SEARN is an algorithm for structured prediction that casts it as a sequence of cost-sensitive classification problems. It works by learning a policy to make incremental decisions that build up the full structured output. The policy is trained through an iterative process of generating cost-sensitive examples from sample outputs produced by the current policy, training a classifier on those examples, and interpolating the new policy with the previous one. This allows SEARN to learn the structured prediction task without requiring assumptions about the output structure, unlike approaches that make independence assumptions or rely on global prediction models.