SlideShare a Scribd company logo
A learning scientist approach to modeling human cognition
in individual and collaborative problem solving tasks
@margaridaromero
Margarida.Romero@unice.fr
Dir. Laboratoire d’Innovation et Numérique pour l’Education (LINE)
12 février 2021. Mini-cours
What is your current mood ?
1
2
4
3
5 6 7
8 other
moods...
Some references in relation to this workshop
Romero, M., Alexandre, F., Roux, L., Giraudon, G., & Viéville, T. (2020). From computational neuroscience to computational learning science : Modeling the brain of the learner and the
context of the learning activity. SophIA-summit 2020. https://hal.inria.fr/hal-03018617
Romero, M., Viéville, T. & Heiser, L. (accepted). Analyse d'activités d'apprentissage médiatisées en robotique pédagogique. Dans Alberto, B., Thievenaz, J. (in press). Traité de méthodologie
de la recherche en Sciences de l’Éducation et de la Formation.
https://www.researchgate.net/publication/344151929_Analyse_d'activites_d'apprentissage_mediatisees_en_robotique_pedagogique
Leroy, A., Romero, M., & Cassone, L. (2021). Interactivity and materiality matter in creativity: educational robotics for the assessment of divergent thinking. Interactive Learning Environments,
1-12.
Kalmpourtzis, G., & Romero, M. (2020, December). Artifactual Affordances in Playful Robotics. In International Conference on Games and Learning Alliance (pp. 316-325). Springer, Cham.
Roux, L., Romero, M., Alexandre, F., Viéville, T., & Mercier, C. (2020). Développement d’une ontologie pour l’analyse d’observables de l’apprenant dans le contexte d’une tâche avec des
robots modulaire. Inria. 2020, 48. https://hal.archives-ouvertes.fr/LINE/hal-03013685v1
Romero, M., & Chevré, A. M. (2020). ANR-18-CE38-0001-OpenAccess-20201201-Rapport Intermédiaire.
https://www.researchgate.net/publication/346629855_ANR-18-CE38-0001-OpenAccess-20201201-Rapport_Intermediaire
Cassone, L., Romero, M., & Basiri, S. (2020). Group processes and creative components in a problem-solving task with modular robotics, Journal of Computing in Education.
https://doi.org/10.1007/s40692-020-00172-7
Romero, M. (2019, July). Analyzing Cognitive Flexibility in Older Adults Through Playing with Robotic Cubes. In International Conference on Human-Computer Interaction (pp. 545-553).
Springer, Cham.
Romero, M., DeBlois, L., & Pavel, A. (2018). Créacube, comparaison de la résolution créative de problèmes, chez des enfants et des adultes, par le biais d’une tâche de robotique modulaire.
MathémaTICE (61).
Romero, M., David, D., & Lille, B. (2018, December). CreaCube, a Playful Activity with Modular Robotics. In International Conference on Games and Learning Alliance (pp. 397-405).
Springer, Cham.
Romero, M., & Loos, E. F. (2018). Playing with robotic cubes: age matters. Intergenerationality in a digital world: Proposals of activities. Publisher: Edições Universitárias Lusófonas.
Romero, M. (2017). CreaCube, analyse de la résolution créative de problèmes par le biais d’une tâche de robotique modulaire. Journées Nationales de la Recherche en Robotique, JNRR
2017. https://jnrr2017.sciencesconf.org/167023/document
ANR CreaMaker website
https://creamaker.wordpress.com/
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
European PhD (cotutelle) UAB-UT2
(Extraordinary Thesis Award at UAB)
Multimedia
Project Management
Graduate studies
Master in Computer Sciences
(Knowledge engineering)
Master in Psychology of
Education
Master studies
2009-2013 Associate professor on psychology
of education
2013-2017 Associate professor on educational
technology (tenured in 2015)
Since 2017 Full professor on learning sciences
Academic career
Laboratoire d’Innovation et Numérique pour
l’Education director
“Epistemological pluralism recognizes that, in any given
research context, there may be several valuable ways of knowing, and that accommodating this
plurality can lead to more successful integrated study” (Miller et al. 2008)
“methodological tribalism” vs
“pluralistic coexistence” as a way to foster dialogue and '”innovative
methodological cross-fertilization'” in the spirit of “openness” and “constructive criticism'” (Lamont
& Swidler 2014)
Lamont, M., & Swidler, A. (2014). Methodological pluralism and the possibilities and limits of interviewing. Qualitative Sociology, 37(2), 153-171.
Miller, T. R., Baird, T. D., Littlefield, C. M., Kofinas, G., Chapin III, F. S., & Redman, C. L. (2008). Epistemological pluralism: reorganizing interdisciplinary
research. Ecology and Society, 13(2).
Romero, M., & Belhassein, D. (2019). Interdisciplinarité et usages co-créatifs du numérique en éducation. Dans Darbellay, F. (Ed.). L'interdisciplinarité à
l'école: succès, résistance, diversité. Alphil.
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
1. Prior knowledge and expectations
https://s.42l.fr/NeuroModT1
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
How humans learn ?
Learning sciences
How we learn ?
Learning sciences
How we learn ? Learning process as contextual, multilevel (intrapsychological,
interpsychological) in interaction with agents and artefacts
What we learn ?
Source : http://andre.tricot.pagesperso-orange.fr/2_ICLTC2019_Reasoning_more_efficiently_with_primary_knowledge_v2.pdf
Tricot (2015)
In primary
education, what are
the most important
aspects to learn in
mathematics ?
What we can do for
improving
mathematics
education ?
Performances en mathématiques, classe de CM1. Etude TIMSS 2019. (TIMSS / DEPP)
Singapore’s Mathematics Framework
Boaler, J. (2015). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. John Wiley
& Sons.
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Efklides (2011)
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
How we solve problems ?
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Team activity : creation of a problem solving model
https://docs.google.com/presentation/d/1RVaYtYNxkHjubOwEchqyadLNAaDF6zT9C
As9iBwOXwA/edit?usp=sharing
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Problem solver (Newell & Simon 1972, p. 289)
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
Learning activity as a unit of analysis
For Conole and Fill (2005), the notion of a learning activity (LA) is composed of three elements:
● The context of the activity: e.g. subject, level of difficulty, intended learning outcomes and the
environment within which the activity takes place.
● The learning and teaching approaches: including theories and models.
● The learning tasks: This includes type of task, techniques used, associated tools and
resources, interaction and roles of those involved and learner assessment.
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Diversity of learning activities
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity
6. Research program
Creativity assessment
through the CreaCube task
Problem
“Build a vehicle moving from a red point to a black point”
CreACubE @ aIde How we solve problems with technology ?
Material to solve the problem
Solution ?
Problem
“Build a vehicle moving from a red point to a black point”
CreACubE @ aIde How we solve problems with technology ?
Material to solve the problem
Solution ?
Norman (1986) designates as the gulf of execution, the distance between the
user's goals and the means of achieving them through the system.
What we can do ?
Explore the material
Be creative (association). Use the material in an
alternative way (AUT, Guilfort, 1967)
Learn about the material
features and exploit it
Evaluate solutions before
recombining in order to
inhibit unsuccessful ideas
CreACubE @ aIde How we solve problems with technology ?
Information inputs
Instructions
State of the system
(unitary and system
level)
Mental model of
the situation
Mental model of
the solution
Behaviors (grasp,
turn, explore…)
Goals :
performance
play/explore
On divergent thinking, subjects generate new ideas
(configurations of the cubes)
Selecting/inhibiting (convergent thinking).
Having new ideas is not enough; creativity as a means of
finding different useful solutions (divergent + convergent +
critical thinking) for a given problem-situation.
F07
F06 F08
F01
F02
F11
Plan
1. Prior knowledge and expectancies
2. How learning happens ? How we solve problems ?
3. Analysis of activities
4. Play !
5. Analysis of the activity : modeling the activity
6. Research program
Learning
task
Analysis of the
activity
Task
model
Ontology
and data
model
Learner
model
Learning
activity
Traces of interaction
(learning analytics) generated
in the technological
environments
Data from coding schemas
(video, observations, etc.)
Memory
Goals
Technological environment
Stimulii
Affordances
Actions
CreACubE @ aIde How we solve problems with technology ?
Which observables (and grammar) for analysing exploratory and exploitation analysis ?
Objects-to-think-with
Creative exploration as a means of analyzing the problem
situation and the objects to be engaged in the solution.
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Creative problem solving with interactive robotic cubes
CreACubE @ aIde How we solve problems with technology ?
Exploration
Explotation
At the unitary level (cubes)
At the system level (figure)
Creative problem solving with interactive robotic cubes
CreACubE @ aIde How we solve problems with technology ?
Creative problem solving with interactive robotic cubes
CreACubE @ aIde How we solve problems with technology ?
Creative problem solving with interactive robotic cubes
CreACubE @ aIde How we solve problems with technology ?
CreACubE @ aIde How we solve problems with technology ?
● Exploration (at the unitary level, at the figure level) and exploitation (testing specific features
at the unitary level, testing certain figures) should be combined.
● Which combination of exploratory and exploitation behavior happens in the
problem solving task ?
● Which states can be defined within the task ?
● Which observables (and grammar) for analysing exploratory and exploitation
analysis ?
Aide : Artificial Intelligence Devoted to Education (AIDE)
Older adults EHPAD
Action exploratoire Artificial Intelligence Devoted to
Education (AIDE)
Lifelong learning ⇒ ANR #CreaMaker 7 to 107 years
Critical thinking
Transformative agency
Computational thinking
Learning sciences research lab INRIA project-team in computational neurosciences
Adults
Children
A learning scientist approach to modeling human cognition
in individual and collaborative problem solving tasks
@margaridaromero
Margarida.Romero@unice.fr
Dir. Laboratoire d’Innovation et Numérique pour l’Education (LINE)
12 février 2021. Mini-cours
Annexes
Assessment of creativity
‘Ideation’ VS ‘creation’
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
● The creativity results of AUT and CréaCube do not display
the same creativity results
A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks
Artificial creativity ?
AIDE tasks
Learning in specific tasks
CreACubE @ aIde How we solve problems with technology ?
Problem solving tasks engaging technological knowledge
(computational thinking)
CreaCube
Component 1: Organize & model the situation
Component 2: Identify problems
Component 5: Devise a solution
Component 6: Adopt an iterative process
Component 3: Hone formal systems (e.g. coding, maths, logic)
Component 4: Integrate physical systems
COMPO1
Understanding the
problem-situation
Concept of autonomous
vehicle
COMPO2
Imagining the use of the
cubes for meeting the task
objectives
COMPO3
Importance of the order of a sequence (system behaviour
defined by the order of the cubes)
COMPO4
Magnets
Sensors
Actuatuors
Electric circuit
Cubes assembled as a system
COMPO5
Creating a solution by
assembling by inverting the
distance sensor signal
COMPO6
Solution anlysis for improvement
through a new figure
Model of the task
(ontologie)
Modèles
neurosciences
computationnelles
(Mnémosyne)
CreACubE @ aIde How we solve problems with technology ?

More Related Content

PDF
2021 Creativity and Game Based Learning @margaridaromero
PDF
20180714 #fab14edu
PDF
20201208 Gala Conf. Artifactual Affordances In Playful Robotics
PDF
Romero et-al-2016-cidui-5 levelsprogramming
PDF
ANR #CreaMaker workshop: co-creativity, robotics and maker education
PDF
2019 Cocreativity workshop proceedings
PDF
2020_02_21 «Teaching Informatics to All: a European perspective»
PDF
Trusted Learning Analytics Research Program
2021 Creativity and Game Based Learning @margaridaromero
20180714 #fab14edu
20201208 Gala Conf. Artifactual Affordances In Playful Robotics
Romero et-al-2016-cidui-5 levelsprogramming
ANR #CreaMaker workshop: co-creativity, robotics and maker education
2019 Cocreativity workshop proceedings
2020_02_21 «Teaching Informatics to All: a European perspective»
Trusted Learning Analytics Research Program

What's hot (10)

PPTX
Computational thinking programming and robotics as strategy to promote 21st c...
PPTX
Digital Game Design Activity: Implementing Gamification with Children in the ...
PDF
Leda Muñoz - Tecnologias e Aprendizado - CICI2011
PDF
Hacking education
PPT
Digital Media PDW
PDF
FIE09 Cardenas
PDF
Learning Analytics: what are we optimizing for?
PDF
Computational Participation: Towards a National Education Policy in Uruguay ...
PDF
Engineering active learning: LEGO robots & 3D virtual worlds
PDF
The Connected Intelligence Centre: Human-Centered Analytics for UTS Data Chal...
Computational thinking programming and robotics as strategy to promote 21st c...
Digital Game Design Activity: Implementing Gamification with Children in the ...
Leda Muñoz - Tecnologias e Aprendizado - CICI2011
Hacking education
Digital Media PDW
FIE09 Cardenas
Learning Analytics: what are we optimizing for?
Computational Participation: Towards a National Education Policy in Uruguay ...
Engineering active learning: LEGO robots & 3D virtual worlds
The Connected Intelligence Centre: Human-Centered Analytics for UTS Data Chal...
Ad

Similar to A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks (20)

PPT
Yess4 Jean-baptiste Lagrange
PPT
How to redesign formal education supported by new technologies? Lunch Talks (...
PPT
Design Science Of Learning
PDF
Some thoughts and demos, on ways of using computing for deep education on man...
PPT
Diana Laurillard: The Conversational Framework - an approach to Evaluating e-...
DOC
References may2011
PPT
Isajahnke 2011-06-17-short - Creative Learning Cultures, educational innovati...
DOC
References may2011
PDF
A visit to local Math Museum: Using tablets creatively in classroom
PPTX
Conole mexico keynote
PDF
The stem innovation equation nsta
PDF
Shaping STEM Learning Experiences Through Community Partnerships and Staff Ed...
PDF
RoboESL_Project_Genova-v5t_TrainingCourse_170919
PPT
Learning innovation
PDF
2016-05-27 Venia Legendi (CEITER): Terje Väljataga
PDF
Conceptions and Reasonings of Beninese Learners in Solving Physics Problems I...
PPTX
Conceptual framework of mathematics
PPTX
Conceptual framework of mathematics
PPTX
Conceptual framework of mathematics
PPTX
ALA 2015 Invited Research Talk: Youth Collaborative Information Practices Dur...
Yess4 Jean-baptiste Lagrange
How to redesign formal education supported by new technologies? Lunch Talks (...
Design Science Of Learning
Some thoughts and demos, on ways of using computing for deep education on man...
Diana Laurillard: The Conversational Framework - an approach to Evaluating e-...
References may2011
Isajahnke 2011-06-17-short - Creative Learning Cultures, educational innovati...
References may2011
A visit to local Math Museum: Using tablets creatively in classroom
Conole mexico keynote
The stem innovation equation nsta
Shaping STEM Learning Experiences Through Community Partnerships and Staff Ed...
RoboESL_Project_Genova-v5t_TrainingCourse_170919
Learning innovation
2016-05-27 Venia Legendi (CEITER): Terje Väljataga
Conceptions and Reasonings of Beninese Learners in Solving Physics Problems I...
Conceptual framework of mathematics
Conceptual framework of mathematics
Conceptual framework of mathematics
ALA 2015 Invited Research Talk: Youth Collaborative Information Practices Dur...
Ad

More from Margarida Romero (20)

PDF
Actividades tecnocreativas para el desarrollo de competencias transversales
PDF
20220314 #SDC2022 a MIA, un lieu public d'acculturation aux #IA
PDF
20220308 ANR #CreaMaker #IWD2022 #womenInstem
PDF
Défis de programmation créative: Du conte au code avec Scratch et #VibotLeRobot
PDF
20220106 Enjeux éducatifs à l’ère de l’IA : Compétences, dispositifs de form...
PDF
2021 Apprendre en jouant : entre créativité, esprit critique et usage numérique
PDF
20211022 L’engagement créatif des apprenants dans les formations hybrides et ...
PDF
20210610 #EIAH2021 keynote ANR #CreaMaker
PDF
20210608 pnf-ia
PDF
Activités technocréatives autour de la ville (intelligente)
PDF
Résolution créative des problèmes : seul, en équipe ou de manière participati...
PDF
20201116-KickOff-PréAO #GTnum #Scol_ia
PDF
20201118 ULB
PDF
20200615 Résoudre des problèmes au 1D L’approche STIAM
PDF
20200603 Activités technocréatives à l'école primaire
PDF
20200518 Pédagogie créative et nouvelle formes scolaires
PDF
20200505 jouer-est-ce-bien-serieux
PDF
202002 Didapro 2020 Du code à la pensée informatique
PDF
20191115 ari-apprendre-par-le-jeu-r01
PDF
20191029 #LudoviaBE Activités techno-créatives pour le développement de la cr...
Actividades tecnocreativas para el desarrollo de competencias transversales
20220314 #SDC2022 a MIA, un lieu public d'acculturation aux #IA
20220308 ANR #CreaMaker #IWD2022 #womenInstem
Défis de programmation créative: Du conte au code avec Scratch et #VibotLeRobot
20220106 Enjeux éducatifs à l’ère de l’IA : Compétences, dispositifs de form...
2021 Apprendre en jouant : entre créativité, esprit critique et usage numérique
20211022 L’engagement créatif des apprenants dans les formations hybrides et ...
20210610 #EIAH2021 keynote ANR #CreaMaker
20210608 pnf-ia
Activités technocréatives autour de la ville (intelligente)
Résolution créative des problèmes : seul, en équipe ou de manière participati...
20201116-KickOff-PréAO #GTnum #Scol_ia
20201118 ULB
20200615 Résoudre des problèmes au 1D L’approche STIAM
20200603 Activités technocréatives à l'école primaire
20200518 Pédagogie créative et nouvelle formes scolaires
20200505 jouer-est-ce-bien-serieux
202002 Didapro 2020 Du code à la pensée informatique
20191115 ari-apprendre-par-le-jeu-r01
20191029 #LudoviaBE Activités techno-créatives pour le développement de la cr...

Recently uploaded (20)

PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Cell Types and Its function , kingdom of life
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
RMMM.pdf make it easy to upload and study
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Supply Chain Operations Speaking Notes -ICLT Program
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Computing-Curriculum for Schools in Ghana
Cell Types and Its function , kingdom of life
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
O5-L3 Freight Transport Ops (International) V1.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Microbial disease of the cardiovascular and lymphatic systems
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
01-Introduction-to-Information-Management.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
Final Presentation General Medicine 03-08-2024.pptx
RMMM.pdf make it easy to upload and study
Chapter 2 Heredity, Prenatal Development, and Birth.pdf

A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks

  • 1. A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks @margaridaromero Margarida.Romero@unice.fr Dir. Laboratoire d’Innovation et Numérique pour l’Education (LINE) 12 février 2021. Mini-cours
  • 2. What is your current mood ? 1 2 4 3 5 6 7 8 other moods...
  • 3. Some references in relation to this workshop Romero, M., Alexandre, F., Roux, L., Giraudon, G., & Viéville, T. (2020). From computational neuroscience to computational learning science : Modeling the brain of the learner and the context of the learning activity. SophIA-summit 2020. https://hal.inria.fr/hal-03018617 Romero, M., Viéville, T. & Heiser, L. (accepted). Analyse d'activités d'apprentissage médiatisées en robotique pédagogique. Dans Alberto, B., Thievenaz, J. (in press). Traité de méthodologie de la recherche en Sciences de l’Éducation et de la Formation. https://www.researchgate.net/publication/344151929_Analyse_d'activites_d'apprentissage_mediatisees_en_robotique_pedagogique Leroy, A., Romero, M., & Cassone, L. (2021). Interactivity and materiality matter in creativity: educational robotics for the assessment of divergent thinking. Interactive Learning Environments, 1-12. Kalmpourtzis, G., & Romero, M. (2020, December). Artifactual Affordances in Playful Robotics. In International Conference on Games and Learning Alliance (pp. 316-325). Springer, Cham. Roux, L., Romero, M., Alexandre, F., Viéville, T., & Mercier, C. (2020). Développement d’une ontologie pour l’analyse d’observables de l’apprenant dans le contexte d’une tâche avec des robots modulaire. Inria. 2020, 48. https://hal.archives-ouvertes.fr/LINE/hal-03013685v1 Romero, M., & Chevré, A. M. (2020). ANR-18-CE38-0001-OpenAccess-20201201-Rapport Intermédiaire. https://www.researchgate.net/publication/346629855_ANR-18-CE38-0001-OpenAccess-20201201-Rapport_Intermediaire Cassone, L., Romero, M., & Basiri, S. (2020). Group processes and creative components in a problem-solving task with modular robotics, Journal of Computing in Education. https://doi.org/10.1007/s40692-020-00172-7 Romero, M. (2019, July). Analyzing Cognitive Flexibility in Older Adults Through Playing with Robotic Cubes. In International Conference on Human-Computer Interaction (pp. 545-553). Springer, Cham. Romero, M., DeBlois, L., & Pavel, A. (2018). Créacube, comparaison de la résolution créative de problèmes, chez des enfants et des adultes, par le biais d’une tâche de robotique modulaire. MathémaTICE (61). Romero, M., David, D., & Lille, B. (2018, December). CreaCube, a Playful Activity with Modular Robotics. In International Conference on Games and Learning Alliance (pp. 397-405). Springer, Cham. Romero, M., & Loos, E. F. (2018). Playing with robotic cubes: age matters. Intergenerationality in a digital world: Proposals of activities. Publisher: Edições Universitárias Lusófonas. Romero, M. (2017). CreaCube, analyse de la résolution créative de problèmes par le biais d’une tâche de robotique modulaire. Journées Nationales de la Recherche en Robotique, JNRR 2017. https://jnrr2017.sciencesconf.org/167023/document ANR CreaMaker website https://creamaker.wordpress.com/
  • 4. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 5. European PhD (cotutelle) UAB-UT2 (Extraordinary Thesis Award at UAB) Multimedia Project Management Graduate studies Master in Computer Sciences (Knowledge engineering) Master in Psychology of Education Master studies 2009-2013 Associate professor on psychology of education 2013-2017 Associate professor on educational technology (tenured in 2015) Since 2017 Full professor on learning sciences Academic career Laboratoire d’Innovation et Numérique pour l’Education director
  • 6. “Epistemological pluralism recognizes that, in any given research context, there may be several valuable ways of knowing, and that accommodating this plurality can lead to more successful integrated study” (Miller et al. 2008) “methodological tribalism” vs “pluralistic coexistence” as a way to foster dialogue and '”innovative methodological cross-fertilization'” in the spirit of “openness” and “constructive criticism'” (Lamont & Swidler 2014) Lamont, M., & Swidler, A. (2014). Methodological pluralism and the possibilities and limits of interviewing. Qualitative Sociology, 37(2), 153-171. Miller, T. R., Baird, T. D., Littlefield, C. M., Kofinas, G., Chapin III, F. S., & Redman, C. L. (2008). Epistemological pluralism: reorganizing interdisciplinary research. Ecology and Society, 13(2).
  • 7. Romero, M., & Belhassein, D. (2019). Interdisciplinarité et usages co-créatifs du numérique en éducation. Dans Darbellay, F. (Ed.). L'interdisciplinarité à l'école: succès, résistance, diversité. Alphil.
  • 8. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 9. 1. Prior knowledge and expectations https://s.42l.fr/NeuroModT1
  • 10. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 13. Learning sciences How we learn ? Learning process as contextual, multilevel (intrapsychological, interpsychological) in interaction with agents and artefacts
  • 17. In primary education, what are the most important aspects to learn in mathematics ? What we can do for improving mathematics education ? Performances en mathématiques, classe de CM1. Etude TIMSS 2019. (TIMSS / DEPP)
  • 19. Boaler, J. (2015). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. John Wiley & Sons.
  • 23. How we solve problems ?
  • 25. Team activity : creation of a problem solving model https://docs.google.com/presentation/d/1RVaYtYNxkHjubOwEchqyadLNAaDF6zT9C As9iBwOXwA/edit?usp=sharing
  • 27. Problem solver (Newell & Simon 1972, p. 289)
  • 29. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 30. Learning activity as a unit of analysis For Conole and Fill (2005), the notion of a learning activity (LA) is composed of three elements: ● The context of the activity: e.g. subject, level of difficulty, intended learning outcomes and the environment within which the activity takes place. ● The learning and teaching approaches: including theories and models. ● The learning tasks: This includes type of task, techniques used, associated tools and resources, interaction and roles of those involved and learner assessment.
  • 32. Diversity of learning activities
  • 33. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 34. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity 6. Research program
  • 36. Problem “Build a vehicle moving from a red point to a black point” CreACubE @ aIde How we solve problems with technology ? Material to solve the problem Solution ?
  • 37. Problem “Build a vehicle moving from a red point to a black point” CreACubE @ aIde How we solve problems with technology ? Material to solve the problem Solution ? Norman (1986) designates as the gulf of execution, the distance between the user's goals and the means of achieving them through the system. What we can do ? Explore the material Be creative (association). Use the material in an alternative way (AUT, Guilfort, 1967) Learn about the material features and exploit it Evaluate solutions before recombining in order to inhibit unsuccessful ideas
  • 38. CreACubE @ aIde How we solve problems with technology ? Information inputs Instructions State of the system (unitary and system level) Mental model of the situation Mental model of the solution Behaviors (grasp, turn, explore…) Goals : performance play/explore
  • 39. On divergent thinking, subjects generate new ideas (configurations of the cubes)
  • 41. Having new ideas is not enough; creativity as a means of finding different useful solutions (divergent + convergent + critical thinking) for a given problem-situation. F07 F06 F08 F01 F02 F11
  • 42. Plan 1. Prior knowledge and expectancies 2. How learning happens ? How we solve problems ? 3. Analysis of activities 4. Play ! 5. Analysis of the activity : modeling the activity 6. Research program
  • 43. Learning task Analysis of the activity Task model Ontology and data model Learner model Learning activity Traces of interaction (learning analytics) generated in the technological environments Data from coding schemas (video, observations, etc.) Memory Goals Technological environment Stimulii Affordances Actions
  • 44. CreACubE @ aIde How we solve problems with technology ? Which observables (and grammar) for analysing exploratory and exploitation analysis ?
  • 45. Objects-to-think-with Creative exploration as a means of analyzing the problem situation and the objects to be engaged in the solution.
  • 47. Creative problem solving with interactive robotic cubes CreACubE @ aIde How we solve problems with technology ? Exploration Explotation At the unitary level (cubes) At the system level (figure)
  • 48. Creative problem solving with interactive robotic cubes CreACubE @ aIde How we solve problems with technology ?
  • 49. Creative problem solving with interactive robotic cubes CreACubE @ aIde How we solve problems with technology ?
  • 50. Creative problem solving with interactive robotic cubes CreACubE @ aIde How we solve problems with technology ?
  • 51. CreACubE @ aIde How we solve problems with technology ? ● Exploration (at the unitary level, at the figure level) and exploitation (testing specific features at the unitary level, testing certain figures) should be combined. ● Which combination of exploratory and exploitation behavior happens in the problem solving task ? ● Which states can be defined within the task ? ● Which observables (and grammar) for analysing exploratory and exploitation analysis ?
  • 52. Aide : Artificial Intelligence Devoted to Education (AIDE)
  • 53. Older adults EHPAD Action exploratoire Artificial Intelligence Devoted to Education (AIDE) Lifelong learning ⇒ ANR #CreaMaker 7 to 107 years Critical thinking Transformative agency Computational thinking Learning sciences research lab INRIA project-team in computational neurosciences Adults Children
  • 54. A learning scientist approach to modeling human cognition in individual and collaborative problem solving tasks @margaridaromero Margarida.Romero@unice.fr Dir. Laboratoire d’Innovation et Numérique pour l’Education (LINE) 12 février 2021. Mini-cours
  • 58. ● The creativity results of AUT and CréaCube do not display the same creativity results
  • 61. AIDE tasks Learning in specific tasks CreACubE @ aIde How we solve problems with technology ? Problem solving tasks engaging technological knowledge (computational thinking)
  • 62. CreaCube Component 1: Organize & model the situation Component 2: Identify problems Component 5: Devise a solution Component 6: Adopt an iterative process Component 3: Hone formal systems (e.g. coding, maths, logic) Component 4: Integrate physical systems COMPO1 Understanding the problem-situation Concept of autonomous vehicle COMPO2 Imagining the use of the cubes for meeting the task objectives COMPO3 Importance of the order of a sequence (system behaviour defined by the order of the cubes) COMPO4 Magnets Sensors Actuatuors Electric circuit Cubes assembled as a system COMPO5 Creating a solution by assembling by inverting the distance sensor signal COMPO6 Solution anlysis for improvement through a new figure
  • 63. Model of the task (ontologie) Modèles neurosciences computationnelles (Mnémosyne) CreACubE @ aIde How we solve problems with technology ?