SlideShare a Scribd company logo
Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1
1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
O P E R A T I N G S Y S T E M S
Module 6 : CPU Scheduling
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Algorithm Evaluation
Operating System Concepts
Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2
2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Chapter 6: CPU Scheduling
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Algorithm Evaluation
Operating System Concepts
Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3
3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Basic Concepts
• Maximum CPU utilization obtained with
multiprogramming
• CPU–I/O Burst Cycle – Process execution consists of
a cycle of CPU execution and I/O wait.
• CPU burst distribution
Operating System Concepts
Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4
4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Alternating Sequence of CPU And I/O Bursts
Operating System Concepts
Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5
5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Histogram of CPU-burst Times
Operating System Concepts
Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6
6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
CPU Scheduler
• Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them.
• CPU scheduling decisions may take place when a
process:
1.Switches from running to waiting state.
2.Switches from running to ready state.
3.Switches from waiting to ready.
4.Terminates.
• Scheduling under 1 and 4 is nonpreemptive.
• All other scheduling is preemptive.
Operating System Concepts
Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7
7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Dispatcher
• Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
– switching context
– switching to user mode
– jumping to the proper location in the user program
to restart that program
• Dispatch latency – time it takes for the dispatcher to
stop one process and start another running.
Operating System Concepts
Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8
8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their
execution per time unit
• Turnaround time – amount of time to execute a
particular process
• Waiting time – amount of time a process has been
waiting in the ready queue
• Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)
Operating System Concepts
Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9
9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Optimization Criteria
• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time
Operating System Concepts
Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10
10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
First-Come, First-Served (FCFS) Scheduling
• Example: Process Burst Time
P1 24
P2 3
P3 3
• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:
• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17
P1 P2 P3
24 27 300
Operating System Concepts
Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11
11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order
P2 , P3 , P1 .
• The Gantt chart for the schedule is:
• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect short process behind long process
P1P3P2
63 300
Operating System Concepts
Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12
12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Shortest-Job-First (SJR) Scheduling
• Associate with each process the length of its
next CPU burst. Use these lengths to schedule
the process with the shortest time.
• Two schemes:
– nonpreemptive – once CPU given to the
process it cannot be preempted until
completes its CPU burst.
– Preemptive – if a new process arrives with
CPU burst length less than remaining time of
current executing process, preempt. This
scheme is know as the
Shortest-Remaining-Time-First (SRTF).
• SJF is optimal – gives minimum average waiting
Operating System Concepts
Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13
13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4
• SJF (non-preemptive)
• Average waiting time = (0 + 6 + 3 + 7)/4 - 4
Example of Non-Preemptive SJF
P1 P3 P2
73 160
P4
8 12
Operating System Concepts
Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14
14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Example of Preemptive SJF
Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4
• SJF (preemptive)
• Average waiting time = (9 + 1 + 0 +2)/4 - 3
P1 P3P2
42 110
P4
5 7
P2 P1
16
Operating System Concepts
Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15
15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Determining Length of Next CPU Burst
• Can only estimate the length.
• Can be done by using the length of previous CPU bursts, using
exponential averaging.
1. tn=actual lenght of nth
CPU burst
2. τn+1= predicted value for the next CPU burst
3 . α , 0≤α≤1
4. Define:
τn=1=α tn+(1−α)τ n .
Operating System Concepts
Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16
16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Examples of Exponential Averaging
 =0
 n+1 = n
– Recent history does not count.
 =1
– n+1 = tn
– Only the actual last CPU burst counts.
• If we expand the formula, we get:
n+1 =  tn+(1 - )  tn -1 + …
+(1 -  )j  tn -1 + …
+(1 -  )n=1 tn 0
• Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor.
Operating System Concepts
Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17
17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Priority Scheduling
• A priority number (integer) is associated with each process
• The CPU is allocated to the process with the highest priority
(smallest integer  highest priority).
– Preemptive
– nonpreemptive
• SJF is a priority scheduling where priority is the predicted next CPU
burst time.
• Problem  Starvation – low priority processes may never execute.
• Solution  Aging – as time progresses increase the priority of the
process.
Operating System Concepts
Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18
18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Round Robin (RR)
• Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.
• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU
time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.
• Performance
– q large  FIFO
– q small  q must be large with respect to context
switch, otherwise overhead is too high.
Operating System Concepts
Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19
19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Example: RR with Time Quantum = 20
Process Burst Time
P1 53
P2 17
P3 68
P4 24
• The Gantt chart is:
• Typically, higher average turnaround than SJF, but better
response.
P1 P2 P3 P4 P1 P3 P4 P1 P3 P3
0 20 37 57 77 97 117 121 134 154 162
Operating System Concepts
Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20
20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
How a Smaller Time Quantum Increases Context Switches
Operating System Concepts
Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21
21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Turnaround Time Varies With The Time Quantum
Operating System Concepts
Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22
22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Multilevel Queue
• Ready queue is partitioned into separate
queues:
foreground (interactive)
background (batch)
• Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS
• Scheduling must be done between the queues.
– Fixed priority scheduling; i.e., serve all from
foreground then from background.
Possibility of starvation.
– Time slice – each queue gets a certain
amount of CPU time which it can schedule
Operating System Concepts
Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23
23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Multilevel Queue Scheduling
Operating System Concepts
Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24
24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Multilevel Feedback Queue
• A process can move between the various queues; aging
can be implemented this way.
• Multilevel-feedback-queue scheduler defined by the
following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will
enter when that process needs service
Operating System Concepts
Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25
25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Multilevel Feedback Queues
Operating System Concepts
Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26
26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Example of Multilevel Feedback Queue
• Three queues:
– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS
• Scheduling
– A new job enters queue Q0 which is served FCFS.
When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.
– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.
Operating System Concepts
Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27
27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are
available.
• Homogeneous processors within a multiprocessor.
• Load sharing
• Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing.
Operating System Concepts
Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28
28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Real-Time Scheduling
• Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.
• Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.
Operating System Concepts
Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29
29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Dispatch Latency
Operating System Concepts
Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30
30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Algorithm Evaluation
• Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm for that
workload.
• Queuing models
• Implementation
Operating System Concepts
Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31
31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31
Evaluation of CPU Schedulers by Simulation
Operating System Concepts

More Related Content

PDF
Operating System-Ch5 cpu scheduling
PPT
Cpu Scheduling Galvin
PPTX
Chapter4
PPT
PPT
5.CPU Scheduling
PPT
Operating System 5
PPT
Cpu scheduling (1)
PPT
Template 1 ch5
Operating System-Ch5 cpu scheduling
Cpu Scheduling Galvin
Chapter4
5.CPU Scheduling
Operating System 5
Cpu scheduling (1)
Template 1 ch5

What's hot (20)

PPTX
CPU scheduling algorithms in OS
PPTX
Process scheduling in Light weight weight and Heavy weight processes.
PPT
Cpu scheduling(suresh)
PDF
Process Scheduling
PPTX
CPU Scheduling Algorithms
PPTX
Cpu scheduling
PPT
Cp usched 2
PPT
Processor / CPU Scheduling
PDF
Ch5 cpu-scheduling
PDF
OS - CPU Scheduling
PDF
Scheduling
PDF
5 Process Scheduling
PDF
Scheduling
PPT
Sa by shekhar
PDF
Chapter6
PPSX
CPU Scheduling algorithms
PPTX
CPU Scheduling in OS Presentation
PPTX
CPU Scheduling
CPU scheduling algorithms in OS
Process scheduling in Light weight weight and Heavy weight processes.
Cpu scheduling(suresh)
Process Scheduling
CPU Scheduling Algorithms
Cpu scheduling
Cp usched 2
Processor / CPU Scheduling
Ch5 cpu-scheduling
OS - CPU Scheduling
Scheduling
5 Process Scheduling
Scheduling
Sa by shekhar
Chapter6
CPU Scheduling algorithms
CPU Scheduling in OS Presentation
CPU Scheduling
Ad

Similar to Ch5 cpu scheduling (20)

PPT
CPU Scheduling Algorithms of Operating Systems
PDF
ch5_EN_CPUSched.pdf
PDF
ch5_EN_CPUSched_2022.pdf
PPTX
Operating System - CPU Scheduling Introduction
PPTX
Operating systems chapter 5 silberschatz
PPTX
OS-CPU-Scheduling-chap5.pptx
PPTX
ch5.pptx CUP Scheduling and its details in OS
PPT
Operating System CPU Scheduling slide with OS
PDF
CPU scheduling ppt file
PPTX
Operating Systems CPU Scheduling Process
PPTX
CPU SCHEDULINGCPU SCHEDULINGCPU SCHEDULINGCPU SCHEDULING.pptx
PDF
operating system in computer science .pdf
PDF
operating system in computer science ch05.pdf
PDF
cloud computing chapter one in computer science
PPT
cpu scheduling.ppt
PPT
ch6.ppt
PPT
PPT
Various CPU Scheduling Algorithms in OS.ppt
PPT
scheduling.ppt
CPU Scheduling Algorithms of Operating Systems
ch5_EN_CPUSched.pdf
ch5_EN_CPUSched_2022.pdf
Operating System - CPU Scheduling Introduction
Operating systems chapter 5 silberschatz
OS-CPU-Scheduling-chap5.pptx
ch5.pptx CUP Scheduling and its details in OS
Operating System CPU Scheduling slide with OS
CPU scheduling ppt file
Operating Systems CPU Scheduling Process
CPU SCHEDULINGCPU SCHEDULINGCPU SCHEDULINGCPU SCHEDULING.pptx
operating system in computer science .pdf
operating system in computer science ch05.pdf
cloud computing chapter one in computer science
cpu scheduling.ppt
ch6.ppt
Various CPU Scheduling Algorithms in OS.ppt
scheduling.ppt
Ad

More from Syaiful Ahdan (20)

PDF
Sertifikat EC00202128391
PDF
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
PDF
Sertifikat ec00202059774
PDF
Sertifikat ec00202059775
PDF
Sertifikat EC00202045078
PDF
Sertifikat EC00202044723
PDF
Sertifikat EC00202023523
PDF
Sertifikat EC00201826309
PDF
Sertifikat EC00202023149
PDF
Sertifikat EC00202022868
PDF
Sertifikat EC00202021343
PDF
Sertifikat EC00202022755
PDF
Sertifikat EC00201987196
PDF
Sertifikat EC00201856484
PDF
Sertifikat EC00201856352
PDF
Sertifikat EC00201856994
PDF
Sertifikat EC00201856895
PDF
Meeting 2 introdcution network administrator
PDF
Pertemuan 5
PDF
Pertemuan 4
Sertifikat EC00202128391
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
Sertifikat ec00202059774
Sertifikat ec00202059775
Sertifikat EC00202045078
Sertifikat EC00202044723
Sertifikat EC00202023523
Sertifikat EC00201826309
Sertifikat EC00202023149
Sertifikat EC00202022868
Sertifikat EC00202021343
Sertifikat EC00202022755
Sertifikat EC00201987196
Sertifikat EC00201856484
Sertifikat EC00201856352
Sertifikat EC00201856994
Sertifikat EC00201856895
Meeting 2 introdcution network administrator
Pertemuan 5
Pertemuan 4

Recently uploaded (20)

PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
master seminar digital applications in india
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Complications of Minimal Access Surgery at WLH
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Lesson notes of climatology university.
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Computing-Curriculum for Schools in Ghana
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
master seminar digital applications in india
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Supply Chain Operations Speaking Notes -ICLT Program
GDM (1) (1).pptx small presentation for students
Complications of Minimal Access Surgery at WLH
Anesthesia in Laparoscopic Surgery in India
Final Presentation General Medicine 03-08-2024.pptx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Lesson notes of climatology university.
VCE English Exam - Section C Student Revision Booklet
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
O7-L3 Supply Chain Operations - ICLT Program
Chinmaya Tiranga quiz Grand Finale.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Final Presentation General Medicine 03-08-2024.pptx
Computing-Curriculum for Schools in Ghana

Ch5 cpu scheduling

  • 1. Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1 1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 O P E R A T I N G S Y S T E M S Module 6 : CPU Scheduling • Basic Concepts • Scheduling Criteria • Scheduling Algorithms • Multiple-Processor Scheduling • Real-Time Scheduling • Algorithm Evaluation Operating System Concepts
  • 2. Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2 2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Chapter 6: CPU Scheduling • Basic Concepts • Scheduling Criteria • Scheduling Algorithms • Multiple-Processor Scheduling • Real-Time Scheduling • Algorithm Evaluation Operating System Concepts
  • 3. Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3 3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Basic Concepts • Maximum CPU utilization obtained with multiprogramming • CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait. • CPU burst distribution Operating System Concepts
  • 4. Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4 4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Alternating Sequence of CPU And I/O Bursts Operating System Concepts
  • 5. Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5 5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Histogram of CPU-burst Times Operating System Concepts
  • 6. Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6 6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 CPU Scheduler • Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them. • CPU scheduling decisions may take place when a process: 1.Switches from running to waiting state. 2.Switches from running to ready state. 3.Switches from waiting to ready. 4.Terminates. • Scheduling under 1 and 4 is nonpreemptive. • All other scheduling is preemptive. Operating System Concepts
  • 7. Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7 7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Dispatcher • Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: – switching context – switching to user mode – jumping to the proper location in the user program to restart that program • Dispatch latency – time it takes for the dispatcher to stop one process and start another running. Operating System Concepts
  • 8. Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8 8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Scheduling Criteria • CPU utilization – keep the CPU as busy as possible • Throughput – # of processes that complete their execution per time unit • Turnaround time – amount of time to execute a particular process • Waiting time – amount of time a process has been waiting in the ready queue • Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) Operating System Concepts
  • 9. Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9 9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Optimization Criteria • Max CPU utilization • Max throughput • Min turnaround time • Min waiting time • Min response time Operating System Concepts
  • 10. Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10 10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 First-Come, First-Served (FCFS) Scheduling • Example: Process Burst Time P1 24 P2 3 P3 3 • Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is: • Waiting time for P1 = 0; P2 = 24; P3 = 27 • Average waiting time: (0 + 24 + 27)/3 = 17 P1 P2 P3 24 27 300 Operating System Concepts
  • 11. Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11 11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 FCFS Scheduling (Cont.) Suppose that the processes arrive in the order P2 , P3 , P1 . • The Gantt chart for the schedule is: • Waiting time for P1 = 6; P2 = 0; P3 = 3 • Average waiting time: (6 + 0 + 3)/3 = 3 • Much better than previous case. • Convoy effect short process behind long process P1P3P2 63 300 Operating System Concepts
  • 12. Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12 12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Shortest-Job-First (SJR) Scheduling • Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time. • Two schemes: – nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst. – Preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF). • SJF is optimal – gives minimum average waiting Operating System Concepts
  • 13. Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13 13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 • SJF (non-preemptive) • Average waiting time = (0 + 6 + 3 + 7)/4 - 4 Example of Non-Preemptive SJF P1 P3 P2 73 160 P4 8 12 Operating System Concepts
  • 14. Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14 14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Example of Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 • SJF (preemptive) • Average waiting time = (9 + 1 + 0 +2)/4 - 3 P1 P3P2 42 110 P4 5 7 P2 P1 16 Operating System Concepts
  • 15. Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15 15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Determining Length of Next CPU Burst • Can only estimate the length. • Can be done by using the length of previous CPU bursts, using exponential averaging. 1. tn=actual lenght of nth CPU burst 2. τn+1= predicted value for the next CPU burst 3 . α , 0≤α≤1 4. Define: τn=1=α tn+(1−α)τ n . Operating System Concepts
  • 16. Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16 16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Examples of Exponential Averaging  =0  n+1 = n – Recent history does not count.  =1 – n+1 = tn – Only the actual last CPU burst counts. • If we expand the formula, we get: n+1 =  tn+(1 - )  tn -1 + … +(1 -  )j  tn -1 + … +(1 -  )n=1 tn 0 • Since both  and (1 - ) are less than or equal to 1, each successive term has less weight than its predecessor. Operating System Concepts
  • 17. Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17 17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Priority Scheduling • A priority number (integer) is associated with each process • The CPU is allocated to the process with the highest priority (smallest integer  highest priority). – Preemptive – nonpreemptive • SJF is a priority scheduling where priority is the predicted next CPU burst time. • Problem  Starvation – low priority processes may never execute. • Solution  Aging – as time progresses increase the priority of the process. Operating System Concepts
  • 18. Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18 18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Round Robin (RR) • Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. • If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. • Performance – q large  FIFO – q small  q must be large with respect to context switch, otherwise overhead is too high. Operating System Concepts
  • 19. Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19 19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Example: RR with Time Quantum = 20 Process Burst Time P1 53 P2 17 P3 68 P4 24 • The Gantt chart is: • Typically, higher average turnaround than SJF, but better response. P1 P2 P3 P4 P1 P3 P4 P1 P3 P3 0 20 37 57 77 97 117 121 134 154 162 Operating System Concepts
  • 20. Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20 20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 How a Smaller Time Quantum Increases Context Switches Operating System Concepts
  • 21. Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21 21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Turnaround Time Varies With The Time Quantum Operating System Concepts
  • 22. Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22 22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Multilevel Queue • Ready queue is partitioned into separate queues: foreground (interactive) background (batch) • Each queue has its own scheduling algorithm, foreground – RR background – FCFS • Scheduling must be done between the queues. – Fixed priority scheduling; i.e., serve all from foreground then from background. Possibility of starvation. – Time slice – each queue gets a certain amount of CPU time which it can schedule Operating System Concepts
  • 23. Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23 23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Multilevel Queue Scheduling Operating System Concepts
  • 24. Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24 24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Multilevel Feedback Queue • A process can move between the various queues; aging can be implemented this way. • Multilevel-feedback-queue scheduler defined by the following parameters: – number of queues – scheduling algorithms for each queue – method used to determine when to upgrade a process – method used to determine when to demote a process – method used to determine which queue a process will enter when that process needs service Operating System Concepts
  • 25. Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25 25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Multilevel Feedback Queues Operating System Concepts
  • 26. Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26 26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Example of Multilevel Feedback Queue • Three queues: – Q0 – time quantum 8 milliseconds – Q1 – time quantum 16 milliseconds – Q2 – FCFS • Scheduling – A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1. – At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2. Operating System Concepts
  • 27. Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27 27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Multiple-Processor Scheduling • CPU scheduling more complex when multiple CPUs are available. • Homogeneous processors within a multiprocessor. • Load sharing • Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing. Operating System Concepts
  • 28. Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28 28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Real-Time Scheduling • Hard real-time systems – required to complete a critical task within a guaranteed amount of time. • Soft real-time computing – requires that critical processes receive priority over less fortunate ones. Operating System Concepts
  • 29. Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29 29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Dispatch Latency Operating System Concepts
  • 30. Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30 30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Algorithm Evaluation • Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload. • Queuing models • Implementation Operating System Concepts
  • 31. Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31 31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 31 Evaluation of CPU Schedulers by Simulation Operating System Concepts