SlideShare a Scribd company logo
4. Discrétisation

                 u1 (k) D       u1 (t)                             y1 (t) A       y1 (k)
                            A                                                 D
                 u2 (k) D       u2 (t)        Système              y2 (t) A       y2 (k)
                            A                 linéaire                        D

                                            stationnaire
                                            x = Ax + Bu
                                            ˙
                 ur (k) D       ur (t)      y = Cx + Du            yp (t) A       yp (k)
                            A                                                 D


                Comment prendre explicitement en compte les convertisseurs ?

                                         Résoudre analytiquement

                                            x = Ax + Bu
                                            ˙
                                Avec un maintien de u entre k et k+1


Denis Gillet @ EPFL                                 1
Solution de l’équation d’état
                                x (t) = Ax (t) + Bu (t)
                                ˙
         Solution générale = solution homogène + solution particulière

Cas scalaire                                                                    Cas vectoriel
                                        x (t0 ) = x0
x (t) = ax (t)
˙                                                                               x (t) = Ax (t)
                                                                                ˙
x = eat c2 = ea(t   t0 )
                           x0
        1                 1
e =1+ +             2
                        +       3
                                    + ...
        2!                3!
                                                                                ⇥
                       1 2                    1 3
                                                2                       3
x = 1 + a (t     t0 ) + a (t            t0 ) + a (t                 t0 ) + . . . x0
                       2!                     3!
                                            2                   3
x = a0 + a1 (t      t0 ) + a2 (t       t0 ) + a3 (t          t0 ) + . . .

                                        Par analogie

                                                                            2               3
                            x = A0 + A1 (t              t0 ) + A2 (t     t0 ) + A3 (t    t0 ) + . . .
                                                    2
Solution de l’équation d’état homogène
                                                                    x (t) = Ax (t)
                                                                    ˙
                                         2                  3
x = A0 + A1 (t     t0 ) + A2 (t      t0 ) + A3 (t        t0 ) + . . .

      x (t0 ) = A0                                                      x (t0 ) = x0

                                             2
x = A1 + 2A2 (t
˙                    t0 ) + 3A3 (t       t0 ) + . . .
                                                         x (t) = Ax (t)
                                                         ˙
      x (t0 ) = A1
      ˙
                                                         x (t0 ) = Ax (t0 ) = Ax0
                                                         ˙
x = 2A2 + 6A3 (t
¨                     t0 ) + . . .
                                                        x (t) = Ax (t)
                                                        ¨          ˙
      x (t0 ) = 2A2
      ¨
                                                        x (t0 ) = Ax (t0 ) = A2 x0
                                                        ¨            ˙

                                     2                  3
                                                                            ⇥
                                A                 2  A              3
   x (t) = I + A (t      t0 ) +    (t         t0 ) +    (t      t0 ) + . . . x0
                                2!                   3!
          ⇧                                  ⌅⇤                             ⌃
                                         eA(t    t0 )

                                         3
Exponentielle de matrice


                                           2                             3                             ⇥
                                      A                       2  A                      3                     Ak         k
eA(t   t0 )
              = I + A (t       t0 ) +    (t               t0 ) +    (t               t0 ) + . . . =              (t   t0 )
                                      2!                         3!                                           k!
                                                                                                      k=0



                       x (t) = eA(t            t0 )
                                                      x0

                       x (t1 ) = eA(t1             t0 )
                                                        x (t0 )
                       x (t2 ) = eA(t2             t1 )
                                                        x (t1 ) = eA(t2            t1 ) A(t1 t0 )
                                                                                       e            x (t0 )
                       t 2 = t0
                       x (t0 ) = eA(t0             t1 ) A(t1 t0 )
                                                          e              x (t0 )

                       I = eA(t0       t1 ) A(t1 t0 )
                                               e                  =M         1
                                                                                 M
                                       ⇥       1
                           A(t1 t0 )
                           e                       = eA(t0        t1 )
                                                                         =e      A(t1 t0 )




                                                              4
Solution particulière de l’équation d’état
                                            x (t) = Ax (t) + Bu (t)
                                            ˙

x (t) = eA(t           t0 )
                              v (t)

AeA(t     t0 )
                   v (t) + eA(t             t0 )
                                                   v (t) = A eA(t t0 ) v (t) +Bu (t)
                                                   ˙
⇤                      ⇥                               ⌅     ⇤    ⇥        ⌅
                       x(t)
                       ˙                                             x(t)
                               ⇥     1
v (t) = eA(t
˙                       t0 )
                                          Bu (t) = e          A(t t0 )
                                                                         Bu (t)
            t

v (t) =            e   A(          t0 )
                                          Bu ( ) d
          t0
                                t                                           t

x (t) = eA(t           t0 )
                                    e      A(       t0 )
                                                           Bu ( ) d =           eA(t   t0 ) A(t0
                                                                                          e        )
                                                                                                       Bu ( ) d
                              t0                                          t0
               t

x (t) =            eA(t        )
                                   Bu ( ) d
          t0
                                                               5
Solution complète de l’équation d’état

                 x (t) = Ax (t) + Bu (t)
                 ˙

                                        t

 x (t) = e
         A(t t0 )
                    x (t0 ) +               A(t
                                            e         )
                                                          Bu ( ) d
                                      t0


             réponse libre   +       réponse forcée
                                     (produit de convolution)




                                 6
Discrétisation
                                   x (t) = Ax (t) + Bu (t)
                                   ˙
                                   y (t) = Cx (t) + Du (t)
                                                       t

                    x (t) = eA(t   t0 )
                                          x (t0 ) +        eA(t   )
                                                                      Bu ( ) d
                                                      t0

Convertisseurs AD
                                                                       kh+h
   t0 = kh
                             x (kh + h) = eAh x (kh) +                      eA(kh+h   )
                                                                                          Bu ( ) d
   t = kh + h
                                                                       kh

   t = kh                    y (kh) = Cx (kh) + Du (kh)

Convertisseurs DA
                                                                       kh+h
   u( ) = u(kh)              x (kh + h) = eAh x (kh) +                      eA(kh+h   )
                                                                                          Bu( )d
   kh     < kh + h                                                                         ⌅ ⇤⇥ ⇧
                                                                       kh                   u(kh)

                                                       7
Discrétisation
                              kh+h

x (kh + h) = eAh x (kh) +              eA(kh+h   )
                                                     Bu( )d
                                                      ⌅ ⇤⇥ ⇧
                              kh                      u(kh)


 = kh + h    ⇥        d =          d⇥
                                                 ⇥
                                   ⇧0
x (kh + h) = eAh x (kh) + ⇤             eA Bd ⌅ u (kh)
                                   h


y (kh) = Cx (kh) + Du (kh)
                          ⇤ h    ⌅
                            ⌥
                ⇥
x (k + 1) = eAh
                  x (k) + ⇧ eA d ⌃ B u (k)
           ⌦    ↵
              ⇥             0
                          ⌦        ↵

y (k) = Cx (k) + Du (k)
                          8
Solution de l’équation d’état analogique,
 linéaire et stationnaire + Discrétisation

     x (t) = Ax (t) + Bu (t)
     ˙
     y (t) = Cx (t) + Du (t)

                                        t

     x (t) = eA(t   t0 )
                           x (t0 ) +            eA(t       )
                                                               Bu ( ) d
                                       t0



     x (k + 1) = ⇤⇥ ⌅ x (k) +
                  ⇥                             ⇤⇥ ⌅           u (k)
                                       "               #
                    eAh                 Rh
                                                eA d   B
                                            0




     y (k) = Cx (k) + Du (k)


                                            9
Exponentielle de matrice: Série

                                    A2 2         Ai i
                 = eAh   = I + Ah +    h + ... +    h + ...
                                    2!           i!

    ⇤   h                                 2          i
                                                                     ⇥
                          A 2 A 3              A
=           A
            e   d B = Ih + h +    h + ... +              hi+1 + . . . B
    0                     2!   3!           (i + 1)!

                     A   A2 2            Ai
                 =I + h+    h + ... +          hi + . . .
                     2!  3!           (i + 1)!

                                 = I + Ah⇥

                                   = ⇥hB
                                                         ⇥⇥⇥
                ⇥ I + Ah
                =           I+
                               Ah
                                      ...
                                           Ah
                                                I+
                                                   Ah
                       2        3         N 1      N
                                     10
Discrétisation de systèmes stationnaires
   Modèle linéaire                       Modèle non linéaire

                                        x (t) = f [x (t) , u (t)]
                                        ˙
                                        y (t) = g [x (t) , u (t)]

                                            Linéarisation
                        Contre-
                                                       Tangente
                        réaction


    x (t) = Ax (t) + Bu (t)
    ˙                                      ˙
                                           x (t)
                                           ˜       =       A˜ (t) + B u (t)
                                                             x        ˜
    y (t) = Cx (t) + Du (t)                y (t)
                                           ˜       =       C x (t) + D˜ (t)
                                                             ˜        u

                                                           h

Discrétisation exacte         =e    Ah             =           eA d   B
                                                       0


 x (k + 1) = ⇥x (k) + u (k)              x (k + 1) = ⇥˜ (k) + u (k)
                                         ˜             x        ˜
     y (k) = Cx (k) + Du (k)                 y (k) = C x (k) + D˜ (k)
                                              ˜        ˜        u
                                   11
4.1.8 Double intégrateur: Série

                          1
                u(t)                          y(t)
                          s2

y (t) = u(t)
¨

x1 (t) = y(t)
x2 (t) = y(t)
         ˙
                                                          
x1 (t) = y(t) = x2 (t)
˙        ˙                            0   1                    0
                         x(t) =
                         ˙                        x(t) +           u(t)
x2 (t) = y (t) = u(t)
˙        ¨                            0   0                    1
                                  ⇥           ⇤
y(t) = x1 (t)            y(t) =       1 0         x(t) + [0] u(t)

                           12
4.1.8 Double intégrateur: Série
                             A                B
                     ⇧
                     ⇤       ⌥       ⌃
                                     ⌅      ⇧ ⌥⌅
                                            ⇤   ⌃
                         0       1            0                                   ⇥
               x=
               ˙                         x+       u    et   y=       1        0       x
                         0       0            1                  ⌥       ⌃⇧
                                                                         C
                                         A2 2          Ai i
                     = eAh = I + Ah +       h + ... +      h + ...
                                         2!             i!
                       ⇥            ⇥             ⇥ 2                ⇥
               1    0         0 1           0 0 h             1 h
         =               +            h+               =               = eAh
               0    1         0 0           0 0      2        0 1
                             ⌅        ⇧ ⇥          ⌃                ⌥
     ⌦                   ⌦ h                   ⇤        h      2 h    ⇥   ⇤
         h
                                1           0          |0               0
 =           eA d   B=                 d         =            2
                                                                  0
                                0 1         1                    h      1
     0                    0                            0        |0
                                                   ⌅        2
                                                               ⇧⇥      ⇤ ⌅ h2 ⇧
                                                      h h           0
                                                 =         2            =    2
                                                      0 h           1        h
                ⇤         ⌅         ⇧ 2 ⌃
                                       h                                   ⇥
                    1 h
x (k + 1) =                 x (k) +    2    u (k) et y (k) = 1 0 x (k)
                    0 1                h
                                                  13
Solution de l’équation d’état
     par la transformée de Laplace

x(t) = Ax(t) + Bu(t)
˙

sX(s)         x(0) = AX(s) + BU (s)

(sI       A)X(s) = x(0) + BU (s)

                             1                              1
X(s) = (sI              A)       x(0) + (sI          A)         BU (s)
                             Rt
x(t) = eAt x(0) +            0
                                  eA(t      ⌧)
                                                 Bu(⌧ )d⌧
                  h                     i
    At        1                     1
e        =L           (sI    A)

                                   14
Algorithme de Leverrier (analogique)

                                                        ⇥
                                                    1
                        eAt = L     1
                                        (sI   A)             et     = eAh


                1     adj (sI   A)   H0 sn 1 + H1 sn 2 + H2 sn 3 + . . . + Hn                1
(sI        A)       =              =
                      det (sI   A)        sn + a1 sn 1 + a2 sn 2 + . . . + an


                                                            H0    = I
           a1   =       tr (AH0 )                           H1    = AH0 + a1 I
           a2   =       2 tr (AH1 )
                        1
                                                            H2    = AH1 + a2 I
                .
                .                                                 .
                                                                  .
                .                                                 .
      an    1   =       n 1 tr (AHn 2 )
                          1
                                                        Hn   1    = AHn 2 + an       1I

           an   =       n tr (AHn 1 )
                        1
                                                            Hn    = AHn     1   + an I = 0


                                               15
Double intégrateur: Leverrier
                                 A                     B
                        ⇧
                        ⇤        ⌥       ⌃
                                         ⌅      ⇧ ⌥⌅
                                                ⇤   ⌃
                             0       1            0                                                              ⇥
                x=
                ˙                            x+       u                          et        y=       1        0       x
                             0       0            1                                             ⌥       ⌃⇧
                                                                                                        C
                                                                             ⇥
                                                                         1
                        e   At
                                 =L          1
                                                 (sI       A)                         et        = eAh
                        ⇥                                                        ⇥                                                ⇥
                1   0                                                0       1                                           0   1
 H0 = I =                   , a1 =       tr (AH0 ) =       tr                        = 0, H1 = AH0 + a1 I =
                0   1                                                0       0                                           0   0
                                                        ⇥                                                        ⇥
                    1                     1       0 0                                                    0 0
       a2 =           tr (AH1 ) =           tr              = 0, H2 = AH1 + a2 I =                                   (contrˆle)
                                                                                                                           o
                    2                     2       0 0                                                    0 0
                                                                             ⇥                       ⇥
                                                           1         0                     0    1
                                                                                 s+                                                   ⇥
            H0 s + H1
            1                                              0         1                     0    0             1          s       1
(sI A) = 2              =                                                                                   = 2
          s + a1 s + a2                                                           s2                         s           0       s
          ⌅           ⇧ ⇥                                                    ⇤                                   ⇥           ⇤
            1/ 1 2
              s    s      1                                      t                                                   1   h
   e =L
    At  1
                        =                                                             donc      e   Ah
                                                                                                         =
             0    1/      0                                      1                                                   0   1
                    s
                                                                16
Théorème de Cayley-Hamilton
Soit A une matrice n x n:

   f (A) = p (A) =           0 An      1
                                           +   1 An   2
                                                          + ... +   n 1I

Les coefficients      i    sont solution de:
                f ( i) = p ( i)                i = 1, . . . , n

Les   i   sont les valeurs propres de A, soit les solutions de:
                  det ( I        A) = | I           A| = 0

Pour des valeurs propres de multiplicité mi

                         f (1) ( i )       =   p(1) ( i )
                                           .
                                           .
                                           .
                  f (mi    1)
                                ( i)       =   p(mi    1)
                                                            ( i)
                                       17
4.1.12 Double intégrateur: Cayley-Hamilton
                               A                         B
                       ⇧
                       ⇤           ⌥        ⌃
                                            ⌅      ⇧ ⌥⌅
                                                   ⇤   ⌃
                           0           1             0                                                           ⇥
           x=
           ˙                                    x+       u                et           y=           1        0       x
                           0           0             1                                          ⌥       ⌃⇧
                                                                                                        C


                                                                                       e   1h
                                                                                                =        0 ⇥1 +          1
        f (A) = e          Ah
                                       =        0A +       1I                                   =        0 ⇥2 +
                                                                                           2h
                                                                                       e                                 1

               ⇥                   ⇤        ⇥          ⇤          ⇥                ⇤
                           0                    0 1                            1
 | I   A| =                                                  =                             =    2
                                                                                                    = 0,                 =       =0
                       0                        0 0                   0                                              1       2




                               e       1h
                                            =     0 ⇥1     +     1                     1=           1


   d              d
      e   2h
               =     (                 0 ⇥2 +       1)                    he       2h
                                                                                           =    0                        h=      0
  d⇥2            d⇥2
                                                       ⇥                           ⇥                             ⇥
                                            0 1                       1 0                           1 h
                   Ah
                   e       =h                              +1                          =
                                            0 0                       0 1                           0 1
                                                                 18
4.2 Solution de l’équation d’état discrète linéaire
  x (k + 1) = ⇥x (k) + u (k)
      y (k) = Cx (k) + Du (k)

  x(k0 + 1) = ⇥x(k0 ) + u(k0 )

  x(k0 + 2) = ⇥x(k0 + 1) + u(k0 + 1)
  x(k0 + 2) = ⇥ [⇥x(k0 ) + u(k0 )] + u(k0 + 1)
  x(k0 + 2) = ⇥2 x(k0 ) + ⇥ u(k0 ) + u(k0 + 1)

  x(k0 + 3) = ⇥x(k0 + 2) + u(k0 + 2)              ⇥
  x(k0 + 3) = ⇥ ⇥ x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) + u(k0 + 2)
                   2

  x(k0 + 3) = ⇥3 x(k0 ) + ⇥2 u(k0 ) + ⇥ u(k0 + 1) + u(k0 + 2)
                                   k 1
       x(k) = ⇥k   k0
                        x(k0 ) +          ⇥k   i 1
                                                     u(i)
                                   i=k0

            réponse libre     +     réponse forcée
                                    (produit de convolution)
                                               19
Matrice de transfert discrète
x (k + 1) = ⇥x (k) + u (k)             CI nulles
    y (k) = Cx (k) + Du (k)

    zX(z) ⇥X(z) = U (z)
    Y (z) = CX(z) + DU (z)

    (zI ⇥)X(z) = U (z)
    Y (z) = CX(z) + DU (z)

    X(z) = (zI ⇥) 1 U (z) ⇥
    Y (z) = C (zI ⇥) 1 U (z)⇥ + DU (z)
    Y (z) = C(zI ⇥) 1 + D U (z) ⇥ H(z)U (z)

 u(k)                      y(k)            U (z)          Y (z)
         Modèle d’état                             H(z)
        linéaire discret




                   x(k)
                                  20
Matrice de transfert discrète
             h                        i
                             1
H(z) = C(zI              )       +D               Y (z) = H(z)U (z)
2            3    2                                             32            3
    Y1 (z)            H11 (z)    H12 (z)    ···       H1r (z)        U1 (z)
6   Y2 (z)   7 6      H21 (z)    H22 (z)              H2r (z)   76   U2 (z)   7
6            7 6                                                76            7
6      .
       .     7=6        .
                        .                   ..          .
                                                        .       76     .
                                                                       .      7
4      .     5 4        .                     .         .       54     .      5
    Yp (z)            Hp1 (z)    Hp2 (z)    ···       Hpr (z)        Ur (z)

                    0 .
                      .
                      .                           .
                                                  .
             Uj (z)               Hij (z)         .
                      .
                      .
                      .                           .        Yi (z)
                    0                             .
                                                  .
                                      21
Algorithme de Leverrier (discret)

                                                         1
                                  H (z) = C (zI     ⇥)        +D


                1     adj (zI        )   H0 z n 1 + H 1 z n 2 + H2 z n 3 + . . . + Hn     1
(zI         )       =                  =
                      det (zI        )         z n + a1 z n 1 + a2 z n 2 + . . . + an


                                                         H0   = I
           a1    =      tr ( H0 )                        H1   =     H0 + a1 I
           a2    =       2 tr (
                         1
                                  H1 )                   H2   =     H1 + a2 I
                 .
                 .                                            .
                                                              .
                 .                                            .
      an    1    =       n 1 tr ( Hn 2 )
                          1
                                                    Hn    1   =     Hn   2   + an   1I

           an    =       n tr ( Hn 1 )
                         1
                                                         Hn   =     Hn   1   + an I = 0


                                               22
4.2.4 Double intégrateur: Matrice de transfert
                                     ⇥
                          1 h
                  =                                                     H (z) = C (zI                         ⇥)
                                                                                                                       1
                                                                                                                               +D
                          0 1
                                                                                                                                                        ⇥
          1     adj (zI                  )     Iz + H1                                                    1                    z        1       h
(zI   )       =                            = 2            = 2
                det (zI                  )  z + a1 z + a2  z                                              2z + 1                   0        z       1
              a1      =     tr ( ) =           2
                                           ⇥                    ⇤           ⇥            ⇤       ⇥                     ⇤
                                               1       h                         1   0                    1        h
          H1          =     + a1 I =                                    2                    =
                                               0       1                         0   1                    0        1
                                                                    ⇥                    ⇤
                                                                            1        0
              a2      =     2 tr (
                            1
                                         H1 ) =            1
                                                           2 tr                              =1
                                                                            0        1
                                                   ⇥                         ⇤       ⇥            ⇤       ⇥                ⇤
                                                            1           0                1   0                 0       0
          H2          =     H1 + a2 I =                                          +                    =                            cqfd
                                                            0           1                0   1                 0       0
                                               ⌅                                         ⇧⌅        ⇤ ⇧
                                           ⇥           z          1              h               h2 2                      1
              H (z) =         1 0                                                                                                   2
                                                            0               z        1                h            (z          1)
                                 ⌅     ⇤ ⇧                                                           ⇤
                             ⇥       h2 2    1      (z                                           1) h 2 + h2
                                                                                                          2
                                                                                                                                 h2 z + 1
H (z) =       z       1 h                       2 =                                                                            =
                                      h    (z 1)                                                 (z
                                                                                                               2
                                                                                                              1)                 2 (z 1)2
Stabilité
                      1
H (z) = C (zI    ⇥)         +D

       Cadj(zI        ⇥)         H (z)
H(z) =                   +D =
        det(zI        ⇥)      det(zI ⇥)
        ⇤                               ⌅
          H11 (z)     ...    H1r (z)                             ⇥
        ⌥   .                   .                      Hij (z)
H (z) = ⇧   .
            .                   .
                                .    ⌃ = [Hij (z)] =
                                                     det (zI   )
          Hp1 (z)     ···    Hpr (z)


         Pˆles zi des Hij solution de: det (zI
          o                                             )=0

     Valeurs propres vi de       solution de: det ( I     )=0
                                 zi = vi
     Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n


                                   24
4.1.13 Exemple: Entraînement discret

                                        ⇤           ⌅        ⇤        ⌅
u (k)           u (t)       x =
                            ˙
                                            0   1
                                                        x+
                                                                  0
                                                                          u   y (t)            y (k)           x (k + 1) = ⇥x (k) + u (k)
        D                                   0   a                 b                    A
            A                                       ⇥                                      D                           y (k) = Cx (k)
                            y   =           1   0       x



                    "                                         #                        "                                   #
                        1       1
                                a   eah                 1                       b
                                                                                           1
                                                                                           a    eah        1           h
⇥=e     Ah
                =                                                             =                                                exemple: 4.1.13
                        0               e   ah                                  a                eah
                                                                                                               1

                                                                                                       ⇤                   ⇥                  ⇥ ⌅
                    1       Iz + H1                                                 1                          z       eah     1
                                                                                                                               a   eah       1
  (zI           )       = 2            =
                         z + a1 z + a2   (z                                      eah ) (z        1)                    0           z     1

                                    1
H (z) = C (zI               ⇥)                  +D               Inutile ! Les valeurs propres donnent la mˆme info
                                                                                                           e
                ⇤                                                  ⇥ ⌅                                                         ⇧
                                1           1
                                            a       e   ah
                                                                  1                                                ⇥               1   = z1 = 1
| I     |=                                                                     =(          1)              ah
                                                                                                           e           =0⇥             = z2 = eah
                         0                                  eah                                                                    2

                                                                                  25
Systèmes discrets linéaires et stationnaires
                                       Solution                     k 1
x (k + 1)    =     ⇥x (k) + u (k)        x (k) = ⇥k k0 x (k0 ) +           ⇥k   l 1
                                                                                      u (l)
                                                 ⌅   ⇤⇥     ⇧
    y (k)    =     Cx (k) + Du (k)                                  l=k0
                                                   R´ponse libre
                                                    e               ⌅           ⇤⇥       ⇧
                                                                        R´ponse forc´e
                                                                         e          e

                         Matrice de transfert et stabilité
                                             ⇥
                                     1
                 Y (z) = C (zI ⇥)       + D U (z) = H (z) U (z)
                 ⇤                             ⌅
               H11 (z)       ...     H1r (z)                             ⇥
             ⌥   .                      .                      Hij (z)
     H (z) = ⇧   .
                 .                      .
                                        .    ⌃ = [Hij (z)] =
                                                             det (zI   )
               Hp1 (z)       ···     Hpr (z)

                  Pˆles zi des Hij solution de: det (zI
                   o                                               )=0

            Valeurs propres vi de       solution de: det ( I            )=0
                                       zi = vi
            Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n
                                          26

More Related Content

PDF
Sheet1 simplified
PDF
Ism et chapter_2
PDF
Markov Tutorial CDC Shanghai 2009
DOC
01 plain
PDF
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
PDF
Optimal debt maturity management
PDF
501 lecture8
PDF
On the Stick and Rope Problem - Draft 1
Sheet1 simplified
Ism et chapter_2
Markov Tutorial CDC Shanghai 2009
01 plain
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
Optimal debt maturity management
501 lecture8
On the Stick and Rope Problem - Draft 1

What's hot (19)

DOCX
Logics of the laplace transform
PDF
TABLA DE DERIVADAS
PDF
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
PDF
Chapter 4: Modern Location Theory of the Firm
PDF
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
PDF
Peer instructions questions for basic quantum mechanics
PPT
Matrix factorization
PDF
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
PDF
Midsem sol 2013
PDF
Lesson 2: A Catalog of Essential Functions
PPT
8. terapan hk1 n
PDF
Xi maths ch3_trigo_func_formulae
PDF
Beam theory
PPT
Differential equation
PDF
Formulario cuantica 2
PDF
Add Maths 2
PDF
Integral table
PDF
Special second order non symmetric fitted method for singular
Logics of the laplace transform
TABLA DE DERIVADAS
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Chapter 4: Modern Location Theory of the Firm
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Peer instructions questions for basic quantum mechanics
Matrix factorization
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Midsem sol 2013
Lesson 2: A Catalog of Essential Functions
8. terapan hk1 n
Xi maths ch3_trigo_func_formulae
Beam theory
Differential equation
Formulario cuantica 2
Add Maths 2
Integral table
Special second order non symmetric fitted method for singular
Ad

Viewers also liked (20)

PDF
Les Usages Pro Des Outils De Communication
PDF
Portfolio david serrault 2015
PPT
Presentation Huc&Nunc
PDF
Remote labs
PDF
Sprint Lifelogging & Personal Informatics - Premier Diamant
PDF
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
PDF
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
PPT
design & e-business
PPT
Areas of Tension in Technology Enhanced Learning
PDF
Ple 2.0 ed-media
PDF
B slides 11
PDF
Company presentation
PPTX
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
PDF
A slides 11
PDF
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
PDF
D slides 11
PDF
Webinar ple 20_6_12
KEY
Strengthening learning contexts: An introduction
PDF
Enseigner et apprendre ensemble: Expériences à l'EPFL
PPT
Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Les Usages Pro Des Outils De Communication
Portfolio david serrault 2015
Presentation Huc&Nunc
Remote labs
Sprint Lifelogging & Personal Informatics - Premier Diamant
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
design & e-business
Areas of Tension in Technology Enhanced Learning
Ple 2.0 ed-media
B slides 11
Company presentation
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
A slides 11
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
D slides 11
Webinar ple 20_6_12
Strengthening learning contexts: An introduction
Enseigner et apprendre ensemble: Expériences à l'EPFL
Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Ad

Similar to C slides 11 (20)

PDF
Emat 213 midterm 1 winter 2006
PDF
Nonlinear Filtering and Path Integral Method (Paper Review)
PDF
Emat 213 midterm 2 winter 2006
PDF
Elementos finitos
 
PDF
Tugas akhir matematika kelompok 1
PDF
Quadratic form and functional optimization
PDF
Introduction to modern time series analysis
PDF
Ch02 31
PDF
Engr 213 midterm 1a sol 2010
PDF
Engr 213 sample midterm 2b sol 2010
PDF
Formulas de taylor
PDF
Ejercicios 36-38
PDF
Tele3113 wk11wed
PDF
Add maths 2
PPT
X2 T05 06 Partial Fractions
PDF
Emat 213 midterm 1 fall 2005
PDF
Emat 213 study guide
PDF
Emat 213 midterm 2 fall 2005
PDF
Chapter 09
Emat 213 midterm 1 winter 2006
Nonlinear Filtering and Path Integral Method (Paper Review)
Emat 213 midterm 2 winter 2006
Elementos finitos
 
Tugas akhir matematika kelompok 1
Quadratic form and functional optimization
Introduction to modern time series analysis
Ch02 31
Engr 213 midterm 1a sol 2010
Engr 213 sample midterm 2b sol 2010
Formulas de taylor
Ejercicios 36-38
Tele3113 wk11wed
Add maths 2
X2 T05 06 Partial Fractions
Emat 213 midterm 1 fall 2005
Emat 213 study guide
Emat 213 midterm 2 fall 2005
Chapter 09

C slides 11

  • 1. 4. Discrétisation u1 (k) D u1 (t) y1 (t) A y1 (k) A D u2 (k) D u2 (t) Système y2 (t) A y2 (k) A linéaire D stationnaire x = Ax + Bu ˙ ur (k) D ur (t) y = Cx + Du yp (t) A yp (k) A D Comment prendre explicitement en compte les convertisseurs ? Résoudre analytiquement x = Ax + Bu ˙ Avec un maintien de u entre k et k+1 Denis Gillet @ EPFL 1
  • 2. Solution de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ Solution générale = solution homogène + solution particulière Cas scalaire Cas vectoriel x (t0 ) = x0 x (t) = ax (t) ˙ x (t) = Ax (t) ˙ x = eat c2 = ea(t t0 ) x0 1 1 e =1+ + 2 + 3 + ... 2! 3! ⇥ 1 2 1 3 2 3 x = 1 + a (t t0 ) + a (t t0 ) + a (t t0 ) + . . . x0 2! 3! 2 3 x = a0 + a1 (t t0 ) + a2 (t t0 ) + a3 (t t0 ) + . . . Par analogie 2 3 x = A0 + A1 (t t0 ) + A2 (t t0 ) + A3 (t t0 ) + . . . 2
  • 3. Solution de l’équation d’état homogène x (t) = Ax (t) ˙ 2 3 x = A0 + A1 (t t0 ) + A2 (t t0 ) + A3 (t t0 ) + . . . x (t0 ) = A0 x (t0 ) = x0 2 x = A1 + 2A2 (t ˙ t0 ) + 3A3 (t t0 ) + . . . x (t) = Ax (t) ˙ x (t0 ) = A1 ˙ x (t0 ) = Ax (t0 ) = Ax0 ˙ x = 2A2 + 6A3 (t ¨ t0 ) + . . . x (t) = Ax (t) ¨ ˙ x (t0 ) = 2A2 ¨ x (t0 ) = Ax (t0 ) = A2 x0 ¨ ˙ 2 3 ⇥ A 2 A 3 x (t) = I + A (t t0 ) + (t t0 ) + (t t0 ) + . . . x0 2! 3! ⇧ ⌅⇤ ⌃ eA(t t0 ) 3
  • 4. Exponentielle de matrice 2 3 ⇥ A 2 A 3 Ak k eA(t t0 ) = I + A (t t0 ) + (t t0 ) + (t t0 ) + . . . = (t t0 ) 2! 3! k! k=0 x (t) = eA(t t0 ) x0 x (t1 ) = eA(t1 t0 ) x (t0 ) x (t2 ) = eA(t2 t1 ) x (t1 ) = eA(t2 t1 ) A(t1 t0 ) e x (t0 ) t 2 = t0 x (t0 ) = eA(t0 t1 ) A(t1 t0 ) e x (t0 ) I = eA(t0 t1 ) A(t1 t0 ) e =M 1 M ⇥ 1 A(t1 t0 ) e = eA(t0 t1 ) =e A(t1 t0 ) 4
  • 5. Solution particulière de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ x (t) = eA(t t0 ) v (t) AeA(t t0 ) v (t) + eA(t t0 ) v (t) = A eA(t t0 ) v (t) +Bu (t) ˙ ⇤ ⇥ ⌅ ⇤ ⇥ ⌅ x(t) ˙ x(t) ⇥ 1 v (t) = eA(t ˙ t0 ) Bu (t) = e A(t t0 ) Bu (t) t v (t) = e A( t0 ) Bu ( ) d t0 t t x (t) = eA(t t0 ) e A( t0 ) Bu ( ) d = eA(t t0 ) A(t0 e ) Bu ( ) d t0 t0 t x (t) = eA(t ) Bu ( ) d t0 5
  • 6. Solution complète de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ t x (t) = e A(t t0 ) x (t0 ) + A(t e ) Bu ( ) d t0 réponse libre + réponse forcée (produit de convolution) 6
  • 7. Discrétisation x (t) = Ax (t) + Bu (t) ˙ y (t) = Cx (t) + Du (t) t x (t) = eA(t t0 ) x (t0 ) + eA(t ) Bu ( ) d t0 Convertisseurs AD kh+h t0 = kh x (kh + h) = eAh x (kh) + eA(kh+h ) Bu ( ) d t = kh + h kh t = kh y (kh) = Cx (kh) + Du (kh) Convertisseurs DA kh+h u( ) = u(kh) x (kh + h) = eAh x (kh) + eA(kh+h ) Bu( )d kh < kh + h ⌅ ⇤⇥ ⇧ kh u(kh) 7
  • 8. Discrétisation kh+h x (kh + h) = eAh x (kh) + eA(kh+h ) Bu( )d ⌅ ⇤⇥ ⇧ kh u(kh) = kh + h ⇥ d = d⇥ ⇥ ⇧0 x (kh + h) = eAh x (kh) + ⇤ eA Bd ⌅ u (kh) h y (kh) = Cx (kh) + Du (kh) ⇤ h ⌅ ⌥ ⇥ x (k + 1) = eAh x (k) + ⇧ eA d ⌃ B u (k) ⌦ ↵ ⇥ 0 ⌦ ↵ y (k) = Cx (k) + Du (k) 8
  • 9. Solution de l’équation d’état analogique, linéaire et stationnaire + Discrétisation x (t) = Ax (t) + Bu (t) ˙ y (t) = Cx (t) + Du (t) t x (t) = eA(t t0 ) x (t0 ) + eA(t ) Bu ( ) d t0 x (k + 1) = ⇤⇥ ⌅ x (k) + ⇥ ⇤⇥ ⌅ u (k) " # eAh Rh eA d B 0 y (k) = Cx (k) + Du (k) 9
  • 10. Exponentielle de matrice: Série A2 2 Ai i = eAh = I + Ah + h + ... + h + ... 2! i! ⇤ h 2 i ⇥ A 2 A 3 A = A e d B = Ih + h + h + ... + hi+1 + . . . B 0 2! 3! (i + 1)! A A2 2 Ai =I + h+ h + ... + hi + . . . 2! 3! (i + 1)! = I + Ah⇥ = ⇥hB ⇥⇥⇥ ⇥ I + Ah = I+ Ah ... Ah I+ Ah 2 3 N 1 N 10
  • 11. Discrétisation de systèmes stationnaires Modèle linéaire Modèle non linéaire x (t) = f [x (t) , u (t)] ˙ y (t) = g [x (t) , u (t)] Linéarisation Contre- Tangente réaction x (t) = Ax (t) + Bu (t) ˙ ˙ x (t) ˜ = A˜ (t) + B u (t) x ˜ y (t) = Cx (t) + Du (t) y (t) ˜ = C x (t) + D˜ (t) ˜ u h Discrétisation exacte =e Ah = eA d B 0 x (k + 1) = ⇥x (k) + u (k) x (k + 1) = ⇥˜ (k) + u (k) ˜ x ˜ y (k) = Cx (k) + Du (k) y (k) = C x (k) + D˜ (k) ˜ ˜ u 11
  • 12. 4.1.8 Double intégrateur: Série 1 u(t) y(t) s2 y (t) = u(t) ¨ x1 (t) = y(t) x2 (t) = y(t) ˙   x1 (t) = y(t) = x2 (t) ˙ ˙ 0 1 0 x(t) = ˙ x(t) + u(t) x2 (t) = y (t) = u(t) ˙ ¨ 0 0 1 ⇥ ⇤ y(t) = x1 (t) y(t) = 1 0 x(t) + [0] u(t) 12
  • 13. 4.1.8 Double intégrateur: Série A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C A2 2 Ai i = eAh = I + Ah + h + ... + h + ... 2! i! ⇥ ⇥ ⇥ 2 ⇥ 1 0 0 1 0 0 h 1 h = + h+ = = eAh 0 1 0 0 0 0 2 0 1 ⌅ ⇧ ⇥ ⌃ ⌥ ⌦ ⌦ h ⇤ h 2 h ⇥ ⇤ h 1 0 |0 0 = eA d B= d = 2 0 0 1 1 h 1 0 0 0 |0 ⌅ 2 ⇧⇥ ⇤ ⌅ h2 ⇧ h h 0 = 2 = 2 0 h 1 h ⇤ ⌅ ⇧ 2 ⌃ h ⇥ 1 h x (k + 1) = x (k) + 2 u (k) et y (k) = 1 0 x (k) 0 1 h 13
  • 14. Solution de l’équation d’état par la transformée de Laplace x(t) = Ax(t) + Bu(t) ˙ sX(s) x(0) = AX(s) + BU (s) (sI A)X(s) = x(0) + BU (s) 1 1 X(s) = (sI A) x(0) + (sI A) BU (s) Rt x(t) = eAt x(0) + 0 eA(t ⌧) Bu(⌧ )d⌧ h i At 1 1 e =L (sI A) 14
  • 15. Algorithme de Leverrier (analogique) ⇥ 1 eAt = L 1 (sI A) et = eAh 1 adj (sI A) H0 sn 1 + H1 sn 2 + H2 sn 3 + . . . + Hn 1 (sI A) = = det (sI A) sn + a1 sn 1 + a2 sn 2 + . . . + an H0 = I a1 = tr (AH0 ) H1 = AH0 + a1 I a2 = 2 tr (AH1 ) 1 H2 = AH1 + a2 I . . . . . . an 1 = n 1 tr (AHn 2 ) 1 Hn 1 = AHn 2 + an 1I an = n tr (AHn 1 ) 1 Hn = AHn 1 + an I = 0 15
  • 16. Double intégrateur: Leverrier A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C ⇥ 1 e At =L 1 (sI A) et = eAh ⇥ ⇥ ⇥ 1 0 0 1 0 1 H0 = I = , a1 = tr (AH0 ) = tr = 0, H1 = AH0 + a1 I = 0 1 0 0 0 0 ⇥ ⇥ 1 1 0 0 0 0 a2 = tr (AH1 ) = tr = 0, H2 = AH1 + a2 I = (contrˆle) o 2 2 0 0 0 0 ⇥ ⇥ 1 0 0 1 s+ ⇥ H0 s + H1 1 0 1 0 0 1 s 1 (sI A) = 2 = = 2 s + a1 s + a2 s2 s 0 s ⌅ ⇧ ⇥ ⇤ ⇥ ⇤ 1/ 1 2 s s 1 t 1 h e =L At 1 = donc e Ah = 0 1/ 0 1 0 1 s 16
  • 17. Théorème de Cayley-Hamilton Soit A une matrice n x n: f (A) = p (A) = 0 An 1 + 1 An 2 + ... + n 1I Les coefficients i sont solution de: f ( i) = p ( i) i = 1, . . . , n Les i sont les valeurs propres de A, soit les solutions de: det ( I A) = | I A| = 0 Pour des valeurs propres de multiplicité mi f (1) ( i ) = p(1) ( i ) . . . f (mi 1) ( i) = p(mi 1) ( i) 17
  • 18. 4.1.12 Double intégrateur: Cayley-Hamilton A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C e 1h = 0 ⇥1 + 1 f (A) = e Ah = 0A + 1I = 0 ⇥2 + 2h e 1 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 0 0 1 1 | I A| = = = 2 = 0, = =0 0 0 0 0 1 2 e 1h = 0 ⇥1 + 1 1= 1 d d e 2h = ( 0 ⇥2 + 1) he 2h = 0 h= 0 d⇥2 d⇥2 ⇥ ⇥ ⇥ 0 1 1 0 1 h Ah e =h +1 = 0 0 0 1 0 1 18
  • 19. 4.2 Solution de l’équation d’état discrète linéaire x (k + 1) = ⇥x (k) + u (k) y (k) = Cx (k) + Du (k) x(k0 + 1) = ⇥x(k0 ) + u(k0 ) x(k0 + 2) = ⇥x(k0 + 1) + u(k0 + 1) x(k0 + 2) = ⇥ [⇥x(k0 ) + u(k0 )] + u(k0 + 1) x(k0 + 2) = ⇥2 x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) x(k0 + 3) = ⇥x(k0 + 2) + u(k0 + 2) ⇥ x(k0 + 3) = ⇥ ⇥ x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) + u(k0 + 2) 2 x(k0 + 3) = ⇥3 x(k0 ) + ⇥2 u(k0 ) + ⇥ u(k0 + 1) + u(k0 + 2) k 1 x(k) = ⇥k k0 x(k0 ) + ⇥k i 1 u(i) i=k0 réponse libre + réponse forcée (produit de convolution) 19
  • 20. Matrice de transfert discrète x (k + 1) = ⇥x (k) + u (k) CI nulles y (k) = Cx (k) + Du (k) zX(z) ⇥X(z) = U (z) Y (z) = CX(z) + DU (z) (zI ⇥)X(z) = U (z) Y (z) = CX(z) + DU (z) X(z) = (zI ⇥) 1 U (z) ⇥ Y (z) = C (zI ⇥) 1 U (z)⇥ + DU (z) Y (z) = C(zI ⇥) 1 + D U (z) ⇥ H(z)U (z) u(k) y(k) U (z) Y (z) Modèle d’état H(z) linéaire discret x(k) 20
  • 21. Matrice de transfert discrète h i 1 H(z) = C(zI ) +D Y (z) = H(z)U (z) 2 3 2 32 3 Y1 (z) H11 (z) H12 (z) ··· H1r (z) U1 (z) 6 Y2 (z) 7 6 H21 (z) H22 (z) H2r (z) 76 U2 (z) 7 6 7 6 76 7 6 . . 7=6 . . .. . . 76 . . 7 4 . 5 4 . . . 54 . 5 Yp (z) Hp1 (z) Hp2 (z) ··· Hpr (z) Ur (z) 0 . . . . . Uj (z) Hij (z) . . . . . Yi (z) 0 . . 21
  • 22. Algorithme de Leverrier (discret) 1 H (z) = C (zI ⇥) +D 1 adj (zI ) H0 z n 1 + H 1 z n 2 + H2 z n 3 + . . . + Hn 1 (zI ) = = det (zI ) z n + a1 z n 1 + a2 z n 2 + . . . + an H0 = I a1 = tr ( H0 ) H1 = H0 + a1 I a2 = 2 tr ( 1 H1 ) H2 = H1 + a2 I . . . . . . an 1 = n 1 tr ( Hn 2 ) 1 Hn 1 = Hn 2 + an 1I an = n tr ( Hn 1 ) 1 Hn = Hn 1 + an I = 0 22
  • 23. 4.2.4 Double intégrateur: Matrice de transfert ⇥ 1 h = H (z) = C (zI ⇥) 1 +D 0 1 ⇥ 1 adj (zI ) Iz + H1 1 z 1 h (zI ) = = 2 = 2 det (zI ) z + a1 z + a2 z 2z + 1 0 z 1 a1 = tr ( ) = 2 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 1 h 1 0 1 h H1 = + a1 I = 2 = 0 1 0 1 0 1 ⇥ ⇤ 1 0 a2 = 2 tr ( 1 H1 ) = 1 2 tr =1 0 1 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 1 0 1 0 0 0 H2 = H1 + a2 I = + = cqfd 0 1 0 1 0 0 ⌅ ⇧⌅ ⇤ ⇧ ⇥ z 1 h h2 2 1 H (z) = 1 0 2 0 z 1 h (z 1) ⌅ ⇤ ⇧ ⇤ ⇥ h2 2 1 (z 1) h 2 + h2 2 h2 z + 1 H (z) = z 1 h 2 = = h (z 1) (z 2 1) 2 (z 1)2
  • 24. Stabilité 1 H (z) = C (zI ⇥) +D Cadj(zI ⇥) H (z) H(z) = +D = det(zI ⇥) det(zI ⇥) ⇤ ⌅ H11 (z) ... H1r (z) ⇥ ⌥ . . Hij (z) H (z) = ⇧ . . . . ⌃ = [Hij (z)] = det (zI ) Hp1 (z) ··· Hpr (z) Pˆles zi des Hij solution de: det (zI o )=0 Valeurs propres vi de solution de: det ( I )=0 zi = vi Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n 24
  • 25. 4.1.13 Exemple: Entraînement discret ⇤ ⌅ ⇤ ⌅ u (k) u (t) x = ˙ 0 1 x+ 0 u y (t) y (k) x (k + 1) = ⇥x (k) + u (k) D 0 a b A A ⇥ D y (k) = Cx (k) y = 1 0 x " # " # 1 1 a eah 1 b 1 a eah 1 h ⇥=e Ah = = exemple: 4.1.13 0 e ah a eah 1 ⇤ ⇥ ⇥ ⌅ 1 Iz + H1 1 z eah 1 a eah 1 (zI ) = 2 = z + a1 z + a2 (z eah ) (z 1) 0 z 1 1 H (z) = C (zI ⇥) +D Inutile ! Les valeurs propres donnent la mˆme info e ⇤ ⇥ ⌅ ⇧ 1 1 a e ah 1 ⇥ 1 = z1 = 1 | I |= =( 1) ah e =0⇥ = z2 = eah 0 eah 2 25
  • 26. Systèmes discrets linéaires et stationnaires Solution k 1 x (k + 1) = ⇥x (k) + u (k) x (k) = ⇥k k0 x (k0 ) + ⇥k l 1 u (l) ⌅ ⇤⇥ ⇧ y (k) = Cx (k) + Du (k) l=k0 R´ponse libre e ⌅ ⇤⇥ ⇧ R´ponse forc´e e e Matrice de transfert et stabilité ⇥ 1 Y (z) = C (zI ⇥) + D U (z) = H (z) U (z) ⇤ ⌅ H11 (z) ... H1r (z) ⇥ ⌥ . . Hij (z) H (z) = ⇧ . . . . ⌃ = [Hij (z)] = det (zI ) Hp1 (z) ··· Hpr (z) Pˆles zi des Hij solution de: det (zI o )=0 Valeurs propres vi de solution de: det ( I )=0 zi = vi Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n 26