SlideShare a Scribd company logo
Al – Farabi Kazakh National University
SIW:
Basic Integration Rules
Prepared: Mugharbel A.
Group: Chemistry – Chemical Engineering
Checked by: Dosmagulova Karlygash Almatkyzy
Plan:-
• THE CONCEPT OF INTEGRAL
• SYMBOL OF INTEGRATION
• Basic Integration Rules
• Integration by Parts
INTEGRATION
or
ANTI-DIFFERENTIATION

Now, consider the question :” Given that y is a function of x and
Clearly ,
THE CONCEPT OF INTEGRAL
We have learnt that
2
x
y  x
dx
dy
2

x
dx
dy
2

, what is the function ? ‘
2
x
y 
( differentiation process )
is an answer but is it the only answer ?
Familiarity with the differentiation process would
indicate that
and in fact

50
,
3
,
15
,
3 2
2
2
2







 x
y
x
y
x
y
x
y
c
x
y 
 2
Thus
x
dx
dy
2
 c
x
y 
 2
This process is the reverse process of differentiation and is called
integration .
, where c is can be
any real number are also possible answer
, where c is called an arbitrary constant
SYMBOL OF INTEGRATION
We know that
Hence ,
Symbolically , we write

    x
c
x
dx
d
and
x
x
dx
d
2
2 2
2



x
dx
dy
2
 c
x
y 
 2
x
dx
dy
2
  

 c
x
dx
x
y 2
2

In general,
then
The expression
 
  )
(
)
( x
f
x
F
dx
d
and
x
F
y
if 

 



 c
x
F
dx
x
f
y
x
f
dx
dy
)
(
)
(
)
(
 

 c
x
F
dx
x
f
y )
(
)
(
Is called an indefinite integral.
 

 c
x
dx
x
y 2
2 Is an indefinite integral
When
In general :
When n = 0 ,
  n
n
n
ax
n
n
n
ax
dx
d
dx
x
f
d
n
n
ax
x
F )
1
(
1
1
1
)
(
,
)
1
(
1
)
(
1
1


















n
ax

 






 
1
,
.
1
1 1
n
where
c
ax
n
dx
ax
y
ax
dx
dy n
n
n
 



 c
ax
dx
a
y
a
dx
dy
EXAMPLE:
1.
2.The gradient of a curve , at the point ( x,y ) on the curve is given
by
Solution :
Given
   




 dx
x
dx
x
dx
x
dx
x
x
x 2
3
2
3
)
(
c
x
x
x 


 2
3
4
2
1
3
1
4
1
2
4
3
2 x
x 

Given that the curve passes through the point ( 1, 1) , find the equation
of the curve.
2
4
3
2 x
x
dx
dy


  


 dx
x
x
y )
4
3
2
( 2
  


 dx
x
dx
x
dx 2
4
3
2
Since the curve passes through the point ( 1,1 ) , we can
substitusi x = 1 and y = 1 into ( 1 ) to obtain the constant
term c .
The equation of the curve is
)
1
(
......
3
4
2
3
2 3
2
c
x
x
x
y 



c



 )
1
(
3
4
)
1
(
2
3
)
1
(
2
1
6
5


c
c
x
x
x
y 


 3
2
3
4
2
3
2
2.Find
Solution :


dx
x
x 1
2


 dx
x
x )
( 2
1
2
3
c
x
x 

 2
1
2
5
2
5
2
Basic Integration Rules
The inverse nature of integration and differentiation can
be verified by substituting F'(x) for f(x) in the indefinite
integration definition to obtain
Moreover, if ∫f(x)dx = F(x) + C, then
Basic Integration Rules
These two equations allow you to obtain integration formulas directly from
differentiation formulas, as shown in the following summary.
Basic Integration Rules
Example 2 – Applying the Basic Integration Rules
Describe the antiderivatives of 3x.
Solution:
So, the antiderivatives of 3x are of the form where C is any constant.

 
 dx
dx
du
v
uv
dx
dx
dv
u
To integrate some products we can use the formula
Integration by Parts
)
cos
(
2 x
x     dx
x 2
)
cos
(
We can now substitute into the formula
So,
x
u 2

2

dx
du
x
v cos


differentiate integrate
x
dx
dv
sin

and
u
dx
dv u v
v
dx
du

 
 dx
dx
du
v
uv
dx
dx
dv
u

 dx
x
xsin
2
Integration by parts cannot be used for every product.
Using Integration by Parts
It works if
we can integrate one factor of the product,
the integral on the r.h.s. is easier* than the one
we started with.
* There is an exception but you need to learn the
general rule.

More Related Content

PDF
Integral Calculus Anti Derivatives reviewer
PPT
Integral Calculus is a complete lesson on intgration
PPT
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
PDF
Integral calculus
PPTX
PPT Antiderivatives and Indefinite Integration.pptx
PPT
Calc 4.1a
PPT
Calc 4.1a
PPT
Calc 4.1a
Integral Calculus Anti Derivatives reviewer
Integral Calculus is a complete lesson on intgration
adfadfadfadfaTechniquesofIntegrationOLD (2).ppt
Integral calculus
PPT Antiderivatives and Indefinite Integration.pptx
Calc 4.1a
Calc 4.1a
Calc 4.1a

Similar to Basic Integration Rules_Mugharbel (20)

PPTX
Calculus II_Chapter I. - calculus II pptx
PPTX
Basic rules of integration, important rules of integration
PDF
13 1 basics_integration
PPT
integeration.ppt
PDF
instegration basic notes of class 12th h
PDF
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
PPTX
2 integration and the substitution methods x
PDF
Module 7 the antiderivative
PDF
Module 7 the antiderivative
PDF
LU3 Integration for Pre- Uniersity Level
PPT
LarCalc10_ch04_sec1.pptLarCalc10_ch04_sec1.ppt
PPT
LarCalc10_ch04_sec1.ppt
PPTX
Indefinite Integral
PPT
Lar calc10 ch04_sec1
PDF
Integration
PPTX
integration-131127090901-phpapp01.pptx
DOCX
Integral dalam Bahasa Inggris
PPT
Integration-Student.untuk siswa belajar
PPTX
Integral calculus
PPTX
Integral calculus
Calculus II_Chapter I. - calculus II pptx
Basic rules of integration, important rules of integration
13 1 basics_integration
integeration.ppt
instegration basic notes of class 12th h
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
2 integration and the substitution methods x
Module 7 the antiderivative
Module 7 the antiderivative
LU3 Integration for Pre- Uniersity Level
LarCalc10_ch04_sec1.pptLarCalc10_ch04_sec1.ppt
LarCalc10_ch04_sec1.ppt
Indefinite Integral
Lar calc10 ch04_sec1
Integration
integration-131127090901-phpapp01.pptx
Integral dalam Bahasa Inggris
Integration-Student.untuk siswa belajar
Integral calculus
Integral calculus
Ad

Recently uploaded (20)

PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Introduction to Building Materials
PDF
Trump Administration's workforce development strategy
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Hazard Identification & Risk Assessment .pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
advance database management system book.pdf
Indian roads congress 037 - 2012 Flexible pavement
Weekly quiz Compilation Jan -July 25.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Introduction to Building Materials
Trump Administration's workforce development strategy
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Virtual and Augmented Reality in Current Scenario
Chinmaya Tiranga quiz Grand Finale.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Introduction to pro and eukaryotes and differences.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Hazard Identification & Risk Assessment .pdf
AI-driven educational solutions for real-life interventions in the Philippine...
advance database management system book.pdf
Ad

Basic Integration Rules_Mugharbel

  • 1. Al – Farabi Kazakh National University SIW: Basic Integration Rules Prepared: Mugharbel A. Group: Chemistry – Chemical Engineering Checked by: Dosmagulova Karlygash Almatkyzy
  • 2. Plan:- • THE CONCEPT OF INTEGRAL • SYMBOL OF INTEGRATION • Basic Integration Rules • Integration by Parts
  • 3. INTEGRATION or ANTI-DIFFERENTIATION  Now, consider the question :” Given that y is a function of x and Clearly , THE CONCEPT OF INTEGRAL We have learnt that 2 x y  x dx dy 2  x dx dy 2  , what is the function ? ‘ 2 x y  ( differentiation process ) is an answer but is it the only answer ?
  • 4. Familiarity with the differentiation process would indicate that and in fact  50 , 3 , 15 , 3 2 2 2 2         x y x y x y x y c x y   2 Thus x dx dy 2  c x y   2 This process is the reverse process of differentiation and is called integration . , where c is can be any real number are also possible answer , where c is called an arbitrary constant
  • 5. SYMBOL OF INTEGRATION We know that Hence , Symbolically , we write      x c x dx d and x x dx d 2 2 2 2    x dx dy 2  c x y   2 x dx dy 2      c x dx x y 2 2 
  • 6. In general, then The expression     ) ( ) ( x f x F dx d and x F y if         c x F dx x f y x f dx dy ) ( ) ( ) (     c x F dx x f y ) ( ) ( Is called an indefinite integral.     c x dx x y 2 2 Is an indefinite integral
  • 7. When In general : When n = 0 ,   n n n ax n n n ax dx d dx x f d n n ax x F ) 1 ( 1 1 1 ) ( , ) 1 ( 1 ) ( 1 1                   n ax            1 , . 1 1 1 n where c ax n dx ax y ax dx dy n n n       c ax dx a y a dx dy
  • 8. EXAMPLE: 1. 2.The gradient of a curve , at the point ( x,y ) on the curve is given by Solution : Given          dx x dx x dx x dx x x x 2 3 2 3 ) ( c x x x     2 3 4 2 1 3 1 4 1 2 4 3 2 x x   Given that the curve passes through the point ( 1, 1) , find the equation of the curve. 2 4 3 2 x x dx dy         dx x x y ) 4 3 2 ( 2       dx x dx x dx 2 4 3 2
  • 9. Since the curve passes through the point ( 1,1 ) , we can substitusi x = 1 and y = 1 into ( 1 ) to obtain the constant term c . The equation of the curve is ) 1 ( ...... 3 4 2 3 2 3 2 c x x x y     c     ) 1 ( 3 4 ) 1 ( 2 3 ) 1 ( 2 1 6 5   c c x x x y     3 2 3 4 2 3 2
  • 10. 2.Find Solution :   dx x x 1 2    dx x x ) ( 2 1 2 3 c x x    2 1 2 5 2 5 2
  • 11. Basic Integration Rules The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain Moreover, if ∫f(x)dx = F(x) + C, then
  • 12. Basic Integration Rules These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.
  • 14. Example 2 – Applying the Basic Integration Rules Describe the antiderivatives of 3x. Solution: So, the antiderivatives of 3x are of the form where C is any constant.
  • 15.     dx dx du v uv dx dx dv u To integrate some products we can use the formula Integration by Parts
  • 16. ) cos ( 2 x x     dx x 2 ) cos ( We can now substitute into the formula So, x u 2  2  dx du x v cos   differentiate integrate x dx dv sin  and u dx dv u v v dx du     dx dx du v uv dx dx dv u   dx x xsin 2
  • 17. Integration by parts cannot be used for every product. Using Integration by Parts It works if we can integrate one factor of the product, the integral on the r.h.s. is easier* than the one we started with. * There is an exception but you need to learn the general rule.