- The document discusses inverse functions, which reverse the input-output relationship of a function.
- For a function f(x) to have an inverse f-1(y), it must be one-to-one, meaning different inputs give different outputs.
- Examples show how to find the inverse of functions like f(x)=2x by taking the output and reversing the operation, and that some functions like f(x)=x2 do not have inverses because they are not one-to-one.