SlideShare a Scribd company logo
J.F. Miller




Jagdeep Matharu - 4831400
Seminar 4V82
What is CGP?
 CGP is a form of Automatic computer program
  Evaluation (GP)
 Developed be Miller and Thompson 1997.
 Inspired from evaluation of digital circuit.
 Capable of encoding computer programs, electronic
  circuits, neural network.
Representation
 Programs are represented as directed acyclic graphs
  which are encoded in the form of a linear string of
  integer
 Genes are
   Address in data (Connection genes)
   Address in a function lookup table (Function genes)
   Address in output data (Output genes)
 Genotype is string of integers.
  Eg. 0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3
CGP Genotype
CGP General form
Cont’d
Genotype-to-Phenotype mapping
 Result from the decoding of a genotype is called
  phenotype.
 Many-to-one genotype to phenotype mapping.
 Some genes in phenotype can be ignored
Decoding
           Genotype




            Phenotype
Evolution of CGP Genotypes
 Most CGP system use only mutation.
 Point-mutation
    Mutation rate
 Gene location is change with other valid random value.
    Function with other random valid address of function.
    Input gene value with valid output from any other node
     or terminal node value.
    Output with address of output of other node in
     genotype or terminal node value.
 Crossover
Cont’d
Evaluation strategies
 1+𝜆 algorithm
Cont’d
 An offspring is always chosen if it is equal as fit or has
  better fitness than the parent.
Genetic Redundancy
 Node redundancy
    Genes those are not used in fitness calculation.
 Functional redundancy
    Sub-function that actually may be implemented with fewer
     nodes
    bloat
 Input redundancy
    Node functions are not connected to some of the input node
 Neutrality
    Adaptive evolution may cross regions with poor fitness in
     fitness landscape.
References
“CGP Home.” Accessed November 27, 2012.
http://www.cartesiangp.co.uk/
J.F. Miller(ed.), Cartesian Genetic Programming ,
Natural Computing Series, DOI 10.1007/978-3-642-17310-
3 2,

More Related Content

PDF
PRML 5.3-5.4
PDF
PRML 1.5-1.5.5 決定理論
PDF
第8章 ガウス過程回帰による異常検知
PDF
PRML読書会#2,#3資料
PDF
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
PDF
PRML輪読#6
PDF
PRML 4.1 Discriminant Function
PDF
PRML 5.3-5.4
PRML 1.5-1.5.5 決定理論
第8章 ガウス過程回帰による異常検知
PRML読書会#2,#3資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
PRML輪読#6
PRML 4.1 Discriminant Function

What's hot (20)

PDF
Prml 2.3
PDF
PRML_titech 2.3.1 - 2.3.7
PDF
PRML 2.3.2-2.3.4 ガウス分布
PPTX
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
PDF
PRML 5章 PP.227-PP.247
PDF
Prml3.5 エビデンス近似〜
PDF
わかりやすいパターン認識 4章
PPT
Gurobi python
PDF
PRML復々習レーン#2 2.3.6 - 2.3.7
PPTX
Python基礎その2
PDF
PRML ベイズロジスティック回帰 4.5 4.5.2
PDF
有限モデル理論入門:MSOとオートマトン
PDF
PRML Chapter 14
PDF
レプリカ交換モンテカルロ法で乱数の生成
PDF
異常検知と変化検知 9章 部分空間法による変化点検知
PDF
PRML上巻勉強会 at 東京大学 資料 第4章4.3.1 〜 4.5.2
PDF
R実践 機械学習による異常検知 02
PPTX
G社のNMT論文を読んでみた
PDF
8. Deep Learning.pdf
PDF
混合ガウスモデルとEMアルゴリスム
Prml 2.3
PRML_titech 2.3.1 - 2.3.7
PRML 2.3.2-2.3.4 ガウス分布
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
PRML 5章 PP.227-PP.247
Prml3.5 エビデンス近似〜
わかりやすいパターン認識 4章
Gurobi python
PRML復々習レーン#2 2.3.6 - 2.3.7
Python基礎その2
PRML ベイズロジスティック回帰 4.5 4.5.2
有限モデル理論入門:MSOとオートマトン
PRML Chapter 14
レプリカ交換モンテカルロ法で乱数の生成
異常検知と変化検知 9章 部分空間法による変化点検知
PRML上巻勉強会 at 東京大学 資料 第4章4.3.1 〜 4.5.2
R実践 機械学習による異常検知 02
G社のNMT論文を読んでみた
8. Deep Learning.pdf
混合ガウスモデルとEMアルゴリスム
Ad

Viewers also liked (20)

PPTX
Genetic Algorithm by Example
PPT
Genetic algorithm
PDF
A Novel Approach to Genetic Algorithm Based Cryptography
PDF
A Genetic Algorithm Approach to Solve Unit Commitment Problem
PDF
Cpaior13.ppt
PDF
Serine Integrases in Genetic Circuit Design
PDF
Realtime, Non-Intrusive Evaluation of VoIP Using Genetic Programming
PDF
Prediction the stock market with genetic programming
PDF
Semantic Genetic Programming Tutorial
PPTX
An intelligent scalable stock market prediction system
PPTX
Introduction to genetic programming
PPTX
Genetic programming
ODP
Genetic Programming in Python
PDF
Introduction to Genetic Programming
PPSX
كتابة الخطوات الخوارزمية
PPT
できる!遺伝的アルゴリズム
PDF
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
PPT
Genetic algorithms
PPTX
Matlab Introduction
PPTX
Ad-Hoc Networks
Genetic Algorithm by Example
Genetic algorithm
A Novel Approach to Genetic Algorithm Based Cryptography
A Genetic Algorithm Approach to Solve Unit Commitment Problem
Cpaior13.ppt
Serine Integrases in Genetic Circuit Design
Realtime, Non-Intrusive Evaluation of VoIP Using Genetic Programming
Prediction the stock market with genetic programming
Semantic Genetic Programming Tutorial
An intelligent scalable stock market prediction system
Introduction to genetic programming
Genetic programming
Genetic Programming in Python
Introduction to Genetic Programming
كتابة الخطوات الخوارزمية
できる!遺伝的アルゴリズム
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
Genetic algorithms
Matlab Introduction
Ad-Hoc Networks
Ad

Similar to Cartesian Genetic Programming (20)

PDF
P0126557 slides
PDF
Evolutionary Computing Technology - Genetic Algorithm
PDF
2015-03-31_MotifGP
PPTX
genetic programming
PPTX
May workshop
PPTX
GENETIC GAIN BY GENOMIC SELECTION PPT.pptx
PDF
Hc3413121317
PPTX
May 15 workshop
PPTX
AI at GSK_Kim Branson_mHealth Israel
PPTX
FUZZY GENETIC HYBRID SYSTEM of neural system.pptx
PDF
Log Message Anomaly Detection with Oversampling
PPTX
Genetic Algorithm
PPT
PPSN 2004 - 3rd session
PDF
RNA-seq for DE analysis: detecting differential expression - part 5
PPTX
Mobile Phone Spam Image Detection based on Graph Partitioning with Pyramid H...
PPTX
Selection system: Biplots and Mapping genotyoe
PDF
Hybrid Approach to Economic Load Dispatch
PDF
CLASSIFIER SELECTION MODELS FOR INTRUSION DETECTION SYSTEM (IDS)
PDF
VSSML17 Review. Summary Day 1 Sessions
PPTX
2. NEURAL NETWORKS USING GENETIC ALGORITHMS.pptx
P0126557 slides
Evolutionary Computing Technology - Genetic Algorithm
2015-03-31_MotifGP
genetic programming
May workshop
GENETIC GAIN BY GENOMIC SELECTION PPT.pptx
Hc3413121317
May 15 workshop
AI at GSK_Kim Branson_mHealth Israel
FUZZY GENETIC HYBRID SYSTEM of neural system.pptx
Log Message Anomaly Detection with Oversampling
Genetic Algorithm
PPSN 2004 - 3rd session
RNA-seq for DE analysis: detecting differential expression - part 5
Mobile Phone Spam Image Detection based on Graph Partitioning with Pyramid H...
Selection system: Biplots and Mapping genotyoe
Hybrid Approach to Economic Load Dispatch
CLASSIFIER SELECTION MODELS FOR INTRUSION DETECTION SYSTEM (IDS)
VSSML17 Review. Summary Day 1 Sessions
2. NEURAL NETWORKS USING GENETIC ALGORITHMS.pptx

Recently uploaded (20)

PDF
Classroom Observation Tools for Teachers
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
RMMM.pdf make it easy to upload and study
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
master seminar digital applications in india
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Pharma ospi slides which help in ospi learning
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
Classroom Observation Tools for Teachers
Module 4: Burden of Disease Tutorial Slides S2 2025
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
VCE English Exam - Section C Student Revision Booklet
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Abdominal Access Techniques with Prof. Dr. R K Mishra
RMMM.pdf make it easy to upload and study
Final Presentation General Medicine 03-08-2024.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
master seminar digital applications in india
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Cell Types and Its function , kingdom of life
102 student loan defaulters named and shamed – Is someone you know on the list?
2.FourierTransform-ShortQuestionswithAnswers.pdf
Microbial diseases, their pathogenesis and prophylaxis
Pharma ospi slides which help in ospi learning
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf

Cartesian Genetic Programming

  • 1. J.F. Miller Jagdeep Matharu - 4831400 Seminar 4V82
  • 2. What is CGP?  CGP is a form of Automatic computer program Evaluation (GP)  Developed be Miller and Thompson 1997.  Inspired from evaluation of digital circuit.  Capable of encoding computer programs, electronic circuits, neural network.
  • 3. Representation  Programs are represented as directed acyclic graphs which are encoded in the form of a linear string of integer  Genes are  Address in data (Connection genes)  Address in a function lookup table (Function genes)  Address in output data (Output genes)  Genotype is string of integers. Eg. 0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3
  • 7. Genotype-to-Phenotype mapping  Result from the decoding of a genotype is called phenotype.  Many-to-one genotype to phenotype mapping.  Some genes in phenotype can be ignored
  • 8. Decoding Genotype Phenotype
  • 9. Evolution of CGP Genotypes  Most CGP system use only mutation.  Point-mutation  Mutation rate  Gene location is change with other valid random value.  Function with other random valid address of function.  Input gene value with valid output from any other node or terminal node value.  Output with address of output of other node in genotype or terminal node value.  Crossover
  • 12. Cont’d  An offspring is always chosen if it is equal as fit or has better fitness than the parent.
  • 13. Genetic Redundancy  Node redundancy  Genes those are not used in fitness calculation.  Functional redundancy  Sub-function that actually may be implemented with fewer nodes  bloat  Input redundancy  Node functions are not connected to some of the input node  Neutrality  Adaptive evolution may cross regions with poor fitness in fitness landscape.
  • 14. References “CGP Home.” Accessed November 27, 2012. http://www.cartesiangp.co.uk/ J.F. Miller(ed.), Cartesian Genetic Programming , Natural Computing Series, DOI 10.1007/978-3-642-17310- 3 2,