SlideShare a Scribd company logo
CChhaapptteerr 22 
TThhee OOSSII MMooddeell aanndd 
tthhee TTCCPP//IIPP PPrroottooccooll SSuuiittee 
Objectives 
Upon completion you will be able to: 
• Understand the architecture of the OSI model 
• Understand the layers of the OSI model and their functions 
• Understand the architecture of the TCP/IP Protocol Suite 
• Differentiate between the OSI model and the TCP/IP Suite 
• Differentiate between the three types of Internet addresses 
TCP/IP Protocol Suite 1
2.1 The OSI Model 
EEssttaabblliisshheedd iinn 11994477,, tthhee IInntteerrnnaattiioonnaall SSttaannddaarrddss OOrrggaanniizzaattiioonn (IISSOO) iiss aa 
mmuullttiinnaattiioonnaall bbooddyy ddeeddiiccaatteedd ttoo wwoorrllddwwiiddee aaggrreeeemmeenntt oonn iinntteerrnnaattiioonnaall 
ssttaannddaarrddss.. AAnn IISSOO ssttaannddaarrdd tthhaatt ccoovveerrss aallll aassppeeccttss ooff nneettwwoorrkk 
ccoommmmuunniiccaattiioonnss iiss tthhee OOppeenn SSyysstteemmss IInntteerrccoonnnneeccttiioonn (OOSSII) mmooddeell.. IItt 
wwaass ffiirrsstt iinnttrroodduucceedd iinn tthhee llaattee 11997700ss.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
LLaayyeerreedd AArrcchhiitteeccttuurree 
PPeeeerr--ttoo--PPeeeerr PPrroocceesssseess 
EEnnccaappssuullaattiioonn 
TCP/IP Protocol Suite 2
NNoottee:: 
ISO is the organization. 
OSI is the model 
TCP/IP Protocol Suite 3
Figure 2.1 The OSI model 
TCP/IP Protocol Suite 4
Figure 2.2 OSI layers 
TCP/IP Protocol Suite 5
Figure 2.3 An exchange using the OSI model 
TCP/IP Protocol Suite 6
2.2 Layers in the OSI Model 
The functions of each layer in the OSI model iiss bbrriieeffllyy ddeessccrriibbeedd.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
PPhhyyssiiccaall LLaayyeerr 
DDaattaa LLiinnkk LLaayyeerr 
NNeettwwoorrkk LLaayyeerr 
TTrraannssppoorrtt LLaayyeerr 
SSeessssiioonn LLaayyeerr 
PPrreesseennttaattiioonn LLaayyeerr 
AApppplliiccaattiioonn LLaayyeerr 
SSuummmmaarryy ooff LLaayyeerrss 
TCP/IP Protocol Suite 7
Figure 2.4 Physical layer 
TCP/IP Protocol Suite 8
NNoottee:: 
The physical layer is responsible 
for the movement of individual bits 
from one hop (node) to the next. 
TCP/IP Protocol Suite 9
Figure 2.5 Data link layer 
TCP/IP Protocol Suite 10
NNoottee:: 
The data link layer is responsible for 
moving frames from one hop (node) to 
the next. 
TCP/IP Protocol Suite 11
Figure 2.6 Hop-to-hop delivery 
TCP/IP Protocol Suite 12
Figure 2.7 Network layer 
TCP/IP Protocol Suite 13
NNoottee:: 
The network layer is responsible for 
the delivery of individual packets from 
the source host to the destination host. 
TCP/IP Protocol Suite 14
Figure 2.8 Source-to-destination delivery 
TCP/IP Protocol Suite 15
Figure 2.9 Transport layer 
TCP/IP Protocol Suite 16
NNoottee:: 
The transport layer is responsible for 
the delivery of a message from one 
process to another. 
TCP/IP Protocol Suite 17
Figure 2.10 Reliable process-to-process delivery of a message 
TCP/IP Protocol Suite 18
Figure 2.11 Session layer 
TCP/IP Protocol Suite 19
Figure 2.12 Presentation layer 
TCP/IP Protocol Suite 20
Figure 2.13 Application layer 
TCP/IP Protocol Suite 21
Figure 2.14 Summary of layers 
TCP/IP Protocol Suite 22
2.3 TCP/IP Protocol Suite 
TThhee TTCCPP//IIPP pprroottooccooll ssuuiittee iiss mmaaddee ooff ffiivvee llaayyeerrss:: pphhyyssiiccaall,, ddaattaa lliinnkk,, 
nneettwwoorrkk,, ttrraannssppoorrtt,, aanndd aapppplliiccaattiioonn.. TThhee ffiirrsstt ffoouurr llaayyeerrss pprroovviiddee 
pphhyyssiiccaall ssttaannddaarrddss,, nneettwwoorrkk iinntteerrffaaccee,, iinntteerrnneettwwoorrkkiinngg,, aanndd ttrraannssppoorrtt 
ffuunnccttiioonnss tthhaatt ccoorrrreessppoonndd ttoo tthhee ffiirrsstt ffoouurr llaayyeerrss ooff tthhee OOSSII mmooddeell.. TThhee 
tthhrreeee ttooppmmoosstt llaayyeerrss iinn tthhee OOSSII mmooddeell,, hhoowweevveerr,, aarree rreepprreesseenntteedd iinn 
TTCCPP//IIPP bbyy aa ssiinnggllee llaayyeerr ccaalllleedd tthhee aapppplliiccaattiioonn llaayyeerr.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
PPhhyyssiiccaall aanndd DDaattaa LLiinnkk LLaayyeerrss 
NNeettwwoorrkk LLaayyeerr 
TTrraannssppoorrtt LLaayyeerr 
AApppplliiccaattiioonn LLaayyeerr 
TCP/IP Protocol Suite 23
Figure 2.15 TCP/IP and OSI model 
TCP/IP Protocol Suite 24
2.4 Addressing 
Three different levels of addresses are used iinn aann iinntteerrnneett uussiinngg tthhee 
TTCCPP//IIPP pprroottooccoollss:: pphhyyssiiccaall ((lliinnkk)) aaddddrreessss,, llooggiiccaall ((IIPP)) aaddddrreessss,, aanndd 
ppoorrtt aaddddrreessss.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
PPhhyyssiiccaall AAddddrreessss 
LLooggiiccaall AAddddrreessss 
PPoorrtt AAddddrreessss 
TCP/IP Protocol Suite 25
Figure 2.16 Addresses in TCP/IP 
TCP/IP Protocol Suite 26
Figure 2.17 Relationship of layers and addresses in TCP/IP 
TCP/IP Protocol Suite 27
ExamplE 1 
In Figure 2.18 a node with physical address 10 sends 
a frame to a node with physical address 87. The two 
nodes are connected by a link. At the data link level 
this frame contains physical (link) addresses in the 
header. These are the only addresses needed. The rest 
of the header contains other information needed at 
this level. The trailer usually contains extra bits 
needed for error detection. 
See Next Slide 
TCP/IP Protocol Suite 28
Figure 2.18 Physical addresses 
TCP/IP Protocol Suite 29
ExamplE 2 
As we will see in Chapter 3, most local area networks 
use a 48-bit (6 bytes) physical address written as 12 
hexadecimal digits, with every 2 digits separated by a 
colon as shown below: 
07:01:02:01:2C:4B 
A 6-byte (12 hexadecimal digits) physical address. 
TCP/IP Protocol Suite 30
ExamplE 3 
In Figure 2.19 we want to send data from a node with network 
address A and physical address 10, located on one LAN, to a 
node with a network address P and physical address 95, located 
on another LAN. Because the two devices are located on 
different networks, we cannot use link addresses only; the link 
addresses have only local jurisdiction. What we need here are 
universal addresses that can pass through the LAN 
boundaries. The network (logical) addresses have this 
characteristic. 
See Next Slide 
TCP/IP Protocol Suite 31
ExamplE 3 
(Continued) 
The packet at the network layer contains the logical addresses, 
which remain the same from the original source to the final 
destination (A and P, respectively, in the figure). They will not 
change when we go from network to network. However, the 
physical addresses will change as the packet moves from one 
network to another. The boxes labeled routers are 
internetworking devices, which we will discuss in Chapter 3. 
See Next Slide 
TCP/IP Protocol Suite 32
Figure 2.19 IP addresses 
TCP/IP Protocol Suite 33
ExamplE 4 
As we will see in Chapter 4, an Internet address (in 
IPv4) is 32 bits in length, normally written as four 
decimal numbers, with each number representing 1 
byte. The numbers are separated by a dot. Below is an 
example of such an address. 
132.24.75.9 
An internet address in IPv4 in decimal numbers 
TCP/IP Protocol Suite 34
ExamplE 5 
Figure 2.20 shows an example of transport layer 
communication. Data coming from the upperlayers 
have port addresses j and k ( j is the address of the 
sending process, and k is the address of the receiving 
process). Since the data size is larger than the network 
layer can handle, the data are split into two packets, 
each packet retaining the service-point addresses ( j 
and k). Then in the network layer, network addresses 
(A and P) are added to each packet. 
See Next Slide 
TCP/IP Protocol Suite 35
ExamplE 5 (Continued) 
The packets can travel on different paths and arrive at 
the destination either in order or out of order. The two 
packets are delivered to the destination transport 
layer, which is responsible for removing the network 
layer headers and combining the two pieces of data 
for delivery to the upper layers. 
See Next Slide 
TCP/IP Protocol Suite 36
Figure 2.20 Port addresses 
TCP/IP Protocol Suite 37
ExamplE 6 
As we will see in Chapters 11, 12, and 13, a port 
address is a 16-bit address represented by one decimal 
number as shown below. 
753 
A 16-bit port address represented as one single number. 
TCP/IP Protocol Suite 38
2.5 IP Versions 
IP became the official protocol for the Internet iinn 11998833.. AAss tthhee IInntteerrnneett 
hhaass eevvoollvveedd,, ssoo hhaass IIPP.. TThheerree hhaavvee bbeeeenn ssiixx vveerrssiioonnss ssiinnccee iittss iinncceeppttiioonn.. 
WWee llooookk aatt tthhee llaatttteerr tthhrreeee vveerrssiioonnss hheerree.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
VVeerrssiioonn 44 
VVeerrssiioonn 55 
VVeerrssiioonn 6 
TCP/IP Protocol Suite 39

More Related Content

PPT
Chap 19 ftp & tftp
PPT
Chap 12 tcp
PPT
Chap 07 arp & rarp
PPT
Chap 09 icmp
PPT
Chap 24 mobile ip
PPT
Chap 21 snmp
PPT
Chap 13 stream control transmission protocol
PPT
Chap 27 next generation i pv6
Chap 19 ftp & tftp
Chap 12 tcp
Chap 07 arp & rarp
Chap 09 icmp
Chap 24 mobile ip
Chap 21 snmp
Chap 13 stream control transmission protocol
Chap 27 next generation i pv6

What's hot (20)

PPT
Chap 14 rip, ospf
PPT
Chap 11 udp
PPT
Chap 06 delivery and routing of ip packets
PPT
Chap 08 ip
PPT
Chap 05 ip addresses classfless
PPT
Chap 17 dns
PPT
Chap 10 igmp
PPT
Chap 04 ip addresses classful
PPT
Chap 20 smtp, pop, imap
PPT
Chap 28 security
PPT
Chap 25 multimedia
PPT
Chap 22 www http
PPT
PDF
Meeting 7 : host configuration: dhcp
PPT
Chap 23 ip over atm
PDF
Internet technology unit 2
PPT
PDF
Meeting 12. pop, imap.ppt
PPT
Chap 12 tcp
PDF
Meeting 5.1 : telnet
Chap 14 rip, ospf
Chap 11 udp
Chap 06 delivery and routing of ip packets
Chap 08 ip
Chap 05 ip addresses classfless
Chap 17 dns
Chap 10 igmp
Chap 04 ip addresses classful
Chap 20 smtp, pop, imap
Chap 28 security
Chap 25 multimedia
Chap 22 www http
Meeting 7 : host configuration: dhcp
Chap 23 ip over atm
Internet technology unit 2
Meeting 12. pop, imap.ppt
Chap 12 tcp
Meeting 5.1 : telnet
Ad

Viewers also liked (15)

PPT
Chap 26 vpn
PPT
CCNA Icnd110 s00
PPTX
Semantech: IT Architecture in the Enterprise
PPT
Chap 01 intro
PDF
Computer Security Lecture 4.1: DES Supplementary Material
PPT
Chap 03 underlying technology
PPT
Chap 15 multicasting
PDF
Computer Security Lecture 2: Classical Encryption Techniques 1
PPTX
Dynamic routing protocols (CCNA)
PPTX
Arp (address resolution protocol)
PPTX
CCNA 2 Routing and Switching v5.0 Chapter 7
PPTX
Congestion control in tcp
PPT
Introduction to Cyber Security
PDF
Computer Security Lecture 1: Overview
Chap 26 vpn
CCNA Icnd110 s00
Semantech: IT Architecture in the Enterprise
Chap 01 intro
Computer Security Lecture 4.1: DES Supplementary Material
Chap 03 underlying technology
Chap 15 multicasting
Computer Security Lecture 2: Classical Encryption Techniques 1
Dynamic routing protocols (CCNA)
Arp (address resolution protocol)
CCNA 2 Routing and Switching v5.0 Chapter 7
Congestion control in tcp
Introduction to Cyber Security
Computer Security Lecture 1: Overview
Ad

Similar to Chap 02 osi model (20)

PPT
Chap-02 data link layer comp net (1).ppt
PDF
TCP/IP Training Basic Concepts.
PPT
Protocol Ppt[1]
PPT
Chap-02 (1).ppt Chap-01.ppt Data Communication 2 Kabul Afghanistan
PPT
TCP/IP Protocol-Suite/ TCP IP Powerpoint
PDF
chương 2 (Mô hình OSI & Bộ giao thức TCP-IP) (1).pdf
PPT
PPT
Chap 02
PPT
TCP Model
PPT
Ch02.ppt
PDF
OSI open system interconnection LAYERS.pdf
PPT
07 - TCP_IP and the DoD Model.ppt
PPT
2.(3)OSI and TCP layer.ppt
PDF
CPE401_MODULE2B_Data_Communication_and_Networking.pdf
PPTX
L05 _TCP_IP.pptx computer networks TCP IP
PPT
More on Tcp/Ip
PPTX
ppt of computer netwokrs.cse engineering.part 5
PPT
LECTURE-Transport-Layer_lec.ppt
PPT
Chap-02 data link layer comp net (1).ppt
TCP/IP Training Basic Concepts.
Protocol Ppt[1]
Chap-02 (1).ppt Chap-01.ppt Data Communication 2 Kabul Afghanistan
TCP/IP Protocol-Suite/ TCP IP Powerpoint
chương 2 (Mô hình OSI & Bộ giao thức TCP-IP) (1).pdf
Chap 02
TCP Model
Ch02.ppt
OSI open system interconnection LAYERS.pdf
07 - TCP_IP and the DoD Model.ppt
2.(3)OSI and TCP layer.ppt
CPE401_MODULE2B_Data_Communication_and_Networking.pdf
L05 _TCP_IP.pptx computer networks TCP IP
More on Tcp/Ip
ppt of computer netwokrs.cse engineering.part 5
LECTURE-Transport-Layer_lec.ppt

Recently uploaded (20)

PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
737-MAX_SRG.pdf student reference guides
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
Design Guidelines and solutions for Plastics parts
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
737-MAX_SRG.pdf student reference guides
R24 SURVEYING LAB MANUAL for civil enggi
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Abrasive, erosive and cavitation wear.pdf
Current and future trends in Computer Vision.pptx
distributed database system" (DDBS) is often used to refer to both the distri...
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Module 8- Technological and Communication Skills.pptx
Design Guidelines and solutions for Plastics parts
Management Information system : MIS-e-Business Systems.pptx
Information Storage and Retrieval Techniques Unit III
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Visual Aids for Exploratory Data Analysis.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf

Chap 02 osi model

  • 1. CChhaapptteerr 22 TThhee OOSSII MMooddeell aanndd tthhee TTCCPP//IIPP PPrroottooccooll SSuuiittee Objectives Upon completion you will be able to: • Understand the architecture of the OSI model • Understand the layers of the OSI model and their functions • Understand the architecture of the TCP/IP Protocol Suite • Differentiate between the OSI model and the TCP/IP Suite • Differentiate between the three types of Internet addresses TCP/IP Protocol Suite 1
  • 2. 2.1 The OSI Model EEssttaabblliisshheedd iinn 11994477,, tthhee IInntteerrnnaattiioonnaall SSttaannddaarrddss OOrrggaanniizzaattiioonn (IISSOO) iiss aa mmuullttiinnaattiioonnaall bbooddyy ddeeddiiccaatteedd ttoo wwoorrllddwwiiddee aaggrreeeemmeenntt oonn iinntteerrnnaattiioonnaall ssttaannddaarrddss.. AAnn IISSOO ssttaannddaarrdd tthhaatt ccoovveerrss aallll aassppeeccttss ooff nneettwwoorrkk ccoommmmuunniiccaattiioonnss iiss tthhee OOppeenn SSyysstteemmss IInntteerrccoonnnneeccttiioonn (OOSSII) mmooddeell.. IItt wwaass ffiirrsstt iinnttrroodduucceedd iinn tthhee llaattee 11997700ss.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: LLaayyeerreedd AArrcchhiitteeccttuurree PPeeeerr--ttoo--PPeeeerr PPrroocceesssseess EEnnccaappssuullaattiioonn TCP/IP Protocol Suite 2
  • 3. NNoottee:: ISO is the organization. OSI is the model TCP/IP Protocol Suite 3
  • 4. Figure 2.1 The OSI model TCP/IP Protocol Suite 4
  • 5. Figure 2.2 OSI layers TCP/IP Protocol Suite 5
  • 6. Figure 2.3 An exchange using the OSI model TCP/IP Protocol Suite 6
  • 7. 2.2 Layers in the OSI Model The functions of each layer in the OSI model iiss bbrriieeffllyy ddeessccrriibbeedd.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: PPhhyyssiiccaall LLaayyeerr DDaattaa LLiinnkk LLaayyeerr NNeettwwoorrkk LLaayyeerr TTrraannssppoorrtt LLaayyeerr SSeessssiioonn LLaayyeerr PPrreesseennttaattiioonn LLaayyeerr AApppplliiccaattiioonn LLaayyeerr SSuummmmaarryy ooff LLaayyeerrss TCP/IP Protocol Suite 7
  • 8. Figure 2.4 Physical layer TCP/IP Protocol Suite 8
  • 9. NNoottee:: The physical layer is responsible for the movement of individual bits from one hop (node) to the next. TCP/IP Protocol Suite 9
  • 10. Figure 2.5 Data link layer TCP/IP Protocol Suite 10
  • 11. NNoottee:: The data link layer is responsible for moving frames from one hop (node) to the next. TCP/IP Protocol Suite 11
  • 12. Figure 2.6 Hop-to-hop delivery TCP/IP Protocol Suite 12
  • 13. Figure 2.7 Network layer TCP/IP Protocol Suite 13
  • 14. NNoottee:: The network layer is responsible for the delivery of individual packets from the source host to the destination host. TCP/IP Protocol Suite 14
  • 15. Figure 2.8 Source-to-destination delivery TCP/IP Protocol Suite 15
  • 16. Figure 2.9 Transport layer TCP/IP Protocol Suite 16
  • 17. NNoottee:: The transport layer is responsible for the delivery of a message from one process to another. TCP/IP Protocol Suite 17
  • 18. Figure 2.10 Reliable process-to-process delivery of a message TCP/IP Protocol Suite 18
  • 19. Figure 2.11 Session layer TCP/IP Protocol Suite 19
  • 20. Figure 2.12 Presentation layer TCP/IP Protocol Suite 20
  • 21. Figure 2.13 Application layer TCP/IP Protocol Suite 21
  • 22. Figure 2.14 Summary of layers TCP/IP Protocol Suite 22
  • 23. 2.3 TCP/IP Protocol Suite TThhee TTCCPP//IIPP pprroottooccooll ssuuiittee iiss mmaaddee ooff ffiivvee llaayyeerrss:: pphhyyssiiccaall,, ddaattaa lliinnkk,, nneettwwoorrkk,, ttrraannssppoorrtt,, aanndd aapppplliiccaattiioonn.. TThhee ffiirrsstt ffoouurr llaayyeerrss pprroovviiddee pphhyyssiiccaall ssttaannddaarrddss,, nneettwwoorrkk iinntteerrffaaccee,, iinntteerrnneettwwoorrkkiinngg,, aanndd ttrraannssppoorrtt ffuunnccttiioonnss tthhaatt ccoorrrreessppoonndd ttoo tthhee ffiirrsstt ffoouurr llaayyeerrss ooff tthhee OOSSII mmooddeell.. TThhee tthhrreeee ttooppmmoosstt llaayyeerrss iinn tthhee OOSSII mmooddeell,, hhoowweevveerr,, aarree rreepprreesseenntteedd iinn TTCCPP//IIPP bbyy aa ssiinnggllee llaayyeerr ccaalllleedd tthhee aapppplliiccaattiioonn llaayyeerr.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: PPhhyyssiiccaall aanndd DDaattaa LLiinnkk LLaayyeerrss NNeettwwoorrkk LLaayyeerr TTrraannssppoorrtt LLaayyeerr AApppplliiccaattiioonn LLaayyeerr TCP/IP Protocol Suite 23
  • 24. Figure 2.15 TCP/IP and OSI model TCP/IP Protocol Suite 24
  • 25. 2.4 Addressing Three different levels of addresses are used iinn aann iinntteerrnneett uussiinngg tthhee TTCCPP//IIPP pprroottooccoollss:: pphhyyssiiccaall ((lliinnkk)) aaddddrreessss,, llooggiiccaall ((IIPP)) aaddddrreessss,, aanndd ppoorrtt aaddddrreessss.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: PPhhyyssiiccaall AAddddrreessss LLooggiiccaall AAddddrreessss PPoorrtt AAddddrreessss TCP/IP Protocol Suite 25
  • 26. Figure 2.16 Addresses in TCP/IP TCP/IP Protocol Suite 26
  • 27. Figure 2.17 Relationship of layers and addresses in TCP/IP TCP/IP Protocol Suite 27
  • 28. ExamplE 1 In Figure 2.18 a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link. At the data link level this frame contains physical (link) addresses in the header. These are the only addresses needed. The rest of the header contains other information needed at this level. The trailer usually contains extra bits needed for error detection. See Next Slide TCP/IP Protocol Suite 28
  • 29. Figure 2.18 Physical addresses TCP/IP Protocol Suite 29
  • 30. ExamplE 2 As we will see in Chapter 3, most local area networks use a 48-bit (6 bytes) physical address written as 12 hexadecimal digits, with every 2 digits separated by a colon as shown below: 07:01:02:01:2C:4B A 6-byte (12 hexadecimal digits) physical address. TCP/IP Protocol Suite 30
  • 31. ExamplE 3 In Figure 2.19 we want to send data from a node with network address A and physical address 10, located on one LAN, to a node with a network address P and physical address 95, located on another LAN. Because the two devices are located on different networks, we cannot use link addresses only; the link addresses have only local jurisdiction. What we need here are universal addresses that can pass through the LAN boundaries. The network (logical) addresses have this characteristic. See Next Slide TCP/IP Protocol Suite 31
  • 32. ExamplE 3 (Continued) The packet at the network layer contains the logical addresses, which remain the same from the original source to the final destination (A and P, respectively, in the figure). They will not change when we go from network to network. However, the physical addresses will change as the packet moves from one network to another. The boxes labeled routers are internetworking devices, which we will discuss in Chapter 3. See Next Slide TCP/IP Protocol Suite 32
  • 33. Figure 2.19 IP addresses TCP/IP Protocol Suite 33
  • 34. ExamplE 4 As we will see in Chapter 4, an Internet address (in IPv4) is 32 bits in length, normally written as four decimal numbers, with each number representing 1 byte. The numbers are separated by a dot. Below is an example of such an address. 132.24.75.9 An internet address in IPv4 in decimal numbers TCP/IP Protocol Suite 34
  • 35. ExamplE 5 Figure 2.20 shows an example of transport layer communication. Data coming from the upperlayers have port addresses j and k ( j is the address of the sending process, and k is the address of the receiving process). Since the data size is larger than the network layer can handle, the data are split into two packets, each packet retaining the service-point addresses ( j and k). Then in the network layer, network addresses (A and P) are added to each packet. See Next Slide TCP/IP Protocol Suite 35
  • 36. ExamplE 5 (Continued) The packets can travel on different paths and arrive at the destination either in order or out of order. The two packets are delivered to the destination transport layer, which is responsible for removing the network layer headers and combining the two pieces of data for delivery to the upper layers. See Next Slide TCP/IP Protocol Suite 36
  • 37. Figure 2.20 Port addresses TCP/IP Protocol Suite 37
  • 38. ExamplE 6 As we will see in Chapters 11, 12, and 13, a port address is a 16-bit address represented by one decimal number as shown below. 753 A 16-bit port address represented as one single number. TCP/IP Protocol Suite 38
  • 39. 2.5 IP Versions IP became the official protocol for the Internet iinn 11998833.. AAss tthhee IInntteerrnneett hhaass eevvoollvveedd,, ssoo hhaass IIPP.. TThheerree hhaavvee bbeeeenn ssiixx vveerrssiioonnss ssiinnccee iittss iinncceeppttiioonn.. WWee llooookk aatt tthhee llaatttteerr tthhrreeee vveerrssiioonnss hheerree.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: VVeerrssiioonn 44 VVeerrssiioonn 55 VVeerrssiioonn 6 TCP/IP Protocol Suite 39