SlideShare a Scribd company logo
Exercice 26
   N = 10       n=5           p = 0, 3 =   R
                                           N
                                                      donc R = 0, 3 × 10 = 3
                          3    7
                         C3 · C2    1
    (a) P(X = 3) =          10
                                 =
                          C5       12
    (b) P(X ≤ 2)

                   P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)
                                   3    7
                                  C0 · C5    C3 · C7 C3 · C7
                                =    10
                                           + 1 10 4 + 2 10 3
                                    C5        C5       C5
                                  1      5    5     11
                                =    +      +     =
                                  12 12 12 12
    (c) E(X ) = n · p = 5 × 0, 3 = 1, 5
    (d) V (X ) =   N−n
                   N−1
                         · n · p · (1 − p) =   5
                                               9
                                                   × 5 × 0, 3 × 0, 7 =    7
                                                                         12

More Related Content

PDF
The Newton polytope of the sparse resultant
PDF
Bcs 012 0613
PDF
Pre-Calc 30S May 7
PDF
Efoom 2020
PPTX
2.7 more parabolas a& hyperbolas (optional) t
PPTX
Fg 2 8 sg evens key
PDF
Polinômios 2
PPT
Solving for y
The Newton polytope of the sparse resultant
Bcs 012 0613
Pre-Calc 30S May 7
Efoom 2020
2.7 more parabolas a& hyperbolas (optional) t
Fg 2 8 sg evens key
Polinômios 2
Solving for y

What's hot (17)

DOC
Si ci set 1 solutions
PDF
Funções trigonométricas
PDF
Funções 3
DOCX
Đề Thi HK2 Toán 9 - TH THCS THPT  Việt Anh
PPT
Shubhanshumathprojectwork10 a-120930012042-phpapp01
PDF
Fuvest 2019 - aberta
DOCX
Resolución del-examen-de-la-práctica-de-métodos-numéricos
PDF
Efoom 2016
PDF
Polinômios 3
PDF
Lista de integrais2
PDF
Lista de integrais Calculo IV
PDF
Formulas
PDF
Cônicas 1
PDF
Funções 2
PPT
Visualizing Differential Equations
DOCX
Si ci set 1 solutions
Funções trigonométricas
Funções 3
Đề Thi HK2 Toán 9 - TH THCS THPT  Việt Anh
Shubhanshumathprojectwork10 a-120930012042-phpapp01
Fuvest 2019 - aberta
Resolución del-examen-de-la-práctica-de-métodos-numéricos
Efoom 2016
Polinômios 3
Lista de integrais2
Lista de integrais Calculo IV
Formulas
Cônicas 1
Funções 2
Visualizing Differential Equations
Ad

Similar to Ch32 26 (20)

PDF
Nota math-spm
PDF
F4 Final Sbp 2007 Maths Skema P 1 & P2
PDF
F4 Final Sbp 2006 Math Skema P 1 & P 2
PDF
Sect2 1
DOC
Ecuaciones de primer y de segundo grado
DOC
QMT202/SET2
PDF
5 indices & logarithms
PDF
Sect5 6
PDF
S101-52國立新化高中(代理)
DOC
MATH: ONE STEP EQUATIONS
PDF
Sect3 7
PDF
Add Maths 2
PDF
Add maths 2
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Number theory lecture (part 1)
PDF
Section1 stochastic
PPT
BS1501 tutorial 3_final
PPT
BS1501 tutorial 3_final
PDF
近似ベイズ計算によるベイズ推定
Nota math-spm
F4 Final Sbp 2007 Maths Skema P 1 & P2
F4 Final Sbp 2006 Math Skema P 1 & P 2
Sect2 1
Ecuaciones de primer y de segundo grado
QMT202/SET2
5 indices & logarithms
Sect5 6
S101-52國立新化高中(代理)
MATH: ONE STEP EQUATIONS
Sect3 7
Add Maths 2
Add maths 2
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Number theory lecture (part 1)
Section1 stochastic
BS1501 tutorial 3_final
BS1501 tutorial 3_final
近似ベイズ計算によるベイズ推定
Ad

More from schibu20 (20)

PDF
Ch39 23
PDF
Ch39 20
PDF
Ch39 17
PDF
Ch39 15
PDF
Ch39 11
PDF
Ch38 35
PDF
Ch38 31
PDF
Ch38 26
PDF
Ch38 24
PDF
Ch38 22
PDF
Ch38 19
PDF
Ch38 17
PDF
Ch38 15
PDF
Ch37 34
PDF
Ch37 29
PDF
Ch37 28
PDF
Ch37 25
PDF
Ch37 23
PDF
Ch37 19
PDF
Ch37 16
Ch39 23
Ch39 20
Ch39 17
Ch39 15
Ch39 11
Ch38 35
Ch38 31
Ch38 26
Ch38 24
Ch38 22
Ch38 19
Ch38 17
Ch38 15
Ch37 34
Ch37 29
Ch37 28
Ch37 25
Ch37 23
Ch37 19
Ch37 16

Ch32 26

  • 1. Exercice 26 N = 10 n=5 p = 0, 3 = R N donc R = 0, 3 × 10 = 3 3 7 C3 · C2 1 (a) P(X = 3) = 10 = C5 12 (b) P(X ≤ 2) P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) 3 7 C0 · C5 C3 · C7 C3 · C7 = 10 + 1 10 4 + 2 10 3 C5 C5 C5 1 5 5 11 = + + = 12 12 12 12 (c) E(X ) = n · p = 5 × 0, 3 = 1, 5 (d) V (X ) = N−n N−1 · n · p · (1 − p) = 5 9 × 5 × 0, 3 × 0, 7 = 7 12