This document summarizes an artificial neural network (ANN) based system called ANN-C3 for cancer cell classification using medical images. The system performs image pre-processing, segmentation using Harris corner detection and region growing, feature extraction of Tamura texture features, and classification using a neural network ensemble. Segmentation detects threshold points using Harris corner detection and performs region growing from these seed points. Feature extraction converts the image data into numerical form using Tamura texture features that capture variations in illumination and surfaces that human vision and surgeons use to differentiate cancerous and non-cancerous cells. The neural network is trained on a large set of labeled data to accurately classify cells.