined with the number terms because they are different type of items just as 2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B), i.e. the expression can’t be condensed further. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 25. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. The x-terms can't be combined with the number terms because they are different type of items just as 2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B), i.e. the expression can’t be condensed further. Hence the expression “2 + 3x” stays as “2 + 3x”, it's not “5x”. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 27. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9
  • 28. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 29. For the x-term ax, the number “a” is called the coefficient of the term. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 30. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 31. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 32. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 33. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 34. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 35. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4)
  • 36. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4) = –5(2x) – (–5)(4)
  • 37. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4) = –5(2x) – (–5)(4) = –10x + 20
  • 38. b. 3(2x – 4) + 2(4 – 5x) Expressions
  • 39. b. 3(2x – 4) + 2(4 – 5x) expand Expressions
  • 40. b. 3(2x – 4) + 2(4 – 5x) expand = 6x Expressions
  • 41. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 Expressions
  • 42. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 Expressions
  • 43. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x Expressions
  • 44. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions
  • 45. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers.
  • 46. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 47. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 48. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 49. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 50. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) = 36A + 24B + 96A + 96B = 132A + 120B Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 51. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) = 36A + 24B + 96A + 96B = 132A + 120B Hence we have 132 apples and 120 bananas. Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 52. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses.
  • 53. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers.
  • 54. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings.
  • 55. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it.
  • 56. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4}
  • 57. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
  • 58. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
  • 59. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify,
  • 60. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify,
  • 61. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand,
  • 62. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand,
  • 63. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify,
  • 64. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify, = –3{–11x – 21}
  • 65. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify, = –3{–11x – 21} expand, = 33x + 63
  • 66. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q
  • 67. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) p qx
  • 68. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q*
  • 69. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Hence is the same as .2x 3 2 3 x *
  • 70. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x Hence is the same as .2x 3 2 3 x *
  • 71. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 Hence is the same as .2x 3 2 3 x * 4 3 x, (6)
  • 72. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6)
  • 73. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8
  • 74. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD.
  • 75. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. Example H. Combine 4 3 x + 5 4 x
  • 76. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 x + 5 4 x Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 77. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 78. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 79. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 80. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 81. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, = (4*4 x + 5*3x) / 12 Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 82. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 31x 12 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, = (4*4 x + 5*3x) / 12 = (16x + 15x) /12 = Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 83. Exercise A. Combine like terms and simplify the expressions. Expressions 1. 3x + 5x 2. 3x – 5x 3. –3x – 5x 4. –3x + 5x 5. 3x + 5x + 4 6. 3x – 5 + 2x 7. 8 – 3x – 5 8. 8 – 3x – 5 – x 9. 8x – 4x – 5 – 2x 10. 6 – 4x – 5x – 2 11. 3A + 4B – 5A + 2B 12. –8B + 4A – 9A – B B. Expand then simplify the expressions. 13. 3(x + 5) 14. –3(x – 5) 15. –4(–3x – 5) 16. –3(6 + 5x) 25. 3(A + 4B) – 5(A + 2B) 26. –8(B + 4A) + 9(2A – B) 17. 3(x + 5) + 3(x – 5) 18. 3(x + 5) – 4(–3x – 5) 19. –9(x – 6) + 4(–3 + 5x) 20. –12(4x + 5) – 4(–7 – 5x) 21. 7(8 – 6x) + 4(–3x + 5) 22. 2(–14x + 5) – 4(–7x – 5) 23. –7(–8 – 6x) – 4(–3 – 5x) 24. –2(–14x – 5) – 6(–9x – 2) 27. 11(A – 4B) – 2(A – 12B) 28. –6(B – 7A) – 8(A – 4B)
  • 84. Expressions C. Starting from the innermost ( ) expand and simplify. 29. x + 2[6 + 4(–3 + 5x)] 30. –5[ x – 4(–7 – 5x)] + 6 31. 8 – 2[4(–3x + 5) + 6x] + x 32. –14x + 5[x – 4(–5x + 15)] 33. –7x + 3{8 – [6(x – 2) –3] – 5x} 34. –3{8 – [6(x – 2) –3] – 5x} – 5[x – 3(–5x + 4)] 35. 4[5(3 – 2x) – 6x] – 3{x – 2[x – 3(–5x + 4)]} 2 3 x + 3 4 x36. 4 3 x – 3 4 x37. 3 8 x – 5 6 x39.5 8 x + 1 6 x38. – – D. Combine using the LCD-multiplication method 40. Do 36 – 39 by the cross–multiplication method.
  • 85. Expressions 42. As in example D with gift boxes Regular and Deluxe, the Regular contains12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. For large orders we may ship them in crates or freight-containers where a crate contains 100 boxes Regular and 80 boxes Deluxe and a container holds 150 Regular boxes and 100 Deluxe boxes. King Kong ordered 4 crates and 5 containers, how many of each type of fruit does King Kong have? 41. As in example D with gift boxes Regular and Deluxe, the Regular contains12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. Joe has 6 Regular boxes and 8 Deluxe boxes. How many of each type of fruit does he have?