SlideShare a Scribd company logo
A Semantic Web Platform for 
Automating the Interpretation of 
Finite Element Bio-simulations 
Dr. Ratnesh Sahay 
Semantics in eHealth & Life Sciences (SeLS) 
Insight Centre for Data Analytics 
NUI Galway, Ireland 
10-12-2014 
SWAT4LS-2014, Berlin 
Germany
Background – Hearing Loss 
278 Million People 
• Outer ear gets excited both by the sound waves propagate through the ear canal and strike the eardrum 
• In the middle ear the ear drum vibrates generating pressure waves in the inner ear fluid chambers 
• The inner ear turns pressure waves into electrical signals that our brain can understand 
Slide 2
Background – Hearing Loss 
• The ear drum vibrates generating pressure waves in the inner ear fluid chambers 
• The inner ear turns pressure waves into electrical signals that our brain can understand 
Infrastructure to integrate clinical knowledge, experimental data and inner ear models 
Slide 3
Inner Ear - Bio Simulation Model & System 
PAK - FM 
Slide 4
SIFEM Project 
Electrical Coupling Model 
Micromechanics Model 
Finite Element Model 
Fluid Coupling Model 
Slide 5
Goals 
Automate the interpretation of finite element (FE) 
biosimulations ... 
Insight Centre for Data Analytics Slide 6
Motivational Scenario: Cochlear 
mechanics 
Insight Centre for Data Analytics Slide 7
Characteristics of the FE Domain 
• Difficult to represent 
• Physics, geometrical models, topological relations, algoithmic, 
mathematics 
Insight Centre for Data Analytics Slide 8
Dimensions of a FE Bio-simulation 
Insight Centre for Data Analytics Slide 9
Geometrical Model 
Insight Centre for Data Analytics Slide 10
Physics Model 
• FE equilibrium for solid 
• FE equilibrium for fluid 
Insight Centre for Data Analytics Slide 11
Numerical Models/Solvers 
• Incremental-iterative implicit solution scheme 
Insight Centre for Data Analytics Slide 12
Experimental Data 
• A 
Insight Centre for Data Analytics Slide 13
Lid-driven cavity flow 
Physical Model 
FEM Model 
Solver 
 If there a vortex close to 
the lid? 
Insight Centre for Data Analytics Slide 14
Lid-driven cavity flow 
Physical Model 
FEM Model 
Solver 
 definition of a simulation 
 If there a vortex close to 
the lid? 
Insight Centre for Data Analytics Slide 15
Numerical Data Interpretation 
description of the 
simulation 
Is translated into 
Rules using references 
to anatomical, physical 
and data feature 
elements 
Multiple simulations 
Feature extraction 
Interpretation = rules 
applied over data at 
the symbolic level 
Insight Centre for Data Analytics 02 May 2014 Slide 16
Data View 
Data Selection 
y 
0.05 
Insight Centre for Data Analytics Slide 17
Feature Extraction 
maximum 
velocity is 0.93 
at the lid 
fast increase 
(avg first derivative > 35) 
Minima=(0.055,-0.20) 
velocity starts 
at 0 at the 
bottom 
slow decrease 
followed by 
Based on the TEDDY 
ontology 
Insight Centre for Data Analytics Slide 18
Data Interpretation Statements 
:DataView1 :hasDimensionY :VelocityX . 
:DataView1 :hasDimensionX :DistanceFromTheCavityBase . 
:DataView1 :x0 “0.0"^^xsd:double . 
:DataView1 :y0 “0.0"^^xsd:double . 
:DataView1 :hasMinimumX “-0.055"^^xsd:double . 
:DataView1 :hasMinimumY “-0.20"^^xsd:double . 
:DataView1 :hasFeature :PositiveSecondDerivative . 
:DataView1 :hasBehaviour :BehaviourRegion1 . 
:DataView1 :hasBehaviour :BehaviourRegion2 . 
:BehaviourRegion1 :avgFirstDerivative “-3.63"^^xsd:double . 
:BehaviourRegion1 :hasFeature EndRegion . 
:BehaviourRegion1 :hasFeature :Decreases . 
:BehaviourRegion1 :hasFeature :DecreasesSlowly . 
:BehaviourRegion2 :avgFirstDerivative “33.35"^^xsd:double . 
:BehaviourRegion2 :hasFeature EndRegion . 
:BehaviourRegion2 :hasFeature :Increases . 
:BehaviourRegion2 :hasFeature :IncreasesFast . 
:BehaviourRegion1 :isFollowedBy :BehaviourRegion1 . 
: LidSimulation Data Analysis Rule :hasInterpretation :ValidVelocityBehaviour . 
Insight Centre for Data Analytics Slide 19
Data Analysis Rules 
IF( minima(velocity) is negative AND 
decreases very slowly(velocity) AND 
increases very fast (velocity) ) 
VALID VELOCITY BEHAVIOUR 
SPARQL Rule 
CONSTRUCT 
{ :LidSimulation sif: hasInterpretation :ValidVelocityBehaviour } 
WHERE { 
?dataview rdf:type dao:DataView . 
?dataview dao:hasFeature ?x . 
... 
} 
Insight Centre for Data Analytics Slide 20
Output Data Views 
Insight Centre for Data Analytics Slide 26
Feature Extraction 
:DataView1 :hasDimensionY :BasilarMembraneMagnitude . 
:DataView1 :hasDimensionX :DistanceFromTheCochleaBasis . 
:DataView1 :hasFeature :isSingleWave . 
:DataView1 :hasMaximumAmplitude “0.0031 "^^xsd:double. 
:DataView1 :hasMaximumY “0.0020 e^-6 "^^xsd:double . 
:DataView1 :hasMaximumX “14"^^xsd:double . 
:DataView1 :hasMinimumY “-0.0011 e^-6 "^^xsd:double . 
:DataView1 :hasMinimumX “17"^^xsd:double . 
Insight Centre for Data Analytics Slide 27
Conceptual Model Excerpt 
Insight Centre for Data Analytics Slide 29
Conceptual Model Excerpt 
Insight Centre for Data Analytics Slide 30
Take-away message 
• Contemporary science demands new infrastructures to 
scale scientific discovery in a complex knowledge 
environment. 
• Numerical data is everywhere, not only in FE simulations. 
• In this work we started exploring how to represent and 
extract numerical data features to a conceptual level. 
Insight Centre for Data Analytics Slide 31
Future Directions 
• Better integration of the proposed representation and data 
analysis framework to the (TErminology for the Description of 
DYnamics) TEDDY conceptual model [EMBL-EBI]. 
• Use of the feature set and rules as a heuristic method to 
improve the simulation configuration space. 
Insight Centre for Data Analytics Slide 32
SIFEM TEAM 
• Andre Freitas 
• Kartik Asooja 
• Joao B. Jares 
• Stefan Decker 
• Ratnesh Sahay 
Th a n k Yo u ! 
Insight Centre for Data Analytics Slide 33

More Related Content

PDF
A Semantic Web Platform for Automating the Interpretation of Finite Element ...
PDF
Ancestral Causal Inference - NIPS 2016 poster
PDF
4 visualization inter
 
PDF
[Pr12] deep anomaly detection using geometric transformations
PDF
overview of_data_processing
 
PDF
6 data envelopment_analysis
 
PDF
Escobar-thesis-presentation-2
PDF
template-2
A Semantic Web Platform for Automating the Interpretation of Finite Element ...
Ancestral Causal Inference - NIPS 2016 poster
4 visualization inter
 
[Pr12] deep anomaly detection using geometric transformations
overview of_data_processing
 
6 data envelopment_analysis
 
Escobar-thesis-presentation-2
template-2

Viewers also liked (13)

PPT
Bus Sim Enterprise
PPTX
Study of middle ear mechanics at the Lab of Biomedical Physics: an overview
PPTX
PhD defense
PPT
Cochlear Implants
PPTX
cochlear implant
PDF
AIMD design and examples
PPTX
Implantable Course 2015 Med El
PPTX
Middle ear implants
PPTX
Spaces of middle ear and their surgical importance
PPT
Hearing aids & implantable hearing devices
PPTX
Cochlear implant
PPTX
Cochlear Implants
PPTX
Hearing aids
Bus Sim Enterprise
Study of middle ear mechanics at the Lab of Biomedical Physics: an overview
PhD defense
Cochlear Implants
cochlear implant
AIMD design and examples
Implantable Course 2015 Med El
Middle ear implants
Spaces of middle ear and their surgical importance
Hearing aids & implantable hearing devices
Cochlear implant
Cochlear Implants
Hearing aids
Ad

Similar to A Semantic Web Platform for Improving the Automation and Reproducibility of Finite Element Bio-simulations (20)

PDF
How Semantic Technologies can help to cure Hearing Loss?
PDF
Product failure analysis using Explicit dynamic
PDF
Wqtc2013 invest ofperformanceprobswitheds-20130910
PPTX
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
PDF
Neural network-based low-frequency data extrapolation
PPTX
Core Methods In Educational Data Mining
PDF
Dia sds2015 web version
PPTX
Hattrick-Simpers MRS Webinar on AI in Materials
PPTX
DeepFak.pptx asdasdasdasdasdasdasdasdasd
PDF
Augmented and Synthetic Data in Artificial Intelligence
PPTX
CBM Variable Speed Machinery
PDF
Structured Data Presentation
PPTX
Knowledge Management in the AI Driven Scintific System
PPTX
Multimodal Learning Analytics
PDF
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
PDF
Deep Feature Synthesis
PPTX
Multimodal Learning Analytics
PPTX
Discovery Engines for Big Data: Accelerating Discovery in Basic Energy Sciences
PPTX
FEM and it's applications
PPTX
The Science of Data Science
How Semantic Technologies can help to cure Hearing Loss?
Product failure analysis using Explicit dynamic
Wqtc2013 invest ofperformanceprobswitheds-20130910
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
Neural network-based low-frequency data extrapolation
Core Methods In Educational Data Mining
Dia sds2015 web version
Hattrick-Simpers MRS Webinar on AI in Materials
DeepFak.pptx asdasdasdasdasdasdasdasdasd
Augmented and Synthetic Data in Artificial Intelligence
CBM Variable Speed Machinery
Structured Data Presentation
Knowledge Management in the AI Driven Scintific System
Multimodal Learning Analytics
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
Deep Feature Synthesis
Multimodal Learning Analytics
Discovery Engines for Big Data: Accelerating Discovery in Basic Energy Sciences
FEM and it's applications
The Science of Data Science
Ad

Recently uploaded (20)

PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Cloud computing and distributed systems.
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Understanding_Digital_Forensics_Presentation.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
MIND Revenue Release Quarter 2 2025 Press Release
Spectral efficient network and resource selection model in 5G networks
Building Integrated photovoltaic BIPV_UPV.pdf
Empathic Computing: Creating Shared Understanding
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Cloud computing and distributed systems.
Unlocking AI with Model Context Protocol (MCP)
Programs and apps: productivity, graphics, security and other tools
Mobile App Security Testing_ A Comprehensive Guide.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
sap open course for s4hana steps from ECC to s4
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
“AI and Expert System Decision Support & Business Intelligence Systems”
Understanding_Digital_Forensics_Presentation.pptx

A Semantic Web Platform for Improving the Automation and Reproducibility of Finite Element Bio-simulations

  • 1. A Semantic Web Platform for Automating the Interpretation of Finite Element Bio-simulations Dr. Ratnesh Sahay Semantics in eHealth & Life Sciences (SeLS) Insight Centre for Data Analytics NUI Galway, Ireland 10-12-2014 SWAT4LS-2014, Berlin Germany
  • 2. Background – Hearing Loss 278 Million People • Outer ear gets excited both by the sound waves propagate through the ear canal and strike the eardrum • In the middle ear the ear drum vibrates generating pressure waves in the inner ear fluid chambers • The inner ear turns pressure waves into electrical signals that our brain can understand Slide 2
  • 3. Background – Hearing Loss • The ear drum vibrates generating pressure waves in the inner ear fluid chambers • The inner ear turns pressure waves into electrical signals that our brain can understand Infrastructure to integrate clinical knowledge, experimental data and inner ear models Slide 3
  • 4. Inner Ear - Bio Simulation Model & System PAK - FM Slide 4
  • 5. SIFEM Project Electrical Coupling Model Micromechanics Model Finite Element Model Fluid Coupling Model Slide 5
  • 6. Goals Automate the interpretation of finite element (FE) biosimulations ... Insight Centre for Data Analytics Slide 6
  • 7. Motivational Scenario: Cochlear mechanics Insight Centre for Data Analytics Slide 7
  • 8. Characteristics of the FE Domain • Difficult to represent • Physics, geometrical models, topological relations, algoithmic, mathematics Insight Centre for Data Analytics Slide 8
  • 9. Dimensions of a FE Bio-simulation Insight Centre for Data Analytics Slide 9
  • 10. Geometrical Model Insight Centre for Data Analytics Slide 10
  • 11. Physics Model • FE equilibrium for solid • FE equilibrium for fluid Insight Centre for Data Analytics Slide 11
  • 12. Numerical Models/Solvers • Incremental-iterative implicit solution scheme Insight Centre for Data Analytics Slide 12
  • 13. Experimental Data • A Insight Centre for Data Analytics Slide 13
  • 14. Lid-driven cavity flow Physical Model FEM Model Solver  If there a vortex close to the lid? Insight Centre for Data Analytics Slide 14
  • 15. Lid-driven cavity flow Physical Model FEM Model Solver  definition of a simulation  If there a vortex close to the lid? Insight Centre for Data Analytics Slide 15
  • 16. Numerical Data Interpretation description of the simulation Is translated into Rules using references to anatomical, physical and data feature elements Multiple simulations Feature extraction Interpretation = rules applied over data at the symbolic level Insight Centre for Data Analytics 02 May 2014 Slide 16
  • 17. Data View Data Selection y 0.05 Insight Centre for Data Analytics Slide 17
  • 18. Feature Extraction maximum velocity is 0.93 at the lid fast increase (avg first derivative > 35) Minima=(0.055,-0.20) velocity starts at 0 at the bottom slow decrease followed by Based on the TEDDY ontology Insight Centre for Data Analytics Slide 18
  • 19. Data Interpretation Statements :DataView1 :hasDimensionY :VelocityX . :DataView1 :hasDimensionX :DistanceFromTheCavityBase . :DataView1 :x0 “0.0"^^xsd:double . :DataView1 :y0 “0.0"^^xsd:double . :DataView1 :hasMinimumX “-0.055"^^xsd:double . :DataView1 :hasMinimumY “-0.20"^^xsd:double . :DataView1 :hasFeature :PositiveSecondDerivative . :DataView1 :hasBehaviour :BehaviourRegion1 . :DataView1 :hasBehaviour :BehaviourRegion2 . :BehaviourRegion1 :avgFirstDerivative “-3.63"^^xsd:double . :BehaviourRegion1 :hasFeature EndRegion . :BehaviourRegion1 :hasFeature :Decreases . :BehaviourRegion1 :hasFeature :DecreasesSlowly . :BehaviourRegion2 :avgFirstDerivative “33.35"^^xsd:double . :BehaviourRegion2 :hasFeature EndRegion . :BehaviourRegion2 :hasFeature :Increases . :BehaviourRegion2 :hasFeature :IncreasesFast . :BehaviourRegion1 :isFollowedBy :BehaviourRegion1 . : LidSimulation Data Analysis Rule :hasInterpretation :ValidVelocityBehaviour . Insight Centre for Data Analytics Slide 19
  • 20. Data Analysis Rules IF( minima(velocity) is negative AND decreases very slowly(velocity) AND increases very fast (velocity) ) VALID VELOCITY BEHAVIOUR SPARQL Rule CONSTRUCT { :LidSimulation sif: hasInterpretation :ValidVelocityBehaviour } WHERE { ?dataview rdf:type dao:DataView . ?dataview dao:hasFeature ?x . ... } Insight Centre for Data Analytics Slide 20
  • 21. Output Data Views Insight Centre for Data Analytics Slide 26
  • 22. Feature Extraction :DataView1 :hasDimensionY :BasilarMembraneMagnitude . :DataView1 :hasDimensionX :DistanceFromTheCochleaBasis . :DataView1 :hasFeature :isSingleWave . :DataView1 :hasMaximumAmplitude “0.0031 "^^xsd:double. :DataView1 :hasMaximumY “0.0020 e^-6 "^^xsd:double . :DataView1 :hasMaximumX “14"^^xsd:double . :DataView1 :hasMinimumY “-0.0011 e^-6 "^^xsd:double . :DataView1 :hasMinimumX “17"^^xsd:double . Insight Centre for Data Analytics Slide 27
  • 23. Conceptual Model Excerpt Insight Centre for Data Analytics Slide 29
  • 24. Conceptual Model Excerpt Insight Centre for Data Analytics Slide 30
  • 25. Take-away message • Contemporary science demands new infrastructures to scale scientific discovery in a complex knowledge environment. • Numerical data is everywhere, not only in FE simulations. • In this work we started exploring how to represent and extract numerical data features to a conceptual level. Insight Centre for Data Analytics Slide 31
  • 26. Future Directions • Better integration of the proposed representation and data analysis framework to the (TErminology for the Description of DYnamics) TEDDY conceptual model [EMBL-EBI]. • Use of the feature set and rules as a heuristic method to improve the simulation configuration space. Insight Centre for Data Analytics Slide 32
  • 27. SIFEM TEAM • Andre Freitas • Kartik Asooja • Joao B. Jares • Stefan Decker • Ratnesh Sahay Th a n k Yo u ! Insight Centre for Data Analytics Slide 33