SlideShare a Scribd company logo
1
UEB - Université Européenne de Bretagne & Supélec
Cognitive Green
Communications: From Concept
to Practice
Honggang ZHANG
International Chair - CominLabs
Université Européenne de Bretagne (UEB) &
Supélec/IETR
Supélec SCEE Seminar
March 21, 2013 – Rennes, France
2
UEB - Université Européenne de Bretagne & Supélec
Outline
 Part I – the Concept: Energy-efficient Cognitive Green
Radio Communications
 Part II – the Practice: Cognitive Green Communications
for Achieving Energy Saving within Cellular Mobile
Networks
ACKNOWLEDGEMENT:
This presentation is supported by the International Chair Program, CominLabs
Excellence Center, Université Européenne de Bretagne (UEB) and
SUPELEC/IETR. (GREAT: Green Cognitive Radio for Energy-Aware wireless
communication Technologies evolution)
Also, thanks to Prof. Jacques Palicot (SUPELEC), Dr. Tao Chen (VTT), Dr. Xianfu
Chen (VTT), Mr. Rongpeng Li (ZJU), and Mr. Xuan Zhou (ZJU) for their
supporting materials.
3
UEB - Université Européenne de Bretagne & Supélec
UEB - Université Européenne de Bretagne
4
UEB - Université Européenne de Bretagne & Supélec
Global Warming – The Most Dangerous
Threat ?
5
UEB - Université Européenne de Bretagne & Supélec
Terrible Climate Change: Trans-Arctic
Shipping Routes Navigable 21st-midcentury
Source: Laurence C. Smith and Scott R. Stephenson, “New Trans-Arctic
Shipping Routes Navigable by Midcentury,” PNAS, January 2013.
6
UEB - Université Européenne de Bretagne & Supélec
Data Explosion - Exponential Traffic
Growth
7
UEB - Université Européenne de Bretagne & Supélec
Data Explosion - Exponential Traffic
Growth (2)
Source: http://bigdatadiary.com/networks-strain-to-keep-pace-with-
data-explosion/internetminute/
8
UEB - Université Européenne de Bretagne & Supélec
Part I: Green Communications
Paradigm Change from Coverage- & Capacity-
Driven to Energy-Efficiency Driven Era
9
UEB - Université Européenne de Bretagne & Supélec
Source: Prof. T. Aoyama, Keio University, ISCIT 2010 Keynote
Speech.
Energy Crisis and Challenges
10
UEB - Université Européenne de Bretagne & Supélec
ICT Sector Commitments to Targets and Deadlines for CO2
and Greenhouse Gas Emissions and Energy
Efficiency/Consumption (European Commission 2009/03/12)
Energy Crisis and Challenges (2)
11
UEB - Université Européenne de Bretagne & Supélec
ICT Sector Commitments to Targets and Deadlines for CO2
and Greenhouse Gas Emissions and Energy
Efficiency/Consumption (European Commission 2009/03/12)
Energy Crisis and Challenges (3)
12
UEB - Université Européenne de Bretagne & Supélec
Architecture of Telecommunication
Networks
13
UEB - Université Européenne de Bretagne & Supélec
Mobile Telecommunications Networks
Power Consumption Breakdown
Energy consumption composition in Vodafone (Source: Vodafone)
14
UEB - Université Européenne de Bretagne & Supélec
Energy Consumption in Radio Access
Networks
15
UEB - Université Européenne de Bretagne & Supélec
Energy Consumption Reference Model for
Base Station
2400 500300
150 110
Source: Tao Chen, et al., “Network Energy Saving Technologies for
Green Wireless Access Networks”IEEE Wireless Communications
Magazine, 2011.
16
UEB - Université Européenne de Bretagne & Supélec
Energy Consumption Reference Model for
Base Station (2)
Note: Values in italic are power consumption figures in GSM system.
17
UEB - Université Européenne de Bretagne & Supélec
Network-wide Energy Saving Strategies &
Techniques
Increasing
bandwidth can also
save energy,
depending on
context
Source: Tao Chen, et al., “Network Energy Saving Technologies for
Green Wireless Access Networks”IEEE Wireless Communications
Magazine, 2011.
18
UEB - Université Européenne de Bretagne & Supélec
Cognitive Green Communications
Intelligence with Adaptation, Balancing &
Optimization for Network Energy Saving
19
UEB - Université Européenne de Bretagne & Supélec
Features & Key Functionalities of
Cognitive Radio (Cognitive Cycle)
Source: Gurkan Gur and Fatih Alagoz, “Green Wireless Communications
via Cognitive Dimension: An Overview”, IEEE Network, March 2011.
20
UEB - Université Européenne de Bretagne & Supélec
Embedded Intelligence in a General
Cognitive Radio Transceiver
Cognitive Radio Node
PHY
Layer
MAC
Layer
Network
Layer
Application
Layer
Source:
Xianfu Chen, Zhifeng Zhao, and Honggang Zhang, “Stochastic Power Adaptation with Multi-agent Reinforcement
Learning for Cognitive Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, Q4 2012.
Xianfu Chen, Zhifeng Zhao, Honggang Zhang, and Tao Chen, “Conjectural variations in multi-agent reinforcement
learning for energy-efficient cognitive wireless mesh networks,” in Proceedings of IEEE WCNC 2012, Paris, France,
Apr. 2012.
21
UEB - Université Européenne de Bretagne & Supélec
Machine Learning
Why Reinforcement Learning?
22
UEB - Université Européenne de Bretagne & Supélec
Basics of Reinforcement Learning
 Policy: What to do
 Reward: What is good
 Value: What is good
because it predicts reward
 Model: What follows what
Policy
Reward
Value
Model of environment
23
UEB - Université Européenne de Bretagne & Supélec
Processes of Reinforcement Learning
24
UEB - Université Européenne de Bretagne & Supélec
Workflow of Energy Saving Mechanism
Enabled by Cognitive Process/Cycle
Source: Oliver Blume, et al. “Energy Savings in Mobile Networks Based on
Adaptation to Traffic Statistics,” Bell Labs Technical Journal 15(2), 77–94
(2010).
25
UEB - Université Européenne de Bretagne & Supélec
Once upon a Time – What was Cognitive
Radio, Really?
Joe Mitola’s Cognitive Radio (1999) Simon Haykin’s Cognitive Radio (2005)
DySPAN’s Cognitive Radio (2007)
Cognitive Radio (G. Gur and F. Alagoz, 2011)
26
UEB - Université Européenne de Bretagne & Supélec
Once upon a Time – What was Cognitive
Radio, Really? (2)
27
UEB - Université Européenne de Bretagne & Supélec
Part II: The Practice – Energy Saving for
Greener Cellular Mobile Networks
“Tidal Effect” of Cellular Networks’ Traffic Flow &
Loads
28
UEB - Université Européenne de Bretagne & Supélec
Representative Patterns of Traffic Loads
during One Day (Cellular Networks)
29
UEB - Université Européenne de Bretagne & Supélec
Normalized load of three different cell sectors over 3 weeks. The moving average of
each cell over one second has been plotted. The cells show high load (Top), varying
load (Middle), and low load (Bottom).
Source: Daniel Willkomm et al., “Primary User Behavior in Cellular
Networks and Implications for Dynamic Spectrum Access”.
Representative Patterns of Traffic Loads
during 3 Weeks (Cellular Networks)
30
UEB - Université Européenne de Bretagne & Supélec
E-commerce website: 292 production web servers over 5 days. (Traffic varies by
day/weekend, power doesn’t.)
Representative Patterns of Traffic Load
during 5 Days (Core Networks/Internet)
31
UEB - Université Européenne de Bretagne & Supélec
Base Stations’ Traffic Loads Measurement
Campaigns in Zhejiang (China)
Source: Xuan Zhou, Zhifeng Zhao, Rongpeng Li, Yifan Zhou, and Honggang Zhang, “The Predictability of Cellular
Networks Traffic,” IEEE ISCIT2012, October 2012.
 Traffic records from 9 MSCs and SGSNs
with about 7000 BSs with coverage of
780 km2
 Both GSM and UMTSBSs traffic from
January to December in 2012, serving
about 3 million subscribers
32
UEB - Université Européenne de Bretagne & Supélec
Measured Traffic Loads Variation Patterns
(One Week)
33
UEB - Université Européenne de Bretagne & Supélec
Typical Examples of Measured Base
Stations’ Traffic Loads in Zhejiang (China)
Source: Rongpeng Li, Zhifeng Zhao, Yan Wei, Xuan Zhou, and Honggang Zhang, “GM-PAB: a grid-based energy
saving scheme with predicted traffic load guidance for cellular networks,” in Proceedings of IEEE ICC 2012,
Ottawa, Canada, Jun. 2012.
34
UEB - Université Européenne de Bretagne & Supélec
Sensing and Prediction of Cellular
Networks’ Traffic Flows & Loads
,t,t,t xxy 321 
BS1
BS3
BS2Router
route 1
route 3
route 2
link 2
link 1
link 3











6,3
6,2
6,1
5,3
5,2
5,1
4,13,32,3
4,13,22,2
4,13,12,1
1,3
1,2
1,1
x
x
x
x
x
x
xxx
xxx
xxx
x
x
x
X
Interpolation: fill in the missing data from incomplete and/or
indirect measurements of the Traffic Matrices
FutureAnomalyMissing
35
UEB - Université Européenne de Bretagne & Supélec
Sensing and Prediction of Cellular
Networks’ Traffic Flows &Loads (2)
Source: Rongpeng Li, Zhifeng Zhao, Xuan Zhou, and Honggang Zhang, “Energy savings scheme in radio access
networks via compressive sensing-based traffic load prediction,” European Transactions on Emerging
Telecommunications Technologies (ETT), Nov. 2012.
36
UEB - Université Européenne de Bretagne & Supélec
Network Energy Saving through BS
Switching on/off (Sleep Mode)
37
UEB - Université Européenne de Bretagne & Supélec
Block Diagram of Reinforcement Learning
- The learning system and the environment are both
inside the feedback loop
38
UEB - Université Européenne de Bretagne & Supélec
Reinforcement Learning: Actor-Critic
Approach
39
UEB - Université Européenne de Bretagne & Supélec
Stochastic BS Switching Operation with
Actor-Critic Learning
Source” Rongpeng Li, Zhifeng Zhao, Xian Chen, and Honggang Zhang, “Energy Saving through a Learning
Framework in Greener Cellular Radio Access Networks,” in Proceedings of IEEE Globecom 2012, Anaheim, USA,
Dec. 2012.
40
UEB - Université Européenne de Bretagne & Supélec
Stochastic BS Switching Operation with
Actor-Critic Learning (2)
41
UEB - Université Européenne de Bretagne & Supélec
Base Stations’ Traffic Load State Vector
42
UEB - Université Européenne de Bretagne & Supélec
Traffic Loads and BS Power Consumption
Model
43
UEB - Université Européenne de Bretagne & Supélec
Actor-Critic Learning: Markov Decision
Process
44
UEB - Université Européenne de Bretagne & Supélec
Actor-Critic Learning: Markov Decision
Process (2)
45
UEB - Université Européenne de Bretagne & Supélec
Actor-Critic Learning: Markov Decision
Process (3)
46
UEB - Université Européenne de Bretagne & Supélec
Actor-Critic Learning Scheme for BS Power
Saving
47
UEB - Université Européenne de Bretagne & Supélec
Parameter description Value
Simulation area 1.5km * 1.5km
Maximum transmission power Macro BS 20W
Micro BS 1W
Maximum operational power Macro BS 865W
Micro BS 38W
Height Macro BS 32m
Micro BS 12.5m
Intra-cell interference factor 0.01
Channel bandwidth 1.25MHz
File requests Arrival rate
File size 100kbyte
Constant power percentage
Numerical Analysis
48
UEB - Université Européenne de Bretagne & Supélec
Energy Saving by Actor-Critic Learning (BS
Switching & Sleep Mode)
Performance comparison between Actor-Critic learning framework (LF)
based energy saving scheme and the state-of-the-art (SOTA) scheme
(JSAC, Sept. 2012) under various static/variant traffic arrival rates.
Source” Rongpeng Li, Zhifeng Zhao, Xian Chen, and Honggang Zhang, “Energy Saving through a Learning
Framework in Greener Cellular Radio Access Networks,” in Proceedings of IEEE Globecom 2012, Anaheim, USA,
Dec. 2012.
49
UEB - Université Européenne de Bretagne & Supélec
Basics and Advantages of Transfer
Learning
50
UEB - Université Européenne de Bretagne & Supélec
50
Xuan Zhou, Zhifeng Zhao, R. Li, Y. Zhou, J. Palicot, and Honggang Zhang, “TACT: A Transfer Actor-Critic Learning
Framework for Energy Saving in Cellular Radio Access Networks,” arXiv:1211.6616, November 2012.
Stochastic BS Switching Operation with
Transfer Reinforcement Learning
51
UEB - Université Européenne de Bretagne & Supélec
Basics and Features of Transfer
Reinforcement Learning
52
UEB - Université Européenne de Bretagne & Supélec
Features of Transfer Actor-Critic Learning
53
UEB - Université Européenne de Bretagne & Supélec
TACT : The Transfer Learning Framework
for Energy Saving Scheme
54
UEB - Université Européenne de Bretagne & Supélec
Numerical Analysis
55
UEB - Université Européenne de Bretagne & Supélec
Performance impact of the transfer rate factor θ to
the TACT scheme when λ = 5× 10−6
Energy Saving by Transfer Actor-Critic
Learning (BS Switching & Sleep Mode)
Performance comparison among classical AC scheme,
TACT scheme and SOTA scheme under various
homogeneous traffic arrival rates when the transfer
rate θ = 0.1
Xuan Zhou, Zhifeng Zhao, R. Li, Y. Zhou, J. Palicot, and Honggang Zhang, “TACT: A Transfer Actor-Critic Learning
Framework for Energy Saving in Cellular Radio Access Networks,” arXiv:1211.6616, November 2012.
56
UEB - Université Européenne de Bretagne & Supélec
Summary & Conclusion
 Environmental-friendly Green Communications:
– A paradigm change from traditional coverage- & capacity-driven
to energy-efficiency driven communications and networks (Smart,
sustainable, and self-harmonized greener ICT).
 Cognitive Green Radio Communications:
– Besides spectrum and energy, intelligence is the THIRD kind of
resource, but without limitation of scarcity.
– Learning and decision making algorithms under green constraint
can play a significant role in enabling energy- and spectral-
efficient greener future communications.
– Effective energy saving can be realized by using various
learning approaches in mobile cellular networks.
Cognitive Green Communications:
From Concept to Reality!
57
UEB - Université Européenne de Bretagne & Supélec
Thanks!
Email:
Honggang.Zhang@supelec.fr

More Related Content

PDF
Ieee vts talk
PPT
Ieee vts chapter_intro
PDF
Network efficiency enhancement by reactive channel state based allocation sch...
PDF
Smart antennas for next generation wireless systems eurasip
PPT
Green Mobile Communications
PDF
Analyzing and evaluating the energy efficiency based on multi-5G small cells...
PPTX
Green radio communication
PPTX
Green radio (final)
Ieee vts talk
Ieee vts chapter_intro
Network efficiency enhancement by reactive channel state based allocation sch...
Smart antennas for next generation wireless systems eurasip
Green Mobile Communications
Analyzing and evaluating the energy efficiency based on multi-5G small cells...
Green radio communication
Green radio (final)

What's hot (20)

PDF
Performance Analysis of Bus Topology in Fiber Optic Communication
PDF
Sierpinski carpet fractal monopole antenna for ultra-wideband applications
PDF
Poster Version 4
PDF
Adaptive Multi-state Millimeter Wave Cell Selection Scheme for 5G communicati...
PPT
Green wireless communication with relays
PPTX
Green Communication
PPTX
Optimization Modeling and Decision Support for Wireless Infrastructure Deploy...
PDF
Energy Efficient Wireless Communications
PPTX
Energy efficient wireless technology
PDF
Performance analysis of different loss
PDF
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
PDF
An energy aware scheme for layered chain in underwater wireless sensor networ...
PPT
Channel Gain Survey
PDF
2013 ictc toha_slide
PDF
Beam division multiple access for millimeter wave massive MIMO: Hybrid zero-f...
PPT
Network survivability karunakar
PPTX
Optical Network Survivability
PDF
International Journal of Computer Networks & Communications (IJCNC)
PDF
Performance of symmetric and asymmetric links in wireless networks
Performance Analysis of Bus Topology in Fiber Optic Communication
Sierpinski carpet fractal monopole antenna for ultra-wideband applications
Poster Version 4
Adaptive Multi-state Millimeter Wave Cell Selection Scheme for 5G communicati...
Green wireless communication with relays
Green Communication
Optimization Modeling and Decision Support for Wireless Infrastructure Deploy...
Energy Efficient Wireless Communications
Energy efficient wireless technology
Performance analysis of different loss
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
An energy aware scheme for layered chain in underwater wireless sensor networ...
Channel Gain Survey
2013 ictc toha_slide
Beam division multiple access for millimeter wave massive MIMO: Hybrid zero-f...
Network survivability karunakar
Optical Network Survivability
International Journal of Computer Networks & Communications (IJCNC)
Performance of symmetric and asymmetric links in wireless networks
Ad

Viewers also liked (19)

PDF
2012 04-26 savaux
PDF
2016 03-03 marchand
PDF
2012 10-04 achaichia
PDF
2012 05-10 kaiser
PDF
2015 12-10 chabert
PDF
2014 04-10 nebhen
PDF
2015 08-31 kofidis
PDF
2014 11-06 melian
PDF
2013 10-17 nuaymi
DOCX
Create procedure listar pais
DOCX
Fp fm reporte aplicacion aamtic_g89_act.2-angelap.muñoz
PPTX
Acid-base poster
PPTX
Metodos anticonceptivos y planificación familiar
PPTX
Soft performance - measuring
PPTX
Domicilio fiscal ppt
PPT
Atencion del recien nacido
PPSX
Namorar você
DOC
Linda M Shepherd CV 3.14.16
PDF
CV_AHMED
2012 04-26 savaux
2016 03-03 marchand
2012 10-04 achaichia
2012 05-10 kaiser
2015 12-10 chabert
2014 04-10 nebhen
2015 08-31 kofidis
2014 11-06 melian
2013 10-17 nuaymi
Create procedure listar pais
Fp fm reporte aplicacion aamtic_g89_act.2-angelap.muñoz
Acid-base poster
Metodos anticonceptivos y planificación familiar
Soft performance - measuring
Domicilio fiscal ppt
Atencion del recien nacido
Namorar você
Linda M Shepherd CV 3.14.16
CV_AHMED
Ad

Similar to 2013 03-20 zhang (20)

PDF
Novel Optimization to Reduce Power Drainage in Mobile Devices for Multicarrie...
PDF
Novel Optimization to Reduce Power Drainage in Mobile Devices for Multicarrie...
PDF
A Framework for Optimizing the Process of Energy Harvesting from Ambient RF S...
PDF
Approach to minimizing consumption of energy in wireless sensor networks
DOCX
Device to Device Communication in Cellular Networks
PDF
ENERGY EFFICIENCY OF MIMO COOPERATIVE NETWORKS WITH ENERGY HARVESTING SENSOR ...
PDF
ENERGY EFFICIENCY OF MIMO COOPERATIVE NETWORKS WITH ENERGY HARVESTING SENSOR ...
PDF
Energy-efficient non-orthogonal multiple access for wireless communication sy...
PDF
A Master of ScienceProject Report Optical cmms-oaa516
DOC
Santhosh hj shivaprakash
PDF
Investigation of Ant Colony Optimization Algorithm for Efficient Energy Utili...
PDF
Investigation of Ant Colony Optimization Algorithm for Efficient Energy Utili...
PDF
Energy Efficient Cellular Base Stations based on the Characteristics of Ma...
PDF
20190725 li chun_lab_intro_v5
PDF
Physical_Layer_Security_for_Wireless-Powered_Ambient_Backscatter_Cooperative_...
PDF
Top 10 Read Article - International Journal of Wireless & Mobile Networks (IJ...
PDF
IRJET- Security and QoS Aware Dynamic Clustering (SQADC) Routing Protocol for...
PDF
Ecological impact due to the implementation of a modeled and optimized hybri...
PDF
Routing Optimization with Load Balancing: an Energy Efficient Approach
PDF
Integration of artificial neural networks for multi-source energy management ...
Novel Optimization to Reduce Power Drainage in Mobile Devices for Multicarrie...
Novel Optimization to Reduce Power Drainage in Mobile Devices for Multicarrie...
A Framework for Optimizing the Process of Energy Harvesting from Ambient RF S...
Approach to minimizing consumption of energy in wireless sensor networks
Device to Device Communication in Cellular Networks
ENERGY EFFICIENCY OF MIMO COOPERATIVE NETWORKS WITH ENERGY HARVESTING SENSOR ...
ENERGY EFFICIENCY OF MIMO COOPERATIVE NETWORKS WITH ENERGY HARVESTING SENSOR ...
Energy-efficient non-orthogonal multiple access for wireless communication sy...
A Master of ScienceProject Report Optical cmms-oaa516
Santhosh hj shivaprakash
Investigation of Ant Colony Optimization Algorithm for Efficient Energy Utili...
Investigation of Ant Colony Optimization Algorithm for Efficient Energy Utili...
Energy Efficient Cellular Base Stations based on the Characteristics of Ma...
20190725 li chun_lab_intro_v5
Physical_Layer_Security_for_Wireless-Powered_Ambient_Backscatter_Cooperative_...
Top 10 Read Article - International Journal of Wireless & Mobile Networks (IJ...
IRJET- Security and QoS Aware Dynamic Clustering (SQADC) Routing Protocol for...
Ecological impact due to the implementation of a modeled and optimized hybri...
Routing Optimization with Load Balancing: an Energy Efficient Approach
Integration of artificial neural networks for multi-source energy management ...

Recently uploaded (20)

PPTX
1. Introduction to Computer Programming.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
Big Data Technologies - Introduction.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
A Presentation on Artificial Intelligence
PDF
Machine learning based COVID-19 study performance prediction
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
Approach and Philosophy of On baking technology
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Encapsulation theory and applications.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Electronic commerce courselecture one. Pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
1. Introduction to Computer Programming.pptx
Assigned Numbers - 2025 - Bluetooth® Document
Big Data Technologies - Introduction.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Building Integrated photovoltaic BIPV_UPV.pdf
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Encapsulation_ Review paper, used for researhc scholars
A Presentation on Artificial Intelligence
Machine learning based COVID-19 study performance prediction
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Approach and Philosophy of On baking technology
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Encapsulation theory and applications.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Unlocking AI with Model Context Protocol (MCP)
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Diabetes mellitus diagnosis method based random forest with bat algorithm
Electronic commerce courselecture one. Pdf
Advanced methodologies resolving dimensionality complications for autism neur...

2013 03-20 zhang

  • 1. 1 UEB - Université Européenne de Bretagne & Supélec Cognitive Green Communications: From Concept to Practice Honggang ZHANG International Chair - CominLabs Université Européenne de Bretagne (UEB) & Supélec/IETR Supélec SCEE Seminar March 21, 2013 – Rennes, France
  • 2. 2 UEB - Université Européenne de Bretagne & Supélec Outline  Part I – the Concept: Energy-efficient Cognitive Green Radio Communications  Part II – the Practice: Cognitive Green Communications for Achieving Energy Saving within Cellular Mobile Networks ACKNOWLEDGEMENT: This presentation is supported by the International Chair Program, CominLabs Excellence Center, Université Européenne de Bretagne (UEB) and SUPELEC/IETR. (GREAT: Green Cognitive Radio for Energy-Aware wireless communication Technologies evolution) Also, thanks to Prof. Jacques Palicot (SUPELEC), Dr. Tao Chen (VTT), Dr. Xianfu Chen (VTT), Mr. Rongpeng Li (ZJU), and Mr. Xuan Zhou (ZJU) for their supporting materials.
  • 3. 3 UEB - Université Européenne de Bretagne & Supélec UEB - Université Européenne de Bretagne
  • 4. 4 UEB - Université Européenne de Bretagne & Supélec Global Warming – The Most Dangerous Threat ?
  • 5. 5 UEB - Université Européenne de Bretagne & Supélec Terrible Climate Change: Trans-Arctic Shipping Routes Navigable 21st-midcentury Source: Laurence C. Smith and Scott R. Stephenson, “New Trans-Arctic Shipping Routes Navigable by Midcentury,” PNAS, January 2013.
  • 6. 6 UEB - Université Européenne de Bretagne & Supélec Data Explosion - Exponential Traffic Growth
  • 7. 7 UEB - Université Européenne de Bretagne & Supélec Data Explosion - Exponential Traffic Growth (2) Source: http://bigdatadiary.com/networks-strain-to-keep-pace-with- data-explosion/internetminute/
  • 8. 8 UEB - Université Européenne de Bretagne & Supélec Part I: Green Communications Paradigm Change from Coverage- & Capacity- Driven to Energy-Efficiency Driven Era
  • 9. 9 UEB - Université Européenne de Bretagne & Supélec Source: Prof. T. Aoyama, Keio University, ISCIT 2010 Keynote Speech. Energy Crisis and Challenges
  • 10. 10 UEB - Université Européenne de Bretagne & Supélec ICT Sector Commitments to Targets and Deadlines for CO2 and Greenhouse Gas Emissions and Energy Efficiency/Consumption (European Commission 2009/03/12) Energy Crisis and Challenges (2)
  • 11. 11 UEB - Université Européenne de Bretagne & Supélec ICT Sector Commitments to Targets and Deadlines for CO2 and Greenhouse Gas Emissions and Energy Efficiency/Consumption (European Commission 2009/03/12) Energy Crisis and Challenges (3)
  • 12. 12 UEB - Université Européenne de Bretagne & Supélec Architecture of Telecommunication Networks
  • 13. 13 UEB - Université Européenne de Bretagne & Supélec Mobile Telecommunications Networks Power Consumption Breakdown Energy consumption composition in Vodafone (Source: Vodafone)
  • 14. 14 UEB - Université Européenne de Bretagne & Supélec Energy Consumption in Radio Access Networks
  • 15. 15 UEB - Université Européenne de Bretagne & Supélec Energy Consumption Reference Model for Base Station 2400 500300 150 110 Source: Tao Chen, et al., “Network Energy Saving Technologies for Green Wireless Access Networks”IEEE Wireless Communications Magazine, 2011.
  • 16. 16 UEB - Université Européenne de Bretagne & Supélec Energy Consumption Reference Model for Base Station (2) Note: Values in italic are power consumption figures in GSM system.
  • 17. 17 UEB - Université Européenne de Bretagne & Supélec Network-wide Energy Saving Strategies & Techniques Increasing bandwidth can also save energy, depending on context Source: Tao Chen, et al., “Network Energy Saving Technologies for Green Wireless Access Networks”IEEE Wireless Communications Magazine, 2011.
  • 18. 18 UEB - Université Européenne de Bretagne & Supélec Cognitive Green Communications Intelligence with Adaptation, Balancing & Optimization for Network Energy Saving
  • 19. 19 UEB - Université Européenne de Bretagne & Supélec Features & Key Functionalities of Cognitive Radio (Cognitive Cycle) Source: Gurkan Gur and Fatih Alagoz, “Green Wireless Communications via Cognitive Dimension: An Overview”, IEEE Network, March 2011.
  • 20. 20 UEB - Université Européenne de Bretagne & Supélec Embedded Intelligence in a General Cognitive Radio Transceiver Cognitive Radio Node PHY Layer MAC Layer Network Layer Application Layer Source: Xianfu Chen, Zhifeng Zhao, and Honggang Zhang, “Stochastic Power Adaptation with Multi-agent Reinforcement Learning for Cognitive Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, Q4 2012. Xianfu Chen, Zhifeng Zhao, Honggang Zhang, and Tao Chen, “Conjectural variations in multi-agent reinforcement learning for energy-efficient cognitive wireless mesh networks,” in Proceedings of IEEE WCNC 2012, Paris, France, Apr. 2012.
  • 21. 21 UEB - Université Européenne de Bretagne & Supélec Machine Learning Why Reinforcement Learning?
  • 22. 22 UEB - Université Européenne de Bretagne & Supélec Basics of Reinforcement Learning  Policy: What to do  Reward: What is good  Value: What is good because it predicts reward  Model: What follows what Policy Reward Value Model of environment
  • 23. 23 UEB - Université Européenne de Bretagne & Supélec Processes of Reinforcement Learning
  • 24. 24 UEB - Université Européenne de Bretagne & Supélec Workflow of Energy Saving Mechanism Enabled by Cognitive Process/Cycle Source: Oliver Blume, et al. “Energy Savings in Mobile Networks Based on Adaptation to Traffic Statistics,” Bell Labs Technical Journal 15(2), 77–94 (2010).
  • 25. 25 UEB - Université Européenne de Bretagne & Supélec Once upon a Time – What was Cognitive Radio, Really? Joe Mitola’s Cognitive Radio (1999) Simon Haykin’s Cognitive Radio (2005) DySPAN’s Cognitive Radio (2007) Cognitive Radio (G. Gur and F. Alagoz, 2011)
  • 26. 26 UEB - Université Européenne de Bretagne & Supélec Once upon a Time – What was Cognitive Radio, Really? (2)
  • 27. 27 UEB - Université Européenne de Bretagne & Supélec Part II: The Practice – Energy Saving for Greener Cellular Mobile Networks “Tidal Effect” of Cellular Networks’ Traffic Flow & Loads
  • 28. 28 UEB - Université Européenne de Bretagne & Supélec Representative Patterns of Traffic Loads during One Day (Cellular Networks)
  • 29. 29 UEB - Université Européenne de Bretagne & Supélec Normalized load of three different cell sectors over 3 weeks. The moving average of each cell over one second has been plotted. The cells show high load (Top), varying load (Middle), and low load (Bottom). Source: Daniel Willkomm et al., “Primary User Behavior in Cellular Networks and Implications for Dynamic Spectrum Access”. Representative Patterns of Traffic Loads during 3 Weeks (Cellular Networks)
  • 30. 30 UEB - Université Européenne de Bretagne & Supélec E-commerce website: 292 production web servers over 5 days. (Traffic varies by day/weekend, power doesn’t.) Representative Patterns of Traffic Load during 5 Days (Core Networks/Internet)
  • 31. 31 UEB - Université Européenne de Bretagne & Supélec Base Stations’ Traffic Loads Measurement Campaigns in Zhejiang (China) Source: Xuan Zhou, Zhifeng Zhao, Rongpeng Li, Yifan Zhou, and Honggang Zhang, “The Predictability of Cellular Networks Traffic,” IEEE ISCIT2012, October 2012.  Traffic records from 9 MSCs and SGSNs with about 7000 BSs with coverage of 780 km2  Both GSM and UMTSBSs traffic from January to December in 2012, serving about 3 million subscribers
  • 32. 32 UEB - Université Européenne de Bretagne & Supélec Measured Traffic Loads Variation Patterns (One Week)
  • 33. 33 UEB - Université Européenne de Bretagne & Supélec Typical Examples of Measured Base Stations’ Traffic Loads in Zhejiang (China) Source: Rongpeng Li, Zhifeng Zhao, Yan Wei, Xuan Zhou, and Honggang Zhang, “GM-PAB: a grid-based energy saving scheme with predicted traffic load guidance for cellular networks,” in Proceedings of IEEE ICC 2012, Ottawa, Canada, Jun. 2012.
  • 34. 34 UEB - Université Européenne de Bretagne & Supélec Sensing and Prediction of Cellular Networks’ Traffic Flows & Loads ,t,t,t xxy 321  BS1 BS3 BS2Router route 1 route 3 route 2 link 2 link 1 link 3            6,3 6,2 6,1 5,3 5,2 5,1 4,13,32,3 4,13,22,2 4,13,12,1 1,3 1,2 1,1 x x x x x x xxx xxx xxx x x x X Interpolation: fill in the missing data from incomplete and/or indirect measurements of the Traffic Matrices FutureAnomalyMissing
  • 35. 35 UEB - Université Européenne de Bretagne & Supélec Sensing and Prediction of Cellular Networks’ Traffic Flows &Loads (2) Source: Rongpeng Li, Zhifeng Zhao, Xuan Zhou, and Honggang Zhang, “Energy savings scheme in radio access networks via compressive sensing-based traffic load prediction,” European Transactions on Emerging Telecommunications Technologies (ETT), Nov. 2012.
  • 36. 36 UEB - Université Européenne de Bretagne & Supélec Network Energy Saving through BS Switching on/off (Sleep Mode)
  • 37. 37 UEB - Université Européenne de Bretagne & Supélec Block Diagram of Reinforcement Learning - The learning system and the environment are both inside the feedback loop
  • 38. 38 UEB - Université Européenne de Bretagne & Supélec Reinforcement Learning: Actor-Critic Approach
  • 39. 39 UEB - Université Européenne de Bretagne & Supélec Stochastic BS Switching Operation with Actor-Critic Learning Source” Rongpeng Li, Zhifeng Zhao, Xian Chen, and Honggang Zhang, “Energy Saving through a Learning Framework in Greener Cellular Radio Access Networks,” in Proceedings of IEEE Globecom 2012, Anaheim, USA, Dec. 2012.
  • 40. 40 UEB - Université Européenne de Bretagne & Supélec Stochastic BS Switching Operation with Actor-Critic Learning (2)
  • 41. 41 UEB - Université Européenne de Bretagne & Supélec Base Stations’ Traffic Load State Vector
  • 42. 42 UEB - Université Européenne de Bretagne & Supélec Traffic Loads and BS Power Consumption Model
  • 43. 43 UEB - Université Européenne de Bretagne & Supélec Actor-Critic Learning: Markov Decision Process
  • 44. 44 UEB - Université Européenne de Bretagne & Supélec Actor-Critic Learning: Markov Decision Process (2)
  • 45. 45 UEB - Université Européenne de Bretagne & Supélec Actor-Critic Learning: Markov Decision Process (3)
  • 46. 46 UEB - Université Européenne de Bretagne & Supélec Actor-Critic Learning Scheme for BS Power Saving
  • 47. 47 UEB - Université Européenne de Bretagne & Supélec Parameter description Value Simulation area 1.5km * 1.5km Maximum transmission power Macro BS 20W Micro BS 1W Maximum operational power Macro BS 865W Micro BS 38W Height Macro BS 32m Micro BS 12.5m Intra-cell interference factor 0.01 Channel bandwidth 1.25MHz File requests Arrival rate File size 100kbyte Constant power percentage Numerical Analysis
  • 48. 48 UEB - Université Européenne de Bretagne & Supélec Energy Saving by Actor-Critic Learning (BS Switching & Sleep Mode) Performance comparison between Actor-Critic learning framework (LF) based energy saving scheme and the state-of-the-art (SOTA) scheme (JSAC, Sept. 2012) under various static/variant traffic arrival rates. Source” Rongpeng Li, Zhifeng Zhao, Xian Chen, and Honggang Zhang, “Energy Saving through a Learning Framework in Greener Cellular Radio Access Networks,” in Proceedings of IEEE Globecom 2012, Anaheim, USA, Dec. 2012.
  • 49. 49 UEB - Université Européenne de Bretagne & Supélec Basics and Advantages of Transfer Learning
  • 50. 50 UEB - Université Européenne de Bretagne & Supélec 50 Xuan Zhou, Zhifeng Zhao, R. Li, Y. Zhou, J. Palicot, and Honggang Zhang, “TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks,” arXiv:1211.6616, November 2012. Stochastic BS Switching Operation with Transfer Reinforcement Learning
  • 51. 51 UEB - Université Européenne de Bretagne & Supélec Basics and Features of Transfer Reinforcement Learning
  • 52. 52 UEB - Université Européenne de Bretagne & Supélec Features of Transfer Actor-Critic Learning
  • 53. 53 UEB - Université Européenne de Bretagne & Supélec TACT : The Transfer Learning Framework for Energy Saving Scheme
  • 54. 54 UEB - Université Européenne de Bretagne & Supélec Numerical Analysis
  • 55. 55 UEB - Université Européenne de Bretagne & Supélec Performance impact of the transfer rate factor θ to the TACT scheme when λ = 5× 10−6 Energy Saving by Transfer Actor-Critic Learning (BS Switching & Sleep Mode) Performance comparison among classical AC scheme, TACT scheme and SOTA scheme under various homogeneous traffic arrival rates when the transfer rate θ = 0.1 Xuan Zhou, Zhifeng Zhao, R. Li, Y. Zhou, J. Palicot, and Honggang Zhang, “TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks,” arXiv:1211.6616, November 2012.
  • 56. 56 UEB - Université Européenne de Bretagne & Supélec Summary & Conclusion  Environmental-friendly Green Communications: – A paradigm change from traditional coverage- & capacity-driven to energy-efficiency driven communications and networks (Smart, sustainable, and self-harmonized greener ICT).  Cognitive Green Radio Communications: – Besides spectrum and energy, intelligence is the THIRD kind of resource, but without limitation of scarcity. – Learning and decision making algorithms under green constraint can play a significant role in enabling energy- and spectral- efficient greener future communications. – Effective energy saving can be realized by using various learning approaches in mobile cellular networks. Cognitive Green Communications: From Concept to Reality!
  • 57. 57 UEB - Université Européenne de Bretagne & Supélec Thanks! Email: Honggang.Zhang@supelec.fr