SlideShare a Scribd company logo
Stavros Vassos, University of Athens, Greece   stavrosv@di.uoa.gr   May 2012




INTRODUCTION TO AI
STRIPS PLANNING
.. and Applications to Video-games!
Course overview
2


       Lecture 1: Game-inspired competitions for AI research,
        AI decision making for non-player characters in games
       Lecture 2: STRIPS planning, state-space search
       Lecture 3: Planning Domain Definition Language (PDDL),
        using an award winning planner to solve Sokoban
       Lecture 4: Planning graphs, domain independent
        heuristics for STRIPS planning
       Lecture 5: Employing STRIPS planning in games:
        SimpleFPS, iThinkUnity3D, SmartWorkersRTS
       Lecture 6: Planning beyond STRIPS
STRIPS planning
3


       Given:
         Initial   state
STRIPS planning
4


       Given:
         Initial   state

         Goal
STRIPS planning
5


       Given:
         Initial   state

         Goal


         Available     actions
STRIPS planning
6


       Given:
         Initial   state

         Goal


         Available     actions


       Find:
        A  sequence of actions that achieves the goal
         E.g.: [Left, Down, Left, Up, …]
Planning Domain Description Language
7


       Planning Domain Definition Language (PDDL)
         Formal  language for specifying planning problems
         Formal syntax similar to a programming language

         Includes STRIPS and ADL, and many more features



         Provides  the ground for performing a direct comparison
          between planning techniques and evaluating against
          classes of problems
Planning Domain Description Language
8


       Blocks world domain

         Initial   state: s0                                  Α
                                                               Β
                                        Α   Β     C            C
         Goal:     g
                                            s0                 g

         Available     actions: moving a block
           from the table to the top of another block
           from the top of another block to the table
           from the top of one block to the top of another block
Planning Domain Description Language
9


       Init( On(Α,Table)  On(Β,Table)  On(C,Table)
               Clear(Α)  Clear(Β)  Clear(C) )
       Goal( On(Α,Β)  On(Β,C) )
       Action( Move(b,x,y),
            PRECONDITIONS: On(b,x)  Clear(b)  Clear(y)
            EFFECTS: On(b,y)  Clear(x)  On(b,x)
              Clear(y) )
       Action( MoveToTable(b,x),
            PRECONDITIONS: On(b,x)  Clear(b)
            EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
Planning Domain Description Language
10


        Init( On(Α,Table)  On(Β,Table)  On(C,Table) …)
                                                (:init
                Clear(Α)  Clear(Β)  Clear(C) )
                                                (:goal …)
        Goal( On(Α,Β)  On(Β,C) )
                                                (:action …)
        Action( Move(b,x,y),
             PRECONDITIONS: On(b,x)  Clear(b)(:action …)
                                               Clear(y)
             EFFECTS: On(b,y)  Clear(x)  On(b,x)
               Clear(y) )
        Action( MoveToTable(b,x),
             PRECONDITIONS: On(b,x)  Clear(b)
             EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
Planning Domain Description Language
11


        Init( On(Α,Table)  On(Β,Table)  On(C,Table) …)
                                                (:init
                Clear(Α)  Clear(Β)  Clear(C) )
                                                (:goal …)
        Goal( On(Α,Β)  On(Β,C) )
                                                (:action …)
        Action( Move(b,x,y),
             PRECONDITIONS: On(b,x)  Clear(b)(:action …)
                                               Clear(y)
             EFFECTS: On(b,y)  Clear(x)  On(b,x)
               Clear(y) )
                                             (:objects …)
        Action( MoveToTable(b,x),
             PRECONDITIONS: On(b,x)  Clear(b)(:predicates …)
                                           
             EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
Planning Domain Description Language
12


      (:init …)
      (:goal …)

      (:action …)          DOMAIN
      (:action …)

                            PROBLEM
      (:objects …)
      (:predicates …)
Planning Domain Description Language
13


      (:init …)
      (:goal …)

      (:action …)          DOMAIN
      (:action …)

                            PROBLEM
      (:objects …)
      (:predicates …)
Planning Domain Description Language
14


      (:init …)
      (:goal …)

      (:action …)          DOMAIN
      (:action …)

                            PROBLEM
      (:objects …)
      (:predicates …)
Planning Domain Description Language
15


      (:predicates …)
      (:action …)         DOMAIN
      (:action …)




      (:objects …)
      (:init …)         PROBLEM
      (:goal …)
Planning Domain Description Language
16


        On(A,B)              (on a b)

        On(A,B)             (not (on a b))

        On(A,B)  On(B,C)    (and (on a b) (on b c))

        On(x,y)              (on ?x ?y)
The blocks world example in PDDL
17


        Blocks world domain


          Available   predicates   (:predicates …)

          Available   actions      (:action …)
The blocks world example in PDDL
18


        Blocks world domain


          Available   predicates   (:predicates
                                        (on ?x ?y) (clear ?x)
                                    )
The blocks world example in PDDL
19


        Blocks world domain


          Available   action   (:action move
                                     :parameters (?b ?x ?y)
                                     :precondition (and
                                             (on ?b ?x) (clear ?b)
                                             (clear ?y))
                                     :effect (…)
                                )
The blocks world example in PDDL
20


        Blocks world domain


          Available   action   (:action move-to-table
                                     :parameters (?b ?x)
                                     :precondition (…)
                                     :effect (…)
                                )
The blocks world example in PDDL
21


        Blocks world problem


          Available     objects   (:objects …)

          Initial   state         (:init …)

          Goal                    (:goal …)
The blocks world example in PDDL
22


        Blocks world domain


          Available   objects   (:objects
                                     a b c table
                                 )
The blocks world example in PDDL
23


        Blocks world domain


          Initial   state       (:init
                                          (on a table) (clear a)
                                          (on b table) (clear b)
                     Α   Β   Γ
                                          (on c table) (clear c)
                                 )
The blocks world example in PDDL
24


        Blocks world domain


          Goal                (:goal
                  Α
                                   (and (on a b) (on b c) )
                  Β
                  Γ
                               )
The blocks world example in PDDL
25


     blocks-domain.txt:                                     blocks-problem1.txt:
     (define (domain gripper)                               (define (problem gripper1)
     (:requirements :strips)                                (:domain gripper)
     (:predicates (on ?x ?y) (clear ?x))                    (:objects a b c table)


     (:action move                                          (:init
     :parameters (?b ?x ?y)                                     (on a table) (on b table) (on c table)
     :precondition (and (on ?b ?x) (clear ?b) (clear ?y))       (clear a) (clear b) (clear c)
     :effect (and (not (on ?b ?x))                          )
             (not (clear ?y))
             (on ?b ?y)                                     (:goal (and (on a b) (on b c)))
             (clear ?x)))                                   )
     …
Using PDDL planners
26


        Planning Domain Definition Language (PDDL)
          International   Planning Competition 1998 – today

          SAT  Plan
          TL Plan             Planning problems in
                                 PDDL, e.g., Blocks
          FF                 world, Storage, Trucks,
                                        …
          BlackBox

          SHOP2

          TALPlanner
                             Direct comparison between
         …                  planning techniques! E.g.,
                             evaluation of heuristics, …
Using PDDL planners: Blocks world
27


        blackbox –o blocks-domain.txt –f blocks-problem1.txt

         ----------------------------------------------------
         Begin plan
                                                                Α   Β   C
         1 (move b table c)
         2 (move a table b)
         End plan
         ----------------------------------------------------       Α
                                                                    Β
                                                                    C
Using PDDL planners: Blocks world
28


        blackbox –o blocks-domain.txt –f blocks-problem2.txt
         ----------------------------------------------------
         Begin plan                                                     G
         1 (move e b d)                                         D   E   F
         2 (move b table e)                                     Α   Β   C
         3 (move g f table)
         4 (move f c g)
         5 (move b e c)                                             Α
         6 (move e d f)                                             Β
         7 (move d a e)                                             C
         8 (move b c a)                                             D
                                                                    E
         9 (move c table d)
                                                                    F
         10 (move b a c)
                                                                    G
         11 (move a table b)
         End plan
Using PDDL planners
29


        We can use blackbox (or any other off-the-self PDDL
         planner) for any problem we can write in PDDL!
Using PDDL planners: Sokoban
30


        We can use blackbox (or any other off-the-self PDDL
         planner) for any problem we can write in PDDL!




        Let’s do this for Sokoban
Using PDDL planners: Sokoban
31




      Available predicates
      Available actions



      Available   objects
      Initial state

      Goal
Using PDDL planners: Sokoban
32




      Available   predicates
Using PDDL planners: Sokoban
33




      Available     predicates
        (robot-at ?loc)
        (object-at ?b ?loc)
Using PDDL planners: Sokoban
34




      Available     predicates
        (robot-at ?loc)
        (object-at ?b ?loc)                     c4-4 c5-4 c6-4

                                  c1-3 c2-3 c3-3 c4-3 c5-3 c6-3
      Available     objects      c1-2 c2-2 c3-2 c4-2 c5-2
        c1-1,c1-2, c2-1, …
                                  c1-1 c2-1
        box1, box2
Using PDDL planners: Sokoban
35




      Initial   state
        (robot-at c5-4)
        (object-at box1 c3-3)                  c4-4        c6-4

        (object-at box2 c4-3)   c1-3 c2-3             c5-3 c6-3

                                 c1-2 c2-2 c3-2 c4-2 c5-2

                                 c1-1 c2-1
Using PDDL planners: Sokoban
36




      Available   actions
        move(?from   ?to ?dir)

       :precondition (




       )
Using PDDL planners: Sokoban
37




      Available   actions
        move(?from   ?to ?dir)

       :precondition (and
         (robot-at ?from)
         (adjacent ?from ?to ?dir)
         (empty ?to)
       )
Using PDDL planners: Sokoban
38




      Available   actions
        move(?from   ?to ?dir)

       :effect (and




       )
Using PDDL planners: Sokoban
39




      Available   actions
        move(?from   ?to ?dir)

       :effect (and
         (empty ?from)
         (robot-at ?to)
         (not (empty ?to))
         (not (robot-at ?from))
       )
Using PDDL planners: Sokoban
40




      Available     predicates
        (robot-at ?loc)
        (object-at ?b ?loc)
        (adjacent ?from ?to ?dir)
        (empty ?to)
Using PDDL planners: Sokoban
41




      Initial   state
        (robot-at c5-4)
        (object-at box1 c3-3)
        (object-at box2 c4-3)        c2-3

                                 c1-2 c2-2 c3-2
        (empty c1-1)
                                      c2-1
        (empty c2-1)
        (empty c1-2)
        (empty c2-2)
       …
Using PDDL planners: Sokoban
42




      Initial   state
        (robot-at c5-4)
        (object-at box1 c3-3)
        (object-at box2 c4-3)             c2-3

                                      c1-2 c2-2 c3-2
        (adjacent c2-2 c3-2 right)
                                           c2-1
        (adjacent c2-2 c1-2 left)
        (adjacent c2-2 c2-3 up)
        (adjacent c2-2 c2-1 down)
       …
Using PDDL planners: Sokoban
43




      Available   actions
        push(?rloc   ?bloc ?floc ?dir ?b)
Using PDDL planners: Sokoban
44




      Available   actions
        push(?rloc   ?bloc ?floc ?dir ?b)

       :precondition (and
         (robot-at ?rloc)
         (object-at ?b ?bloc)
         (adjacent ?rloc ?bloc ?dir)
         (adjacent ?bloc ?floc ?dir)
         (empty ?floc)
       )
Using PDDL planners: Sokoban
45




      Available   actions
        push(?rloc   ?bloc ?floc ?dir ?b)

       :effect (and
         (robot-at ?bloc)
         (object-at ?b ?floc)
         (empty ?rloc)
         (not (robot-at ?rloc))
         (not (object-at ?b ?bloc))
         (not (empty ?floc))
       )
Using PDDL planners: Sokoban
46




      Goal
        (object-at box1 c4-3)
        (object-at box2 c5-3)                  c4-4        c6-4

                                 c1-3 c2-3                  c6-3

                                 c1-2 c2-2 c3-2 c4-2 c5-2

                                 c1-1 c2-1
Using PDDL planners: Sokoban
47


        blackbox –o sokoban-domain.txt –f sokoban-problem.txt
         ----------------------------------------------------
         Begin plan
         1 (push c4-4 c4-3 c4-2 down box1)
         2 (push c4-3 c3-3 c2-3 left box2)
         3 (move c3-3 c3-2 down)
         4 (move c3-2 c2-2 left)
         5 (move c2-2 c1-2 left)
         …
         27 (move c2-2 c1-2 left)
         28 (move c1-2 c1-3 up)
         29 (push c1-3 c2-3 c3-3 right box1)
         30 (push c2-3 c3-3 c4-3 right box1)
         End plan
         ----------------------------------------------------
Using PDDL planners: SimpleGame
48


        SimpleGame domain

                                turn(?fromd ?tod)
                                move(?froml ?tol
                                 ?dir)
                                pickup(?o ?l)
                                stab(?l ?knife)
                                shoot(?locn ?locp
                                 ?dir ?gun )
Building your own PDDL planner
49


       Pyperplan
         Lightweight STRIPS planner written in Python. Developed during
          the planning course at Albert-Ludwigs-Universität Freiburg
          2010/2011, GNU General Public License 3
         https://bitbucket.org/malte/pyperplan
       Source   code of academic planners
         BlackBox:
          http://www.cs.rochester.edu/u/kautz/satplan/blackbox/
         FastForward: http://www.loria.fr/~hoffmanj/ff.html
         FastDownward: http://www.fast-downward.org/
       ANTLR    Parser Generator
         http://www.antlr.org/
         http://www.antlr.org/grammar/1222962012944/Pddl.g
Building your own PDDL planner
50


        Quick overview of the provided PROLOG code
        Good for quick prototyping ;-)
Building your own PDDL planner
51


        Quick overview of the provided PROLOG code
        Works with SWI Prolog 6.x (tested with 6.0.2)
        Predicates provided
          parsePDDL(+DomainFile,        +ProblemFile)
          get_init(-InitialState)

          get_goal(-Goal)

          satisfies_goal(+State)

          progress(+State,      -Action, -NextState)
          h(+State,   -Value)
        {dfs,astar}planner(+DomainFile, +ProblemFile)
Planning Domain Description Language
52


        Planning Domain Definition Language (PDDL)
          International   Planning Competition 1998 – today

          SAT  Plan
          TL Plan

          FF                    Sokoban
          BlackBox

          SHOP2

          TALPlanner
                             Direct comparison between
         …                  planning techniques! E.g.,
                             evaluation of heuristics, …
Using PDDL planners
53


        FastDownward [Helmert 2006]
          Introduced  a new type of heuristic that is not based on
           an empty list of negative actions
          Efficient implementation of all notable forward search
           methods and heuristics (including the more recent ones)
          Requires a number of preprocessing steps that
           transforms the STRIPS planning problem…
Using PDDL planners
54


        FastDownward [Helmert 2006]
          Introduced  a new type of heuristic that is not based on
           an empty list of negative actions
          Efficient implementation of all notable forward search
           methods and heuristics (including the more recent ones)
          Requires a number of preprocessing steps that
           transforms the STRIPS planning problem…

          Can be used as a framework to evaluate forward
           search planning methods
Using PDDL planners
55


        FastDownward [Helmert 2006]
          translate/translate.py   sokoban-domain.txt 
           sokoban.problem.txt
          preprocess/preprocess < output.sas

          search/downward --search SearchConfiguration < output



        http://www.fast-downward.org
Using PDDL planners: Sokoban
56


        search/downward --search "astar(blind())" <output
Using PDDL planners: Sokoban
57


        search/downward --search "astar(goalcount())"
Using PDDL planners: Sokoban
58


        search/downward --search "astar(hmax())" <output
Using PDDL planners: Sokoban
59


        search/downward --search "astar(add())" <output
Using PDDL planners: Sokoban
60


        search/downward --search "lazy_greedy(ff())" <output
Using PDDL planners: Sokoban
61


        Notice that the planner does not know anything
         about the planning problem we are solving
        The heuristics we tried are domain independent
          goal   count
          hmax

          hadd

          FF

        We will see how each one works in Lecture 4 (after
         we first go over planning graphs that are needed)
Next lecture
62


        Lecture 1: Game-inspired competitions for AI research,
         AI decision making for non-player characters in games
        Lecture 2: STRIPS planning, state-space search
        Lecture 3: Planning Domain Definition Language (PDDL),
         using an award winning planner to solve Sokoban
        Lecture 4: Planning graphs, domain independent
         heuristics for STRIPS planning
        Lecture 5: Employing STRIPS planning in games:
         SimpleFPS, iThinkUnity3D, SmartWorkersRTS
        Lecture 6: Planning beyond STRIPS
Bibliography
63


        Material
            Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell, Peter
             Norvig. Prentice Hall, 2003 Section 11.4


        References
          PDDL - The Planning Domain Definition Language. Drew McDermott,
           Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
           Veloso, Daniel Weld, David Wilkins. Technical report, Yale Center for
           Computational Vision and Control, TR-98-003, 1998.
          Unifying SAT-Based and Graph-Based Planning. Henry Kautz, Bart
           Selman. In Proceedings of the International Joint Conference on
           Artificial Intelligence (IJCAI), 1999
          The Fast Downward Planning System. Malte Helmert. Artificial
           Intelligence Research (JAIR), Vol. 26, 2006

More Related Content

PPT
Software Quality Challenge
PPTX
Agile Unified Process (AUP).pptx
PPTX
Emotion based music player
PDF
Artificial Intelligence Notes Unit 2
PPTX
Raster animation
PPTX
Q-Learning Algorithm: A Concise Introduction [Shakeeb A.]
PPTX
Software Testing and Quality Assurance unit1
PPTX
blackboard architecture
Software Quality Challenge
Agile Unified Process (AUP).pptx
Emotion based music player
Artificial Intelligence Notes Unit 2
Raster animation
Q-Learning Algorithm: A Concise Introduction [Shakeeb A.]
Software Testing and Quality Assurance unit1
blackboard architecture

What's hot (20)

PPT
CHAPTER 6 REQUIREMENTS MODELING: SCENARIO based Model , Class based moddel
PDF
software engineering
PPTX
Prolog (present)
PPTX
Back face detection
PPT
Recommendation system
PPT
Models of Interaction
PPTX
Hidden surface removal
PPTX
Raster Scan display
PPT
Searching methodologies
PDF
Autoencoders
PDF
Recommendation System Explained
PPTX
Object Oriented Analysis (Coad-Yourdon)
PPTX
Software Process Models
PDF
Artificial Intelligence Notes Unit 1
PPTX
Validation testing
PPTX
Knowledge representation
PDF
Object oriented-systems-development-life-cycle ppt
PPTX
Ray Tracing in Computer Graphics
PPTX
Graph coloring problem(DAA).pptx
PPTX
Software Crisis
CHAPTER 6 REQUIREMENTS MODELING: SCENARIO based Model , Class based moddel
software engineering
Prolog (present)
Back face detection
Recommendation system
Models of Interaction
Hidden surface removal
Raster Scan display
Searching methodologies
Autoencoders
Recommendation System Explained
Object Oriented Analysis (Coad-Yourdon)
Software Process Models
Artificial Intelligence Notes Unit 1
Validation testing
Knowledge representation
Object oriented-systems-development-life-cycle ppt
Ray Tracing in Computer Graphics
Graph coloring problem(DAA).pptx
Software Crisis
Ad

Similar to Intro to AI STRIPS Planning & Applications in Video-games Lecture3-Part1 (20)

PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture6-Part1
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture2-Part2
PPT
Planning
PPT
Planning
PDF
Orsi Vldb11
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture4-Part1
PDF
Query Rewriting and Optimization for Ontological Databases
PDF
Gottlob ICDE 2011
PDF
The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs
PDF
Sets, maps and hash tables (Java Collections)
PDF
Scala Collections : Java 8 on Steroids
PPT
Classical Planning
PPT
Classical Planning
PPTX
21CSC206T_UNIT 5.pptx artificial intelligence
PPT
Classical And Htn Planning
PDF
TR tabling presentation_2010_09
PPT
09 logic programming
PDF
Parametric surface visualization in Directx 11 and C++
PPT
Exercises+Lab.ppt - minimum node cover - exam
PDF
Mathematical sciences-paper-ii
Intro to AI STRIPS Planning & Applications in Video-games Lecture6-Part1
Intro to AI STRIPS Planning & Applications in Video-games Lecture2-Part2
Planning
Planning
Orsi Vldb11
Intro to AI STRIPS Planning & Applications in Video-games Lecture4-Part1
Query Rewriting and Optimization for Ontological Databases
Gottlob ICDE 2011
The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs
Sets, maps and hash tables (Java Collections)
Scala Collections : Java 8 on Steroids
Classical Planning
Classical Planning
21CSC206T_UNIT 5.pptx artificial intelligence
Classical And Htn Planning
TR tabling presentation_2010_09
09 logic programming
Parametric surface visualization in Directx 11 and C++
Exercises+Lab.ppt - minimum node cover - exam
Mathematical sciences-paper-ii
Ad

More from Stavros Vassos (8)

PDF
Pathfinding - Part 3: Beyond the basics
PDF
Pathfinding - Part 2: Examples in Unity
PDF
Pathfinding - Part 1: Α* heuristic search
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture1-Part1
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture5-Part1
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture4-Part2
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture1-Part2
PDF
Intro to AI STRIPS Planning & Applications in Video-games Lecture6-Part2
Pathfinding - Part 3: Beyond the basics
Pathfinding - Part 2: Examples in Unity
Pathfinding - Part 1: Α* heuristic search
Intro to AI STRIPS Planning & Applications in Video-games Lecture1-Part1
Intro to AI STRIPS Planning & Applications in Video-games Lecture5-Part1
Intro to AI STRIPS Planning & Applications in Video-games Lecture4-Part2
Intro to AI STRIPS Planning & Applications in Video-games Lecture1-Part2
Intro to AI STRIPS Planning & Applications in Video-games Lecture6-Part2

Recently uploaded (20)

PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Big Data Technologies - Introduction.pptx
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Electronic commerce courselecture one. Pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Approach and Philosophy of On baking technology
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Empathic Computing: Creating Shared Understanding
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
KodekX | Application Modernization Development
PDF
Encapsulation_ Review paper, used for researhc scholars
PPT
Teaching material agriculture food technology
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
20250228 LYD VKU AI Blended-Learning.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Machine learning based COVID-19 study performance prediction
Big Data Technologies - Introduction.pptx
Understanding_Digital_Forensics_Presentation.pptx
Electronic commerce courselecture one. Pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Approach and Philosophy of On baking technology
Network Security Unit 5.pdf for BCA BBA.
Building Integrated photovoltaic BIPV_UPV.pdf
MYSQL Presentation for SQL database connectivity
Dropbox Q2 2025 Financial Results & Investor Presentation
Empathic Computing: Creating Shared Understanding
The AUB Centre for AI in Media Proposal.docx
KodekX | Application Modernization Development
Encapsulation_ Review paper, used for researhc scholars
Teaching material agriculture food technology
Spectral efficient network and resource selection model in 5G networks
Mobile App Security Testing_ A Comprehensive Guide.pdf
Chapter 3 Spatial Domain Image Processing.pdf

Intro to AI STRIPS Planning & Applications in Video-games Lecture3-Part1

  • 1. Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr May 2012 INTRODUCTION TO AI STRIPS PLANNING .. and Applications to Video-games!
  • 2. Course overview 2  Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games  Lecture 2: STRIPS planning, state-space search  Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban  Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning  Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS  Lecture 6: Planning beyond STRIPS
  • 3. STRIPS planning 3  Given:  Initial state
  • 4. STRIPS planning 4  Given:  Initial state  Goal
  • 5. STRIPS planning 5  Given:  Initial state  Goal  Available actions
  • 6. STRIPS planning 6  Given:  Initial state  Goal  Available actions  Find: A sequence of actions that achieves the goal  E.g.: [Left, Down, Left, Up, …]
  • 7. Planning Domain Description Language 7  Planning Domain Definition Language (PDDL)  Formal language for specifying planning problems  Formal syntax similar to a programming language  Includes STRIPS and ADL, and many more features  Provides the ground for performing a direct comparison between planning techniques and evaluating against classes of problems
  • 8. Planning Domain Description Language 8  Blocks world domain  Initial state: s0 Α Β Α Β C C  Goal: g s0 g  Available actions: moving a block  from the table to the top of another block  from the top of another block to the table  from the top of one block to the top of another block
  • 9. Planning Domain Description Language 9  Init( On(Α,Table)  On(Β,Table)  On(C,Table)  Clear(Α)  Clear(Β)  Clear(C) )  Goal( On(Α,Β)  On(Β,C) )  Action( Move(b,x,y), PRECONDITIONS: On(b,x)  Clear(b)  Clear(y) EFFECTS: On(b,y)  Clear(x)  On(b,x)  Clear(y) )  Action( MoveToTable(b,x), PRECONDITIONS: On(b,x)  Clear(b) EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
  • 10. Planning Domain Description Language 10  Init( On(Α,Table)  On(Β,Table)  On(C,Table) …)  (:init  Clear(Α)  Clear(Β)  Clear(C) )  (:goal …)  Goal( On(Α,Β)  On(Β,C) )  (:action …)  Action( Move(b,x,y), PRECONDITIONS: On(b,x)  Clear(b)(:action …)   Clear(y) EFFECTS: On(b,y)  Clear(x)  On(b,x)  Clear(y) )  Action( MoveToTable(b,x), PRECONDITIONS: On(b,x)  Clear(b) EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
  • 11. Planning Domain Description Language 11  Init( On(Α,Table)  On(Β,Table)  On(C,Table) …)  (:init  Clear(Α)  Clear(Β)  Clear(C) )  (:goal …)  Goal( On(Α,Β)  On(Β,C) )  (:action …)  Action( Move(b,x,y), PRECONDITIONS: On(b,x)  Clear(b)(:action …)   Clear(y) EFFECTS: On(b,y)  Clear(x)  On(b,x)  Clear(y) ) (:objects …)  Action( MoveToTable(b,x), PRECONDITIONS: On(b,x)  Clear(b)(:predicates …)  EFFECTS: On(b,Table)  Clear(x)  On(b,x) )
  • 12. Planning Domain Description Language 12  (:init …)  (:goal …)  (:action …) DOMAIN  (:action …) PROBLEM  (:objects …)  (:predicates …)
  • 13. Planning Domain Description Language 13  (:init …)  (:goal …)  (:action …) DOMAIN  (:action …) PROBLEM  (:objects …)  (:predicates …)
  • 14. Planning Domain Description Language 14  (:init …)  (:goal …)  (:action …) DOMAIN  (:action …) PROBLEM  (:objects …)  (:predicates …)
  • 15. Planning Domain Description Language 15  (:predicates …)  (:action …) DOMAIN  (:action …)  (:objects …)  (:init …) PROBLEM  (:goal …)
  • 16. Planning Domain Description Language 16  On(A,B)  (on a b)  On(A,B)  (not (on a b))  On(A,B)  On(B,C)  (and (on a b) (on b c))  On(x,y)  (on ?x ?y)
  • 17. The blocks world example in PDDL 17  Blocks world domain  Available predicates (:predicates …)  Available actions (:action …)
  • 18. The blocks world example in PDDL 18  Blocks world domain  Available predicates (:predicates (on ?x ?y) (clear ?x) )
  • 19. The blocks world example in PDDL 19  Blocks world domain  Available action (:action move :parameters (?b ?x ?y) :precondition (and (on ?b ?x) (clear ?b) (clear ?y)) :effect (…) )
  • 20. The blocks world example in PDDL 20  Blocks world domain  Available action (:action move-to-table :parameters (?b ?x) :precondition (…) :effect (…) )
  • 21. The blocks world example in PDDL 21  Blocks world problem  Available objects (:objects …)  Initial state (:init …)  Goal (:goal …)
  • 22. The blocks world example in PDDL 22  Blocks world domain  Available objects (:objects a b c table )
  • 23. The blocks world example in PDDL 23  Blocks world domain  Initial state (:init (on a table) (clear a) (on b table) (clear b) Α Β Γ (on c table) (clear c) )
  • 24. The blocks world example in PDDL 24  Blocks world domain  Goal (:goal Α (and (on a b) (on b c) ) Β Γ )
  • 25. The blocks world example in PDDL 25 blocks-domain.txt: blocks-problem1.txt: (define (domain gripper) (define (problem gripper1) (:requirements :strips) (:domain gripper) (:predicates (on ?x ?y) (clear ?x)) (:objects a b c table) (:action move (:init :parameters (?b ?x ?y) (on a table) (on b table) (on c table) :precondition (and (on ?b ?x) (clear ?b) (clear ?y)) (clear a) (clear b) (clear c) :effect (and (not (on ?b ?x)) ) (not (clear ?y)) (on ?b ?y) (:goal (and (on a b) (on b c))) (clear ?x))) ) …
  • 26. Using PDDL planners 26  Planning Domain Definition Language (PDDL)  International Planning Competition 1998 – today  SAT Plan  TL Plan Planning problems in PDDL, e.g., Blocks  FF world, Storage, Trucks, …  BlackBox  SHOP2  TALPlanner Direct comparison between … planning techniques! E.g., evaluation of heuristics, …
  • 27. Using PDDL planners: Blocks world 27  blackbox –o blocks-domain.txt –f blocks-problem1.txt ---------------------------------------------------- Begin plan Α Β C 1 (move b table c) 2 (move a table b) End plan ---------------------------------------------------- Α Β C
  • 28. Using PDDL planners: Blocks world 28  blackbox –o blocks-domain.txt –f blocks-problem2.txt ---------------------------------------------------- Begin plan G 1 (move e b d) D E F 2 (move b table e) Α Β C 3 (move g f table) 4 (move f c g) 5 (move b e c) Α 6 (move e d f) Β 7 (move d a e) C 8 (move b c a) D E 9 (move c table d) F 10 (move b a c) G 11 (move a table b) End plan
  • 29. Using PDDL planners 29  We can use blackbox (or any other off-the-self PDDL planner) for any problem we can write in PDDL!
  • 30. Using PDDL planners: Sokoban 30  We can use blackbox (or any other off-the-self PDDL planner) for any problem we can write in PDDL!  Let’s do this for Sokoban
  • 31. Using PDDL planners: Sokoban 31  Available predicates  Available actions  Available objects  Initial state  Goal
  • 32. Using PDDL planners: Sokoban 32  Available predicates
  • 33. Using PDDL planners: Sokoban 33  Available predicates  (robot-at ?loc)  (object-at ?b ?loc)
  • 34. Using PDDL planners: Sokoban 34  Available predicates  (robot-at ?loc)  (object-at ?b ?loc) c4-4 c5-4 c6-4 c1-3 c2-3 c3-3 c4-3 c5-3 c6-3  Available objects c1-2 c2-2 c3-2 c4-2 c5-2  c1-1,c1-2, c2-1, … c1-1 c2-1  box1, box2
  • 35. Using PDDL planners: Sokoban 35  Initial state  (robot-at c5-4)  (object-at box1 c3-3) c4-4 c6-4  (object-at box2 c4-3) c1-3 c2-3 c5-3 c6-3 c1-2 c2-2 c3-2 c4-2 c5-2 c1-1 c2-1
  • 36. Using PDDL planners: Sokoban 36  Available actions  move(?from ?to ?dir) :precondition ( )
  • 37. Using PDDL planners: Sokoban 37  Available actions  move(?from ?to ?dir) :precondition (and (robot-at ?from) (adjacent ?from ?to ?dir) (empty ?to) )
  • 38. Using PDDL planners: Sokoban 38  Available actions  move(?from ?to ?dir) :effect (and )
  • 39. Using PDDL planners: Sokoban 39  Available actions  move(?from ?to ?dir) :effect (and (empty ?from) (robot-at ?to) (not (empty ?to)) (not (robot-at ?from)) )
  • 40. Using PDDL planners: Sokoban 40  Available predicates  (robot-at ?loc)  (object-at ?b ?loc)  (adjacent ?from ?to ?dir)  (empty ?to)
  • 41. Using PDDL planners: Sokoban 41  Initial state  (robot-at c5-4)  (object-at box1 c3-3)  (object-at box2 c4-3) c2-3 c1-2 c2-2 c3-2  (empty c1-1) c2-1  (empty c2-1)  (empty c1-2)  (empty c2-2) …
  • 42. Using PDDL planners: Sokoban 42  Initial state  (robot-at c5-4)  (object-at box1 c3-3)  (object-at box2 c4-3) c2-3 c1-2 c2-2 c3-2  (adjacent c2-2 c3-2 right) c2-1  (adjacent c2-2 c1-2 left)  (adjacent c2-2 c2-3 up)  (adjacent c2-2 c2-1 down) …
  • 43. Using PDDL planners: Sokoban 43  Available actions  push(?rloc ?bloc ?floc ?dir ?b)
  • 44. Using PDDL planners: Sokoban 44  Available actions  push(?rloc ?bloc ?floc ?dir ?b) :precondition (and (robot-at ?rloc) (object-at ?b ?bloc) (adjacent ?rloc ?bloc ?dir) (adjacent ?bloc ?floc ?dir) (empty ?floc) )
  • 45. Using PDDL planners: Sokoban 45  Available actions  push(?rloc ?bloc ?floc ?dir ?b) :effect (and (robot-at ?bloc) (object-at ?b ?floc) (empty ?rloc) (not (robot-at ?rloc)) (not (object-at ?b ?bloc)) (not (empty ?floc)) )
  • 46. Using PDDL planners: Sokoban 46  Goal  (object-at box1 c4-3)  (object-at box2 c5-3) c4-4 c6-4 c1-3 c2-3 c6-3 c1-2 c2-2 c3-2 c4-2 c5-2 c1-1 c2-1
  • 47. Using PDDL planners: Sokoban 47  blackbox –o sokoban-domain.txt –f sokoban-problem.txt ---------------------------------------------------- Begin plan 1 (push c4-4 c4-3 c4-2 down box1) 2 (push c4-3 c3-3 c2-3 left box2) 3 (move c3-3 c3-2 down) 4 (move c3-2 c2-2 left) 5 (move c2-2 c1-2 left) … 27 (move c2-2 c1-2 left) 28 (move c1-2 c1-3 up) 29 (push c1-3 c2-3 c3-3 right box1) 30 (push c2-3 c3-3 c4-3 right box1) End plan ----------------------------------------------------
  • 48. Using PDDL planners: SimpleGame 48  SimpleGame domain  turn(?fromd ?tod)  move(?froml ?tol ?dir)  pickup(?o ?l)  stab(?l ?knife)  shoot(?locn ?locp ?dir ?gun )
  • 49. Building your own PDDL planner 49  Pyperplan  Lightweight STRIPS planner written in Python. Developed during the planning course at Albert-Ludwigs-Universität Freiburg 2010/2011, GNU General Public License 3  https://bitbucket.org/malte/pyperplan  Source code of academic planners  BlackBox: http://www.cs.rochester.edu/u/kautz/satplan/blackbox/  FastForward: http://www.loria.fr/~hoffmanj/ff.html  FastDownward: http://www.fast-downward.org/  ANTLR Parser Generator  http://www.antlr.org/  http://www.antlr.org/grammar/1222962012944/Pddl.g
  • 50. Building your own PDDL planner 50  Quick overview of the provided PROLOG code  Good for quick prototyping ;-)
  • 51. Building your own PDDL planner 51  Quick overview of the provided PROLOG code  Works with SWI Prolog 6.x (tested with 6.0.2)  Predicates provided  parsePDDL(+DomainFile, +ProblemFile)  get_init(-InitialState)  get_goal(-Goal)  satisfies_goal(+State)  progress(+State, -Action, -NextState)  h(+State, -Value)  {dfs,astar}planner(+DomainFile, +ProblemFile)
  • 52. Planning Domain Description Language 52  Planning Domain Definition Language (PDDL)  International Planning Competition 1998 – today  SAT Plan  TL Plan  FF Sokoban  BlackBox  SHOP2  TALPlanner Direct comparison between … planning techniques! E.g., evaluation of heuristics, …
  • 53. Using PDDL planners 53  FastDownward [Helmert 2006]  Introduced a new type of heuristic that is not based on an empty list of negative actions  Efficient implementation of all notable forward search methods and heuristics (including the more recent ones)  Requires a number of preprocessing steps that transforms the STRIPS planning problem…
  • 54. Using PDDL planners 54  FastDownward [Helmert 2006]  Introduced a new type of heuristic that is not based on an empty list of negative actions  Efficient implementation of all notable forward search methods and heuristics (including the more recent ones)  Requires a number of preprocessing steps that transforms the STRIPS planning problem…  Can be used as a framework to evaluate forward search planning methods
  • 55. Using PDDL planners 55  FastDownward [Helmert 2006]  translate/translate.py sokoban-domain.txt sokoban.problem.txt  preprocess/preprocess < output.sas  search/downward --search SearchConfiguration < output  http://www.fast-downward.org
  • 56. Using PDDL planners: Sokoban 56  search/downward --search "astar(blind())" <output
  • 57. Using PDDL planners: Sokoban 57  search/downward --search "astar(goalcount())"
  • 58. Using PDDL planners: Sokoban 58  search/downward --search "astar(hmax())" <output
  • 59. Using PDDL planners: Sokoban 59  search/downward --search "astar(add())" <output
  • 60. Using PDDL planners: Sokoban 60  search/downward --search "lazy_greedy(ff())" <output
  • 61. Using PDDL planners: Sokoban 61  Notice that the planner does not know anything about the planning problem we are solving  The heuristics we tried are domain independent  goal count  hmax  hadd  FF  We will see how each one works in Lecture 4 (after we first go over planning graphs that are needed)
  • 62. Next lecture 62  Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games  Lecture 2: STRIPS planning, state-space search  Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban  Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning  Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS  Lecture 6: Planning beyond STRIPS
  • 63. Bibliography 63  Material  Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell, Peter Norvig. Prentice Hall, 2003 Section 11.4  References  PDDL - The Planning Domain Definition Language. Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins. Technical report, Yale Center for Computational Vision and Control, TR-98-003, 1998.  Unifying SAT-Based and Graph-Based Planning. Henry Kautz, Bart Selman. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 1999  The Fast Downward Planning System. Malte Helmert. Artificial Intelligence Research (JAIR), Vol. 26, 2006