SlideShare a Scribd company logo
ABHISHEK SAVARNYA
IIT KANPUR
BASICS OF
SPECIAL THEORY OF RELATIVITY
Frame of reference [निर्देश तंत्र]
x
Y
zAxes [अक्ष] system
• Length scale (position)
• Time scale (rest/motion)
Frame of reference [निर्देश तंत्र]
Inertial[जड़त्वीय] frame Non-Inertial frame
Newton’s first law of motion
If, F =0 then a =0 holds
Newton’s first law of motion not valid.
Hence, we introduce pseudo-force [छद्म
बल] to use Newton’s law of motion.
Frame of reference [निर्देश तंत्र]
Non-inertial frame
1.Centrifugal [अभिके न्द्रीय] force
2.Coriolis force
Frame notation
If S’ moves with uniform
velocity with respect to S, then
S’ is also inertial.
1
2
v
s S’
• X and X’ axis are on same line.
• Y and Y’ axis are parallel.
• Z and Z’ axis are parallel.
• Event of origin O crossing O’ is at t=0 and t’=0.
X
Y
Z
X’
Y’
Z’
o O’
Galilean transformation
• x = x’ + vt
• y = y’
• z = z’
• t = t’
s
X
Y
Z
o
v
S’
X’
Y’
Z’
O’
(x,y,z,t)
(x’,y’,z’,t’)
 x’ = x - vt
 y’ = y
 z’ = z
 t’ = t
Galilean transformation
• x = x’ + vt
• y = y’
• z = z’
• t = t’
s
X
Y
Z
o
v
S’
X’
Y’
Z’
O’
(x,y,z,t)
(x’,y’,z’,t’)
 x’ = x - vt
 y’ = y
 z’ = z
 t’ = t
 vx
’ = vx- v
 vy
’ = vy
 vz
’= vz
 ax
’ = ax
 ay
’ = ay
 az
’= az
सिी जड़त्वीय तंत्रों में ककसी कण का त्वरण समाि ोतता ो |
{ Galilean transformation के तोत}
Galilean transformation
Newton’s law of motion [गनतनियम]
बल = रव्यमाि * त्वरण
S F=ma
S’ F’=m’a’
Newton का गनतनियम सिी
जड़त्वीय तंत्रों में एक समाि
(invariant) रोता ो |
प्रकृ नत के नियम सिी जड़त्वीय तंत्रों में एक ोी रूप के ोतते ोैं
Principle of relativity
आपेक्षक्षकता का भसद््ांत
Principle of relativity
Newton का गनतनियम सिी जड़त्वीय तंत्रों में एक समाि (invariant) रोता ो |
Laws of nature in all inertial frames have the same form.
But, Maxwell equations are non-invariant under Galilean
transformation.
Maxwell equations [1862]
Michelson-Morley experiment [1887]
Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where
Maxwell equations hold) Aether
S
S’
v
vx
’ = vx- v
ta1=L/(c- v)
L
Ta=
2𝐿
𝑐
[1/ (1 −
v2
𝑐2)]
vx
’ = vx- v
ta2=L/(c+v)
M1
M2
For M1
Michelson-Morley experiment [1887]
Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where
Maxwell equations hold) Aether
S
S’
vvx
’ = vx- v
vx
2+ vy
2 = v2 +(vy
’)2
vy
’2
= 𝑐2 − v2
L
Tb =
2𝐿
𝑐
[
1
1 −
v2
𝑐2
]
vx = v
vy = vy
’
L
M1
M2
For M2
Michelson-Morley experiment [1887]
Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where
Maxwell equations hold) Aether
S
S’
v
L
2 Tb =
2𝐿
𝑐
[
1
1 −
v2
𝑐2
]
L
Ta=
2𝐿
𝑐
[1/ (1 −
v2
𝑐2)]
∆𝑡 = Ta − Tb
M1
M2
1
Michelson-Morley experiment [1887]
Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where
Maxwell equations hold) Aether
S
S’
v∆𝑡 = Ta − Tb
L
L
M1
M2
Michelson-Morley experiment [1887]
Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where
Maxwell equations hold)
∆𝑡 = Ta − Tb
L
L
M1
M2
∆𝑡′ = Tb − Ta
∆𝑡 − ∆𝑡′
No shift in fringe pattern was observed
V=0
Null result of Michelson-Morley experiment
Faraday’s coil magnet experiment [1831]
Laws of electromagnetic induction
1. Whenever there is change in
magnetic flux linked with coil an
electromotive force (emf) is
induced.
2. The magnitude of induced emf is
directly proportional to the rate
of change of magnetic flux linked
with the coil.
Motivated by these observation in 1905
Einstein gave the postulates of ‘special
theory of relativity’
Time dilation, Length contraction, Twin paradox,
Relativity of momentum, kinetic energy
Special theory of relativity
Postulates of special theory of relativity [ववभशष्ट आपेक्षक्षकता का भसद््ांत के अभिगृहोत]
1 Laws of nature in all inertial frames have the same form.
2 Speed of light (in vacuum/निवाात) in all inertial frames is same.
s
X
Y
Z
o
v
S’ X’
Y’
Z’
O’
Time dilation [समय ववस्तार]
M1
M2
S frameEvent 1: Light beam travels from mirror M1
Event 2: Light beam is reflected to mirror M1
L
∆𝑡 =
2𝐿
𝑐
Time dilation [समय ववस्तार]
S’ frameEvent 1: Light beam travels from mirror M1
Event 2: Light beam is reflected to mirror M1
M1
M2
L
M1
M2
L
Time dilation [समय ववस्तार]
S’ frameEvent 1: Light beam travels from mirror M1
Event 2: Light beam is reflected to mirror M1
M1
M2
L
M1
M2
L
M1
M2
vt
∆𝑡 ′ =
2𝐿
𝑐
[
1
1 −
v2
𝑐2
]
∆𝑡 ′ =
∆𝑡
1 −
v2
𝑐2
The time interval between two events depends upon the frame of reference.
Time dilation [समय ववस्तार]
∆𝑡 ′ =
∆𝑡
1 −
v2
𝑐2
s
X
Y
Z
o Moving clock runs slow
Improper
time interval Proper time
interval
Derivation of time dilation from Lorentz transformation
Relativity of simultaneity [समकालीिता की आपेक्षक्षकता]
1 2
s
X
Y
Z
o’
Events
(x1,y,z,t) (x2,y,z,t)
Order of events depends on frame of reference.
If two events occur at the same location in a frame then their order remains unchanged in all other frames.
The order of events related by cause and effect remain unchanged (Principle of causality).
∆𝑡 ′ =
∆𝑡
1 −
v2
𝑐2
Synchronization of clocks
v
S’
X’
Y’
Z’
O’
C C’
s
X
Y
Z
o
Front clock in the direction of motion shows
less time.
Length contraction
v
s
X
Y
Z
o
S’
E1 : x’1 , t1
E2 : x’2 , t2
E2
E1
S
E1 : x1 ,t
E2 : x2 ,t
x’2 - x’1 =
x2−x1
1−
𝑣2
𝑐2
Moving length = Rest/proper length * 1 −
𝑣2
𝑐2
Transformation of velocity
• Relativistic linear momentum
(Relativistic mass)
𝑝 =
𝑚0 𝑣
1 −
𝑣2
𝑐2
• Relativistic kinetic energy
𝐾 = 𝑚𝑐2
− 𝑚0 𝑐2
• Mass-energy conversion
𝑒+ + 𝑒− = 2𝛾
• Energy-momentum relation
𝐸2
− 𝑝𝑐 2
= (𝑚0 𝑐2
)2
Particles with zero rest mass
Thank you
Reference:
Video lectures of Prof. H.C.Verma

More Related Content

PPT
special theory of relativity
ODP
LORENTZ TRANSFORMATION
PPTX
Special Theory of Relativity
PPT
Relativity
PPT
Special Theory of Relativity
PPT
Chap1 special relativty
PPT
Relativity
PPTX
Physics ppt on time dilation
special theory of relativity
LORENTZ TRANSFORMATION
Special Theory of Relativity
Relativity
Special Theory of Relativity
Chap1 special relativty
Relativity
Physics ppt on time dilation

What's hot (20)

PPTX
B.Tech sem I Engineering Physics U-III Chapter 1-THE SPECIAL THEORY OF RELATI...
PPT
Ch28 special relativity 3 05 2013
PPT
Special relativity
PPT
Relativity
PPT
special relativity
PPTX
Galilean Transformation Equations
PPT
Theory of relativity
PPTX
Relativity by Albert einstein
PPTX
natsci1report (2007version)
PPTX
Ph 101-6
PPTX
Introduction to Special theory of relativity
PPTX
Special theory of relativity
PPT
Special Theory Of Relativity
PPTX
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
ODP
1.5.1 einstein and relativity
PPT
04 Oscillations, Waves After Class
PPTX
Length contraction
PPTX
Relativity
PPTX
Heisenberg Uncertainty Principle
B.Tech sem I Engineering Physics U-III Chapter 1-THE SPECIAL THEORY OF RELATI...
Ch28 special relativity 3 05 2013
Special relativity
Relativity
special relativity
Galilean Transformation Equations
Theory of relativity
Relativity by Albert einstein
natsci1report (2007version)
Ph 101-6
Introduction to Special theory of relativity
Special theory of relativity
Special Theory Of Relativity
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
1.5.1 einstein and relativity
04 Oscillations, Waves After Class
Length contraction
Relativity
Heisenberg Uncertainty Principle
Ad

Similar to Basics of special theory of relativity (20)

PDF
Relativity pdf
PPT
4. Relativity and its use in real life with applications
PDF
Dawn of modern physics with sub topics which is useful for punjab board students
PDF
relativity.pdf
PPTX
Phy i unit i
PDF
PART II.2 - Modern Physics
PDF
Relativity
PPTX
Bernard schutz gr
PPT
Special theory of -Relativity presentation.ppt
PPTX
chapter-oneeeeeeeeeeeeeeee-3rd-year.pptx
PDF
6593.relativity
PPTX
The classical mechanics of the special theory of [autosaved]
PPTX
Coordinate systems
DOCX
Special theory of relativity
PDF
Einstein
PDF
Lect-2 (Review of Newtonian Mechanics and Prelude to Special Relativity).pdf
PPT
Special Theory Of Relativity
PPTX
relativity 2.pptx mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm...
PPTX
DepEd ETULAY Week Number 6 Presentation in Physical Science
PPT
Physics
Relativity pdf
4. Relativity and its use in real life with applications
Dawn of modern physics with sub topics which is useful for punjab board students
relativity.pdf
Phy i unit i
PART II.2 - Modern Physics
Relativity
Bernard schutz gr
Special theory of -Relativity presentation.ppt
chapter-oneeeeeeeeeeeeeeee-3rd-year.pptx
6593.relativity
The classical mechanics of the special theory of [autosaved]
Coordinate systems
Special theory of relativity
Einstein
Lect-2 (Review of Newtonian Mechanics and Prelude to Special Relativity).pdf
Special Theory Of Relativity
relativity 2.pptx mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm...
DepEd ETULAY Week Number 6 Presentation in Physical Science
Physics
Ad

More from Abhishek Savarnya (7)

PPTX
PPTX
Education for emancipation
PPTX
Introduction to BIM
PPTX
Discovering Cawnpore to Kanpur through cycling
PPTX
PPTX
Researchers of Historic India
PPTX
Social Pyschology
Education for emancipation
Introduction to BIM
Discovering Cawnpore to Kanpur through cycling
Researchers of Historic India
Social Pyschology

Recently uploaded (20)

PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Cell Types and Its function , kingdom of life
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Lesson notes of climatology university.
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Presentation on HIE in infants and its manifestations
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
human mycosis Human fungal infections are called human mycosis..pptx
GDM (1) (1).pptx small presentation for students
Cell Types and Its function , kingdom of life
Microbial diseases, their pathogenesis and prophylaxis
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Lesson notes of climatology university.
Final Presentation General Medicine 03-08-2024.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Pharma ospi slides which help in ospi learning
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Presentation on HIE in infants and its manifestations
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
VCE English Exam - Section C Student Revision Booklet
Anesthesia in Laparoscopic Surgery in India
Microbial disease of the cardiovascular and lymphatic systems
2.FourierTransform-ShortQuestionswithAnswers.pdf
Computing-Curriculum for Schools in Ghana
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

Basics of special theory of relativity

  • 1. ABHISHEK SAVARNYA IIT KANPUR BASICS OF SPECIAL THEORY OF RELATIVITY
  • 2. Frame of reference [निर्देश तंत्र] x Y zAxes [अक्ष] system • Length scale (position) • Time scale (rest/motion)
  • 3. Frame of reference [निर्देश तंत्र] Inertial[जड़त्वीय] frame Non-Inertial frame Newton’s first law of motion If, F =0 then a =0 holds Newton’s first law of motion not valid. Hence, we introduce pseudo-force [छद्म बल] to use Newton’s law of motion.
  • 4. Frame of reference [निर्देश तंत्र] Non-inertial frame 1.Centrifugal [अभिके न्द्रीय] force 2.Coriolis force
  • 5. Frame notation If S’ moves with uniform velocity with respect to S, then S’ is also inertial. 1 2 v s S’ • X and X’ axis are on same line. • Y and Y’ axis are parallel. • Z and Z’ axis are parallel. • Event of origin O crossing O’ is at t=0 and t’=0. X Y Z X’ Y’ Z’ o O’
  • 6. Galilean transformation • x = x’ + vt • y = y’ • z = z’ • t = t’ s X Y Z o v S’ X’ Y’ Z’ O’ (x,y,z,t) (x’,y’,z’,t’)  x’ = x - vt  y’ = y  z’ = z  t’ = t
  • 7. Galilean transformation • x = x’ + vt • y = y’ • z = z’ • t = t’ s X Y Z o v S’ X’ Y’ Z’ O’ (x,y,z,t) (x’,y’,z’,t’)  x’ = x - vt  y’ = y  z’ = z  t’ = t  vx ’ = vx- v  vy ’ = vy  vz ’= vz  ax ’ = ax  ay ’ = ay  az ’= az सिी जड़त्वीय तंत्रों में ककसी कण का त्वरण समाि ोतता ो | { Galilean transformation के तोत}
  • 8. Galilean transformation Newton’s law of motion [गनतनियम] बल = रव्यमाि * त्वरण S F=ma S’ F’=m’a’ Newton का गनतनियम सिी जड़त्वीय तंत्रों में एक समाि (invariant) रोता ो | प्रकृ नत के नियम सिी जड़त्वीय तंत्रों में एक ोी रूप के ोतते ोैं Principle of relativity आपेक्षक्षकता का भसद््ांत
  • 9. Principle of relativity Newton का गनतनियम सिी जड़त्वीय तंत्रों में एक समाि (invariant) रोता ो | Laws of nature in all inertial frames have the same form. But, Maxwell equations are non-invariant under Galilean transformation. Maxwell equations [1862]
  • 10. Michelson-Morley experiment [1887] Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where Maxwell equations hold) Aether S S’ v vx ’ = vx- v ta1=L/(c- v) L Ta= 2𝐿 𝑐 [1/ (1 − v2 𝑐2)] vx ’ = vx- v ta2=L/(c+v) M1 M2 For M1
  • 11. Michelson-Morley experiment [1887] Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where Maxwell equations hold) Aether S S’ vvx ’ = vx- v vx 2+ vy 2 = v2 +(vy ’)2 vy ’2 = 𝑐2 − v2 L Tb = 2𝐿 𝑐 [ 1 1 − v2 𝑐2 ] vx = v vy = vy ’ L M1 M2 For M2
  • 12. Michelson-Morley experiment [1887] Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where Maxwell equations hold) Aether S S’ v L 2 Tb = 2𝐿 𝑐 [ 1 1 − v2 𝑐2 ] L Ta= 2𝐿 𝑐 [1/ (1 − v2 𝑐2)] ∆𝑡 = Ta − Tb M1 M2 1
  • 13. Michelson-Morley experiment [1887] Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where Maxwell equations hold) Aether S S’ v∆𝑡 = Ta − Tb L L M1 M2
  • 14. Michelson-Morley experiment [1887] Objective: To find the speed of earth in the frame of ‘Aether’ (the absolute inertial frame where Maxwell equations hold) ∆𝑡 = Ta − Tb L L M1 M2 ∆𝑡′ = Tb − Ta ∆𝑡 − ∆𝑡′ No shift in fringe pattern was observed V=0 Null result of Michelson-Morley experiment
  • 15. Faraday’s coil magnet experiment [1831] Laws of electromagnetic induction 1. Whenever there is change in magnetic flux linked with coil an electromotive force (emf) is induced. 2. The magnitude of induced emf is directly proportional to the rate of change of magnetic flux linked with the coil. Motivated by these observation in 1905 Einstein gave the postulates of ‘special theory of relativity’ Time dilation, Length contraction, Twin paradox, Relativity of momentum, kinetic energy
  • 16. Special theory of relativity Postulates of special theory of relativity [ववभशष्ट आपेक्षक्षकता का भसद््ांत के अभिगृहोत] 1 Laws of nature in all inertial frames have the same form. 2 Speed of light (in vacuum/निवाात) in all inertial frames is same. s X Y Z o v S’ X’ Y’ Z’ O’
  • 17. Time dilation [समय ववस्तार] M1 M2 S frameEvent 1: Light beam travels from mirror M1 Event 2: Light beam is reflected to mirror M1 L ∆𝑡 = 2𝐿 𝑐
  • 18. Time dilation [समय ववस्तार] S’ frameEvent 1: Light beam travels from mirror M1 Event 2: Light beam is reflected to mirror M1 M1 M2 L M1 M2 L
  • 19. Time dilation [समय ववस्तार] S’ frameEvent 1: Light beam travels from mirror M1 Event 2: Light beam is reflected to mirror M1 M1 M2 L M1 M2 L M1 M2 vt ∆𝑡 ′ = 2𝐿 𝑐 [ 1 1 − v2 𝑐2 ] ∆𝑡 ′ = ∆𝑡 1 − v2 𝑐2 The time interval between two events depends upon the frame of reference.
  • 20. Time dilation [समय ववस्तार] ∆𝑡 ′ = ∆𝑡 1 − v2 𝑐2 s X Y Z o Moving clock runs slow Improper time interval Proper time interval
  • 21. Derivation of time dilation from Lorentz transformation
  • 22. Relativity of simultaneity [समकालीिता की आपेक्षक्षकता] 1 2 s X Y Z o’ Events (x1,y,z,t) (x2,y,z,t) Order of events depends on frame of reference. If two events occur at the same location in a frame then their order remains unchanged in all other frames. The order of events related by cause and effect remain unchanged (Principle of causality). ∆𝑡 ′ = ∆𝑡 1 − v2 𝑐2
  • 23. Synchronization of clocks v S’ X’ Y’ Z’ O’ C C’ s X Y Z o Front clock in the direction of motion shows less time.
  • 24. Length contraction v s X Y Z o S’ E1 : x’1 , t1 E2 : x’2 , t2 E2 E1 S E1 : x1 ,t E2 : x2 ,t x’2 - x’1 = x2−x1 1− 𝑣2 𝑐2 Moving length = Rest/proper length * 1 − 𝑣2 𝑐2
  • 25. Transformation of velocity • Relativistic linear momentum (Relativistic mass) 𝑝 = 𝑚0 𝑣 1 − 𝑣2 𝑐2 • Relativistic kinetic energy 𝐾 = 𝑚𝑐2 − 𝑚0 𝑐2 • Mass-energy conversion 𝑒+ + 𝑒− = 2𝛾 • Energy-momentum relation 𝐸2 − 𝑝𝑐 2 = (𝑚0 𝑐2 )2
  • 26. Particles with zero rest mass

Editor's Notes

  • #11: Maxwell showed that light is an electromagnetic wave with speed of 3*10^8 m/s. But as per the understanding of that time all waves needed a medium to travel and hence ‘aether’ was proposed.
  • #21: Events happening at the same location in a frame, then the interval between those events is called Proper time interval
  • #26: 𝐸 2 − 𝑝𝑐 2 is invariant under Lorentz transformation