SlideShare a Scribd company logo
4
Most read
16
Most read
17
Most read
PROGRAM DIDIK CEMERLANG AKADEMIK
SPM
MODEL SPM QUESTIONS ( PAPER 1 )
ORGANISED BY:
JABATAN PELAJARAN NEGERI PULAU PINANG
ADDITIONAL
MATHEMATICS
MODULE 19
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 2
3472/1 NO. KAD PENGENALAN
Additional
Mathematics
Paper 1 ANGKA GILIRAN
2 Hours
JABATAN PELAJARAN NEGERI PULAU PINANG
ADDITIONAL MATHEMATICS
Paper 1
Two Hours
JANGAN BUKA KERTAS SOALAN INI
SEHINGGA DIBERITAHU
1. Tuliskan angka giliran dan nombor kad
pengenalan anda pada ruang yang
disediakan.
2. Calon dikehendaki membaca arahan
di halaman 2.
Kod Pemeriksa
Questions Marks Actual Marks
1 2
2 3
3 3
4 3
5 3
6 3
7 3
8 3
9 3
10 2
11 4
12 4
13 4
14 2
15 2
16 3
17 4
18 4
19 4
20 4
21 3
22 4
23 3
24 3
25 4
Total
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 3
INFORMATION FOR CANDIDATES
1. This question paper consists of 25 questions.
2. Answer all questions.
3. Give only one answer for each question.
4. Write your answer clearly in the spaces provided in the question paper.
5. Show your working . It may help you to get marks .
6. If you wish to change your answer , cross out the work that you have done. Then write down the
new answer.
7. The diagrams in the questions provided are not drawn to scale unless stated.
8. The marks allocated for each question and sub-figure mathematical tables is provided .
9. You may use a non-programmable scientific calculator .
10.A booklet of four-figure mathematical tables is provided.
11.You may use a non –programmable scientific calculator.
12.This question paper must be handed in at the end of examination.
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 4
Answer all questions
1 . Diagram 1, the function h maps x to y and the function k maps y to z.
DIAGRAM 1
Determine
(a) hk –1
(– 4),
(b) kh –1
(– 2). [2 marks]
Answer : (a) ___________
(b) ___________
2. The function p–1
is defined as p–1
(x) =
x
x

4
3
, x ≠ 4.
Find
(a) p(x),
(b) p(5). [3 marks]
Answer : (a) ___________
(b) ___________
x y z
4
3
2
h
k
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 5
3. The following information refers to the functions h and g.
Find f (x). [3 marks]
Answer : ___________
4. The straight line y = t intercept with the curve y = 3 + 5x – 4x2
at the two points A and B .
Find the range of values of t . [3 marks]
Jawapan : ___________
5. Solve the quadratic equation
5
2
3
1
2 2


 x
x
Give your answer correct to three decimal
places . [3 marks]
Answer : x = ___________
g (x) = 4 – 3 x
fg (x) = 2 x + 5
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 6
6. Diagram 2 shows the graph of a quadratic functions g(x) = 4 – 2(x + h)2
where h is constant.
DIAGRAM 2
The curve y = g(x) has maximum point (3, k) , where k is a constant .State
(a) the value of h,
(b) the value of k,.
(c) the equation of the axis of symmetry .
[3 marks]
Answer : (a) h = ___________
(b) k = ___________
(c) ___________
7. Solve the equation .
)
4
)(
8
(
1
64 1
3


 x
x
x
[3 marks]
Answer : x = ___________
y = g(x)
●
(3,k)
x
y
O
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 7
8. Solve the equation log2 (x – 1) + 2 = 2 log2 x [3 marks]
Answer : x = ___________
9. Given that log2 x = p and log2 y = r, express 







2
3
2
32
log
y
x
in term p and r.
[3 marks]
Answer : ___________
10. The sum of the first n term of an arithmetric progression is given by Sn= 5n – 3. Find the
fifth term . [2 marks]
Answer : ___________
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 8
11. The first three terms of an arithmetic progression are –
2
1
, 1, –2 , …
Find
(a) the common ratio ,
(b) the sum of the first 10 terms after the 5th term .
[ 4 marks]
Answer : (a) ___________
(b) ___________
12. The sum of the first n terms of an arithmetric progression 47, 44, 41, … is –1325. Find
(a) the common difference of the progression ,
(b) the value of n. [4 marks]
Answer : (a) ______________
(b) n = ___________
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 9
13. Diagram 3 shows a straight line graph of log10 y againts log10 x.
The variables x and y are related by equation y = p x q
, where p and q are contants .
DIAGRAM 3
(a) Calculate the value of p and q,
(b) Find the value of y if x = 10. [4 marks]
Answer : (a) p = ___________
q = ___________
(b) y =___________
14. The following information refers to the equations of two straight lines , AB and CD , which
parallel to each other.
Express p in terms q. [2 marks]
Answer : p =___________
AB : 2y = p x + q
CD : 3y = (q + 1) x + 2
Where p and q are constants
log10 y
log10 x
2
4 O
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 10
15. Given that B point is (–8, 5) and O is origin.
(a) Express

OB in terms of
~
i and
~
j .
(b) Find the unit vector in the direction of

OB . [2 marks]
Answer : (a) ___________
(b) ___________
16. Given that

OA = –2
~
i + 3
~
j ,

OB = 10
~
i + 6
~
j and R is a point on AB such that AR :
AB = 2 : 3. Find
(a)

AB ,
(b)

OR . [3 marks]
Answer : (a) ___________
(b) ___________
17. Solved the equation 3
cot
1 2
2

 x
sek
x
for 0 ≤ x ≤ 360.
[4 marks]
Answer : x = ___________
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 11
18. Diagram 4 shows the sector OPQ, centre O with a radius of 5 cm . Line PR is perpendicular to
the line OQ and QR = 1 cm.
[4 marks]
Find ( a )  POR in radians ,
( b ) the perimeter of the shaded region .
Answer : ( a ) ………………….
( b ) ………………….
19. Given that 2
)
2
5
(
4
)
( x
x
x
f 
 , find )
(
" x
f [4 marks]
Answer : ___________
RAJAH 4
Q
P O
R
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 12
20. Given that x = t + 3t 2
and y = 2t – 1
(a) find
dy
dx
in term of t.
(b) If y decreases from 4.0 to 3.98, Find the corresponding small change in t .
[4 marks]
Answer : (a) ___________
(b) ___________
21. Given that 2
3
2
1
x
x
y

 and )
(
4 x
f
dx
dy
 with )
(x
f is a function in x .
Calculate the value of dx
x
f )
(
3
2
2

. [3 marks]
Answer : ___________
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 13
22. A chess team consists that of 5 students . The team will be chosen from a group of 6 boys
and 4 girls . Calculate the number of teams that can be formed such that each team consists
of
(a) 4 boys,
(b) Not more than 2 girls.
[4 marks]
Answer : (a) ___________
(b) ___________
23. The mean of five numbers is m. The sum of the squares of the numbers is 720 and the
standard deviation is 9h2
. Express m in term of h.
[3 marks]
Answer: m = ___________
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 14
24. Ali has 6 accessories of the item which consists of P, Q, R, S, T and U. He wants to arrange
4 of the items in a row . Find the probability that
(a) the arrangment is TUPS ,
(b) the arrangment does not incule P item
[3 marks]
Answer : (a) ___________
(b) ___________
25. X is a random variable of normal distribution with a mean of 10 and a variance 9 , find the
value of r such that P ( X < r ) = 0 . 9 7 5.
[4 marks]
Answer : ___________
END OF QUESTION PAPER
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 15
Answers
1. ( a ) h k – 1
(– 4) = – 2
( b ) k h – 1
(– 2) = – 4
2 . ( a ) p – 1
( x ) =
x
x

4
3
p – 1
( y ) = y
y

4
3
x =
y
y

4
3
x ( 4 – y ) = 3 y
4 x – x y = 3 y
y ( x + 3 ) = 4 x
y =
3
4

x
x
p ( x ) =
3
4

x
x
, x ≠ –3,
( b ) 3
5
)
5
(
4
)
5
(


p
=
2
5
3 . g ( x ) = 4 – 3 x
y = 4 – 3 x
3 x = 4 – y
x =
3
4 y

g – 1
(x) =
3
4 x

f ( x ) = f g g – 1
( x ) = f g 




 
3
4 x
= 2 5
3
4






  x
=
3
2
23 x

4 . y = t , y = 3 + 5 x – 4 x 2
3 + 5 x – 4 x 2
= t
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 16
4 x 2
– 5 x + t – 3 = 0
Intercept at two points , use b 2
– 4 a c > 0
( – 5 ) 2
– 4 ( 4 ) ( t – 3 ) > 0
1 6 t < 7 3
t <
16
73
5 . 5 ( 2 x – 1 ) = 3 ( x 2
– 2 )
3 x 2
– 10 x – 1 = 0
Use x =
a
ac
b
b
2
4
2



x =
)
3
(
2
)
1
)(
3
(
4
)
10
(
)
10
( 2






x =
6
112
10 
x = 3.43, x = – 0. 0972
6 . g (x) = 4 – 2 ( x + h ) 2
x + h = 0 , x = – h ; y = 4
( – h , 4 ) = ( 3 , k )
(a) h = – 3
(b) k = 4
(c) symmetry Axis : x = 3
7 . 2 6 ( x+3 ) x ½
= 2 – 3x
. 2 – 2 ( x + 1 )
3 ( x + 3 ) = – 3 x + [ – 2 x – 2 ]
8 x = – 11
x =
8
11

8 . log 2 ( x – 1 ) + 2 = 2 log 2 x 2 = log 2 22
= log 2 4
log 2 4 ( x – 1 ) = log 2 x 2
4 x – 4 = x 2
x 2
– 4 x + 4 = 0
( x – 2 ) 2
= 0
x = 2
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 17
9 . 2
2
3
2
2
2
3
2 log
log
32
log
32
log y
x
y
x











= y
x 2
2
5
2 log
2
log
3
2
log 

= 5 + 3 p – 2 r
10 . S n = 5 n – 3
T n = S n – S n – 1
T 5 = S 5 – S 4
= [ 5 ( 5 ) – 3 ] – [ 5 ( 4 ) – 3 ]
= 22 – 17
= 5
11 . (a) r =
1
2

= – 2
(b) T 1 , T 2 , ……… T 5 , T 6 , ……….. T 15
the sum of = S 15 – S 5
S 15 =
 
1
)
2
(
1
)
2
(
2
1 15





= – 5461.5 ;
S 5 =
 
1
)
2
(
1
)
2
(
2
1 5





= – 5.5
S 15 – S 5 = – 5456
12 . 47, 44, 41, …………
( a ) d = 4 4 – 4 7 = – 3
( b ) S n = ]
)
1
(
2
[
2
d
n
a
n


)]
3
)(
1
(
)
47
(
2
[
2


 n
n
= –1325
3 n 2
– 9 7 n – 2 6 5 0 = 0
( 3 n + 5 3 ) ( n – 5 0 ) = 0
n = 50
13 . y = p x q
( a ) log 10 y = log 10 p + q log 10 x
log 10 p = 2
p = 10 2
= 100
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 18
q =
2
1
4
0
0
2



( b ) log 10 y = 2 + ½ log 10 x
x = 10 , log 10 y = 2 + ½ log 10 10
log 10 y = 2.5
y = 10 2.5
y = 316 . 2
Alternatif method
y = p x q
= 100 x ( 10 ) ½
= 316 . 2
14 . y =
2
2
q
x
p

y =
3
2
3
1


x
q
3
1
2


q
p
p = )
1
(
3
2

q
15 . ( a )

OB =
~
~
5
8 j
i 

( b ) the unit vector in the direction of

OB =
89
5
8 j
i 

16 . ( a )

AB =

AO +

OB
= – 

























3
12
6
10
3
2
( b )

OR =
1
2
)
(
1
)
(
2

 OA
OB

OR = 






















 3
2
1
6
10
2
1
2
1

OR = 







5
6
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 19
17.
x
2
cot
1
. + sek 2
x = 3
tan 2
x + sek 2
x = 3
tan 2
x + 1 + tan 2
x = 3
2 tan 2
x = 2
tan 2
x = 1
tan x = ± 1
x = 45 o
, 135 o
, 225 o
, 315 o
18 . ( a ) Cos POR =
5
4
= 0 . 8
POR = 0 . 6435 r
( b ) s PQ = j r

= 5 x 0.6435 = 3 . 2175
RQ = 1 cm , PR = 3 cm ( Pythagoras Teorem )
The perimeter of the shaded region = 3 + 1 + 3. 2175
= 7 . 2175
19 . f ( x ) = 2
)
2
5
(
4 x
x 
u = 4x v = ( 5 – 2 x ) 2
4

dx
du
)
2
)(
2
5
)(
2
( 

 x
dx
dv
dx
du
v
dx
dv
u
dx
dy


)
4
(
)
2
5
(
)]
2
5
(
4
[
4
)
(
' 2
x
x
x
x
f 




= 4 8 x2
– 160 x + 100
160
96
)
(
'
' 
 x
x
f
20 . (a) x = t + 3 t 2
y = 2 t – 1
t
dt
dx
6
1
 2

dt
dy
)
6
1
(
2
1
2
1
)
6
1
(
t
t
dy
dt
dt
dx
dy
dx







(b) 4
98
.
3 

y

= -0.02
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 20
2

dt
dy
t
y
dt
dy



dt
dy
y
t

 
01
.
0
2
02
.
0




21 .  
 dx
x
f
dy )
(
4
 
 dx
x
f
dy )
(
3
4
3
2
2
2
2
2
3
2
1
4
3
)
(
3







 

 x
x
dx
x
f
= 




 


12
4
1
12
4
1
4
3
=
2
1
22 . ( a ) 6
20
2
4
3
6


 C
C
= 120
( b ) Total of player boys and girls = 6 + 4 = 10
The number of ways of selecting from 5 player = 252
5
10

C
The number of ways of selecting player consisting of 1 boy and 4 girls
= 6
1
6
4
4
1
6



 C
C
The number of team is less than 2 boys = 2 5 2 – 6 = 2 4 6
23 . m
x  ;   720
2
x ; 2
2
9h


 2
2
2
x
n
x




9 h 2
= 2
5
720
m

m 2
= 144 – 9h2
m =
2
9
144 h

24 . ( a ) The probability of arrangement is TUPS
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com
Additional Mathematics ( Paper 1) SPM
Jabatan Pelajaran Pulau Pinang 21
=
360
1
3
1
4
1
5
1
6
1




( b ) The probability does not included the P accessory
=
4
6
4
5
C
C
=
3
1
25 . variance = 2
= 9
Standard deviation =  = 3
mean =  = 10
P ( X < r ) = 0 . 975
Z =



X
P 




 


3
10
3
10 r
X
= 0 . 975
P 




 

3
10
r
Z = 0 . 975
1 – P 




 

3
10
r
Z = 0 . 975
P 




 

3
10
r
Z = 1 – 0. 975
= 0 . 025
3
10

r
= 1 . 9 6
r = 1 5 . 8 8
http://mathsmozac.blogspot.com
http://sahatmozac.blogspot.com

More Related Content

PPTX
Math 8 Quiz Bee.pptx
PDF
Teğet Eğimi -My Matematik - Mustafa Yağcı
PPTX
Joint and Combined variation grade 9.pptx
PPT
Solving digit problems
PPTX
Rebus
PPT
ҰБТ қиын есептерді шығару жолдары
PPT
DOC
Skills In Add Maths
Math 8 Quiz Bee.pptx
Teğet Eğimi -My Matematik - Mustafa Yağcı
Joint and Combined variation grade 9.pptx
Solving digit problems
Rebus
ҰБТ қиын есептерді шығару жолдары
Skills In Add Maths

Similar to Add Maths Paper 1 (20)

PDF
Add mth f4 final sbp 2008
DOCX
Modul kertas 1
PDF
Bank soalan: Percubaan matematik tambahan kelantan 2013
PDF
Kelantan mtambahan + skema
DOC
Melaka Trial Paper 1 2010
PPT
Spm add math 2009 paper 1extra222
PPT
Ceramah Add Mth
PDF
Module 1
PDF
modul 3 add maths
PDF
Modul bimbingan add maths
PDF
Add Maths Module
PDF
Trial kedah 2014 spm add math k2
PDF
Paper 1 add mth trial spm 2013
PDF
10th class maths model question paper
DOCX
Trial 2018 kedah add math k2
PDF
Q addmaths 2011
DOC
Module 6 Algebric PMR
PDF
Class 10 Cbse Maths Sample Paper Term 1 Model 3
PPT
Teknik menjawab-percubaan-pmr-melaka-2010
PDF
Class 10 Cbse Maths 2010 Sample Paper Model 3
Add mth f4 final sbp 2008
Modul kertas 1
Bank soalan: Percubaan matematik tambahan kelantan 2013
Kelantan mtambahan + skema
Melaka Trial Paper 1 2010
Spm add math 2009 paper 1extra222
Ceramah Add Mth
Module 1
modul 3 add maths
Modul bimbingan add maths
Add Maths Module
Trial kedah 2014 spm add math k2
Paper 1 add mth trial spm 2013
10th class maths model question paper
Trial 2018 kedah add math k2
Q addmaths 2011
Module 6 Algebric PMR
Class 10 Cbse Maths Sample Paper Term 1 Model 3
Teknik menjawab-percubaan-pmr-melaka-2010
Class 10 Cbse Maths 2010 Sample Paper Model 3
Ad

More from Lisa Riley (20)

PDF
Writting Wallpapers - Wallpaper Cave. Online assignment writing service.
PDF
Japanese Writing Paper Printable. Online assignment writing service.
PDF
Write An Essay On My Mother Essay Writing English - YouTube
PDF
Heart Writing Paper Writing Paper, Heart Printable, Pap
PDF
Raised Line Writing Paper. A4 Raised Line Handwriting Paper
PDF
The Federalist Papers Audiolibro Alexander
PDF
Research Paper Introduction - College Homework Help And Online Tutoring.
PDF
English Essay Topics For Grad. Online assignment writing service.
PDF
Psychology Essay Writing Service - Qualified Writings
PDF
Handwriting Background Paper Vintage Images Le
PDF
Examples Of Science Pape. Online assignment writing service.
PDF
Cambridge 12 Academic Ielts Test 6 Writing Task 2 Sam
PDF
Easy Essay Structure. How To Create A Powerful Argu
PDF
Help With Research Paper Writing - I Need Help To Wr
PDF
How To Write A Method In Science Report.pdfHow To Write A Method In Science R...
PDF
Grade 12 Narrative Essay Examples - Csusm.X.Fc2.Com
PDF
Audience Analysis Essay. Online assignment writing service.
PDF
Contract Essay Term 1 PDF Offer And Acceptance L
PDF
Evaluation Essays Examples. How To Write A
PDF
Write My Research Paper For Me 6 Per Page
Writting Wallpapers - Wallpaper Cave. Online assignment writing service.
Japanese Writing Paper Printable. Online assignment writing service.
Write An Essay On My Mother Essay Writing English - YouTube
Heart Writing Paper Writing Paper, Heart Printable, Pap
Raised Line Writing Paper. A4 Raised Line Handwriting Paper
The Federalist Papers Audiolibro Alexander
Research Paper Introduction - College Homework Help And Online Tutoring.
English Essay Topics For Grad. Online assignment writing service.
Psychology Essay Writing Service - Qualified Writings
Handwriting Background Paper Vintage Images Le
Examples Of Science Pape. Online assignment writing service.
Cambridge 12 Academic Ielts Test 6 Writing Task 2 Sam
Easy Essay Structure. How To Create A Powerful Argu
Help With Research Paper Writing - I Need Help To Wr
How To Write A Method In Science Report.pdfHow To Write A Method In Science R...
Grade 12 Narrative Essay Examples - Csusm.X.Fc2.Com
Audience Analysis Essay. Online assignment writing service.
Contract Essay Term 1 PDF Offer And Acceptance L
Evaluation Essays Examples. How To Write A
Write My Research Paper For Me 6 Per Page
Ad

Recently uploaded (20)

PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Types and Its function , kingdom of life
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Cell Structure & Organelles in detailed.
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Updated Idioms and Phrasal Verbs in English subject
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
RMMM.pdf make it easy to upload and study
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Types and Its function , kingdom of life
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Cell Structure & Organelles in detailed.
A systematic review of self-coping strategies used by university students to ...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Updated Idioms and Phrasal Verbs in English subject
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Microbial disease of the cardiovascular and lymphatic systems
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Practical Manual AGRO-233 Principles and Practices of Natural Farming
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Microbial diseases, their pathogenesis and prophylaxis
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
RMMM.pdf make it easy to upload and study

Add Maths Paper 1

  • 1. PROGRAM DIDIK CEMERLANG AKADEMIK SPM MODEL SPM QUESTIONS ( PAPER 1 ) ORGANISED BY: JABATAN PELAJARAN NEGERI PULAU PINANG ADDITIONAL MATHEMATICS MODULE 19 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 2. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 2 3472/1 NO. KAD PENGENALAN Additional Mathematics Paper 1 ANGKA GILIRAN 2 Hours JABATAN PELAJARAN NEGERI PULAU PINANG ADDITIONAL MATHEMATICS Paper 1 Two Hours JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1. Tuliskan angka giliran dan nombor kad pengenalan anda pada ruang yang disediakan. 2. Calon dikehendaki membaca arahan di halaman 2. Kod Pemeriksa Questions Marks Actual Marks 1 2 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 2 11 4 12 4 13 4 14 2 15 2 16 3 17 4 18 4 19 4 20 4 21 3 22 4 23 3 24 3 25 4 Total http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 3. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 3 INFORMATION FOR CANDIDATES 1. This question paper consists of 25 questions. 2. Answer all questions. 3. Give only one answer for each question. 4. Write your answer clearly in the spaces provided in the question paper. 5. Show your working . It may help you to get marks . 6. If you wish to change your answer , cross out the work that you have done. Then write down the new answer. 7. The diagrams in the questions provided are not drawn to scale unless stated. 8. The marks allocated for each question and sub-figure mathematical tables is provided . 9. You may use a non-programmable scientific calculator . 10.A booklet of four-figure mathematical tables is provided. 11.You may use a non –programmable scientific calculator. 12.This question paper must be handed in at the end of examination. http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 4. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 4 Answer all questions 1 . Diagram 1, the function h maps x to y and the function k maps y to z. DIAGRAM 1 Determine (a) hk –1 (– 4), (b) kh –1 (– 2). [2 marks] Answer : (a) ___________ (b) ___________ 2. The function p–1 is defined as p–1 (x) = x x  4 3 , x ≠ 4. Find (a) p(x), (b) p(5). [3 marks] Answer : (a) ___________ (b) ___________ x y z 4 3 2 h k http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 5. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 5 3. The following information refers to the functions h and g. Find f (x). [3 marks] Answer : ___________ 4. The straight line y = t intercept with the curve y = 3 + 5x – 4x2 at the two points A and B . Find the range of values of t . [3 marks] Jawapan : ___________ 5. Solve the quadratic equation 5 2 3 1 2 2    x x Give your answer correct to three decimal places . [3 marks] Answer : x = ___________ g (x) = 4 – 3 x fg (x) = 2 x + 5 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 6. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 6 6. Diagram 2 shows the graph of a quadratic functions g(x) = 4 – 2(x + h)2 where h is constant. DIAGRAM 2 The curve y = g(x) has maximum point (3, k) , where k is a constant .State (a) the value of h, (b) the value of k,. (c) the equation of the axis of symmetry . [3 marks] Answer : (a) h = ___________ (b) k = ___________ (c) ___________ 7. Solve the equation . ) 4 )( 8 ( 1 64 1 3    x x x [3 marks] Answer : x = ___________ y = g(x) ● (3,k) x y O http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 7. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 7 8. Solve the equation log2 (x – 1) + 2 = 2 log2 x [3 marks] Answer : x = ___________ 9. Given that log2 x = p and log2 y = r, express         2 3 2 32 log y x in term p and r. [3 marks] Answer : ___________ 10. The sum of the first n term of an arithmetric progression is given by Sn= 5n – 3. Find the fifth term . [2 marks] Answer : ___________ http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 8. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 8 11. The first three terms of an arithmetic progression are – 2 1 , 1, –2 , … Find (a) the common ratio , (b) the sum of the first 10 terms after the 5th term . [ 4 marks] Answer : (a) ___________ (b) ___________ 12. The sum of the first n terms of an arithmetric progression 47, 44, 41, … is –1325. Find (a) the common difference of the progression , (b) the value of n. [4 marks] Answer : (a) ______________ (b) n = ___________ http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 9. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 9 13. Diagram 3 shows a straight line graph of log10 y againts log10 x. The variables x and y are related by equation y = p x q , where p and q are contants . DIAGRAM 3 (a) Calculate the value of p and q, (b) Find the value of y if x = 10. [4 marks] Answer : (a) p = ___________ q = ___________ (b) y =___________ 14. The following information refers to the equations of two straight lines , AB and CD , which parallel to each other. Express p in terms q. [2 marks] Answer : p =___________ AB : 2y = p x + q CD : 3y = (q + 1) x + 2 Where p and q are constants log10 y log10 x 2 4 O http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 10. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 10 15. Given that B point is (–8, 5) and O is origin. (a) Express  OB in terms of ~ i and ~ j . (b) Find the unit vector in the direction of  OB . [2 marks] Answer : (a) ___________ (b) ___________ 16. Given that  OA = –2 ~ i + 3 ~ j ,  OB = 10 ~ i + 6 ~ j and R is a point on AB such that AR : AB = 2 : 3. Find (a)  AB , (b)  OR . [3 marks] Answer : (a) ___________ (b) ___________ 17. Solved the equation 3 cot 1 2 2   x sek x for 0 ≤ x ≤ 360. [4 marks] Answer : x = ___________ http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 11. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 11 18. Diagram 4 shows the sector OPQ, centre O with a radius of 5 cm . Line PR is perpendicular to the line OQ and QR = 1 cm. [4 marks] Find ( a )  POR in radians , ( b ) the perimeter of the shaded region . Answer : ( a ) …………………. ( b ) …………………. 19. Given that 2 ) 2 5 ( 4 ) ( x x x f   , find ) ( " x f [4 marks] Answer : ___________ RAJAH 4 Q P O R http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 12. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 12 20. Given that x = t + 3t 2 and y = 2t – 1 (a) find dy dx in term of t. (b) If y decreases from 4.0 to 3.98, Find the corresponding small change in t . [4 marks] Answer : (a) ___________ (b) ___________ 21. Given that 2 3 2 1 x x y   and ) ( 4 x f dx dy  with ) (x f is a function in x . Calculate the value of dx x f ) ( 3 2 2  . [3 marks] Answer : ___________ http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 13. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 13 22. A chess team consists that of 5 students . The team will be chosen from a group of 6 boys and 4 girls . Calculate the number of teams that can be formed such that each team consists of (a) 4 boys, (b) Not more than 2 girls. [4 marks] Answer : (a) ___________ (b) ___________ 23. The mean of five numbers is m. The sum of the squares of the numbers is 720 and the standard deviation is 9h2 . Express m in term of h. [3 marks] Answer: m = ___________ http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 14. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 14 24. Ali has 6 accessories of the item which consists of P, Q, R, S, T and U. He wants to arrange 4 of the items in a row . Find the probability that (a) the arrangment is TUPS , (b) the arrangment does not incule P item [3 marks] Answer : (a) ___________ (b) ___________ 25. X is a random variable of normal distribution with a mean of 10 and a variance 9 , find the value of r such that P ( X < r ) = 0 . 9 7 5. [4 marks] Answer : ___________ END OF QUESTION PAPER http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 15. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 15 Answers 1. ( a ) h k – 1 (– 4) = – 2 ( b ) k h – 1 (– 2) = – 4 2 . ( a ) p – 1 ( x ) = x x  4 3 p – 1 ( y ) = y y  4 3 x = y y  4 3 x ( 4 – y ) = 3 y 4 x – x y = 3 y y ( x + 3 ) = 4 x y = 3 4  x x p ( x ) = 3 4  x x , x ≠ –3, ( b ) 3 5 ) 5 ( 4 ) 5 (   p = 2 5 3 . g ( x ) = 4 – 3 x y = 4 – 3 x 3 x = 4 – y x = 3 4 y  g – 1 (x) = 3 4 x  f ( x ) = f g g – 1 ( x ) = f g        3 4 x = 2 5 3 4         x = 3 2 23 x  4 . y = t , y = 3 + 5 x – 4 x 2 3 + 5 x – 4 x 2 = t http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 16. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 16 4 x 2 – 5 x + t – 3 = 0 Intercept at two points , use b 2 – 4 a c > 0 ( – 5 ) 2 – 4 ( 4 ) ( t – 3 ) > 0 1 6 t < 7 3 t < 16 73 5 . 5 ( 2 x – 1 ) = 3 ( x 2 – 2 ) 3 x 2 – 10 x – 1 = 0 Use x = a ac b b 2 4 2    x = ) 3 ( 2 ) 1 )( 3 ( 4 ) 10 ( ) 10 ( 2       x = 6 112 10  x = 3.43, x = – 0. 0972 6 . g (x) = 4 – 2 ( x + h ) 2 x + h = 0 , x = – h ; y = 4 ( – h , 4 ) = ( 3 , k ) (a) h = – 3 (b) k = 4 (c) symmetry Axis : x = 3 7 . 2 6 ( x+3 ) x ½ = 2 – 3x . 2 – 2 ( x + 1 ) 3 ( x + 3 ) = – 3 x + [ – 2 x – 2 ] 8 x = – 11 x = 8 11  8 . log 2 ( x – 1 ) + 2 = 2 log 2 x 2 = log 2 22 = log 2 4 log 2 4 ( x – 1 ) = log 2 x 2 4 x – 4 = x 2 x 2 – 4 x + 4 = 0 ( x – 2 ) 2 = 0 x = 2 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 17. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 17 9 . 2 2 3 2 2 2 3 2 log log 32 log 32 log y x y x            = y x 2 2 5 2 log 2 log 3 2 log   = 5 + 3 p – 2 r 10 . S n = 5 n – 3 T n = S n – S n – 1 T 5 = S 5 – S 4 = [ 5 ( 5 ) – 3 ] – [ 5 ( 4 ) – 3 ] = 22 – 17 = 5 11 . (a) r = 1 2  = – 2 (b) T 1 , T 2 , ……… T 5 , T 6 , ……….. T 15 the sum of = S 15 – S 5 S 15 =   1 ) 2 ( 1 ) 2 ( 2 1 15      = – 5461.5 ; S 5 =   1 ) 2 ( 1 ) 2 ( 2 1 5      = – 5.5 S 15 – S 5 = – 5456 12 . 47, 44, 41, ………… ( a ) d = 4 4 – 4 7 = – 3 ( b ) S n = ] ) 1 ( 2 [ 2 d n a n   )] 3 )( 1 ( ) 47 ( 2 [ 2    n n = –1325 3 n 2 – 9 7 n – 2 6 5 0 = 0 ( 3 n + 5 3 ) ( n – 5 0 ) = 0 n = 50 13 . y = p x q ( a ) log 10 y = log 10 p + q log 10 x log 10 p = 2 p = 10 2 = 100 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 18. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 18 q = 2 1 4 0 0 2    ( b ) log 10 y = 2 + ½ log 10 x x = 10 , log 10 y = 2 + ½ log 10 10 log 10 y = 2.5 y = 10 2.5 y = 316 . 2 Alternatif method y = p x q = 100 x ( 10 ) ½ = 316 . 2 14 . y = 2 2 q x p  y = 3 2 3 1   x q 3 1 2   q p p = ) 1 ( 3 2  q 15 . ( a )  OB = ~ ~ 5 8 j i   ( b ) the unit vector in the direction of  OB = 89 5 8 j i   16 . ( a )  AB =  AO +  OB = –                           3 12 6 10 3 2 ( b )  OR = 1 2 ) ( 1 ) ( 2   OA OB  OR =                         3 2 1 6 10 2 1 2 1  OR =         5 6 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 19. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 19 17. x 2 cot 1 . + sek 2 x = 3 tan 2 x + sek 2 x = 3 tan 2 x + 1 + tan 2 x = 3 2 tan 2 x = 2 tan 2 x = 1 tan x = ± 1 x = 45 o , 135 o , 225 o , 315 o 18 . ( a ) Cos POR = 5 4 = 0 . 8 POR = 0 . 6435 r ( b ) s PQ = j r  = 5 x 0.6435 = 3 . 2175 RQ = 1 cm , PR = 3 cm ( Pythagoras Teorem ) The perimeter of the shaded region = 3 + 1 + 3. 2175 = 7 . 2175 19 . f ( x ) = 2 ) 2 5 ( 4 x x  u = 4x v = ( 5 – 2 x ) 2 4  dx du ) 2 )( 2 5 )( 2 (    x dx dv dx du v dx dv u dx dy   ) 4 ( ) 2 5 ( )] 2 5 ( 4 [ 4 ) ( ' 2 x x x x f      = 4 8 x2 – 160 x + 100 160 96 ) ( ' '   x x f 20 . (a) x = t + 3 t 2 y = 2 t – 1 t dt dx 6 1  2  dt dy ) 6 1 ( 2 1 2 1 ) 6 1 ( t t dy dt dt dx dy dx        (b) 4 98 . 3   y  = -0.02 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 20. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 20 2  dt dy t y dt dy    dt dy y t    01 . 0 2 02 . 0     21 .    dx x f dy ) ( 4    dx x f dy ) ( 3 4 3 2 2 2 2 2 3 2 1 4 3 ) ( 3            x x dx x f =          12 4 1 12 4 1 4 3 = 2 1 22 . ( a ) 6 20 2 4 3 6    C C = 120 ( b ) Total of player boys and girls = 6 + 4 = 10 The number of ways of selecting from 5 player = 252 5 10  C The number of ways of selecting player consisting of 1 boy and 4 girls = 6 1 6 4 4 1 6     C C The number of team is less than 2 boys = 2 5 2 – 6 = 2 4 6 23 . m x  ;   720 2 x ; 2 2 9h    2 2 2 x n x     9 h 2 = 2 5 720 m  m 2 = 144 – 9h2 m = 2 9 144 h  24 . ( a ) The probability of arrangement is TUPS http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com
  • 21. Additional Mathematics ( Paper 1) SPM Jabatan Pelajaran Pulau Pinang 21 = 360 1 3 1 4 1 5 1 6 1     ( b ) The probability does not included the P accessory = 4 6 4 5 C C = 3 1 25 . variance = 2 = 9 Standard deviation =  = 3 mean =  = 10 P ( X < r ) = 0 . 975 Z =    X P          3 10 3 10 r X = 0 . 975 P         3 10 r Z = 0 . 975 1 – P         3 10 r Z = 0 . 975 P         3 10 r Z = 1 – 0. 975 = 0 . 025 3 10  r = 1 . 9 6 r = 1 5 . 8 8 http://mathsmozac.blogspot.com http://sahatmozac.blogspot.com