SlideShare a Scribd company logo
Digital Image Processing
Chapter 5: Image Restoration
A Model of the Image
Degradation/Restoration Process
 Degradation
 Degradation function H
 Additive noise
 Spatial domain
 Frequency domain
)
,
( y
x

)
,
(
)
,
(
*
)
,
(
)
,
( y
x
y
x
f
y
x
h
y
x
g 


)
,
(
)
,
(
)
,
(
)
,
( v
u
N
v
u
F
v
u
H
v
u
G 

 Restoration
)
,
(
ˆ
Filter
n
Restoratio
)
,
( y
x
f
y
x
g 

Noise Models
 Sources of noise
 Image acquisition, digitization,
transmission
 White noise
 The Fourier spectrum of noise is
constant
 Assuming
 Noise is independent of spatial
coordinates
 Noise is uncorrelated with respect to
the image itself
 Gaussian noise
 The PDF of a Gaussian random variable,
z,
 Mean:
 Standard deviation:
 Variance:
2
2
2
/
)
(
2
1
)
( 





 z
e
z
p


2

 70% of its values will be in the range
 95% of its values will be in the range
 
)
(
),
( 


 

 
)
2
(
),
2
( 


 

 Rayleigh noise
 The PDF of Rayleigh noise,
 Mean:
 Variance:











a
z
a
z
e
a
z
b
z
p
b
a
z
for
0
for
)
(
2
)
(
/
)
( 2
4
/
b
a 
 

4
)
4
(
2 



b
chapter5-2 restoration and depredations.ppt
 Erlang (Gamma) noise
 The PDF of Erlang noise, ,
is a positive integer,
 Mean:
 Variance:











0
for
0
0
for
)!
1
(
)
(
1
z
z
e
b
z
a
z
p
z
a
b
b
a
b


2
2
a
b


0

a b
 Exponential noise
 The PDF of exponential noise, ,
 Mean:
 Variance:







0
for
0
0
for
)
(
z
z
ae
z
p
z
a
a
1


2
2 1
a


0

a
 Uniform noise
 The PDF of uniform noise,
 Mean:
 Variance:









otherwise
0
if
1
)
(
b
z
a
a
b
z
p
2
b
a 


12
)
( 2
2 a
b 


 Impulse (salt-and-pepper) noise
 The PDF of (bipolar) impulse noise,
 : gray-level will appear as a
light dot, while level will appear like
a dark dot
 Unipolar: either or is zero








otherwise
0
for
for
)
( b
z
P
a
z
P
z
p b
a
a
b  b
a
a
P b
P
 Usually, for an 8-bit image, =0
(black) and =0 (white)
b
a
 Modeling
 Gaussian
 Electronic circuit noise, sensor noise due
to poor illumination and/or high
temperature
 Rayleigh
 Range imaging
 Exponential and gamma
 Laser imaging
 Impulse
 Quick transients, such as faulty switching
 Uniform
 Least descriptive
 Basis for numerous random number
generators
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
 Periodic noise
 Arises typically from electrical or
electromechanical interference
 Reduced significantly via frequency
domain filtering
chapter5-2 restoration and depredations.ppt
 Estimation of noise parameters
 Inspection of the Fourier spectrum
 Small patches of reasonably constant
gray level
 For example, 150*20 vertical strips
 Calculate , , , from
  a b



S
z
i
i
i
z
p
z )
(





S
z
i
i
i
z
p
z )
(
)
( 2
2


chapter5-2 restoration and depredations.ppt
Restoration in the Presence of Noise
Only-Spatial Filtering
 Degradation
 Spatial domain
 Frequency domain
)
,
(
)
,
(
)
,
( y
x
y
x
f
y
x
g 


)
,
(
)
,
(
)
,
( v
u
N
v
u
F
v
u
G 

 Mean filters
 Arithmetic mean filter
 Geometric mean filter



xy
S
t
s
t
s
g
mn
y
x
f
)
,
(
)
,
(
1
)
,
(
ˆ
mn
S
t
s xy
t
s
g
y
x
f
1
)
,
(
)
,
(
)
,
(
ˆ








 

 Harmonic mean filter
 Works well for salt noise, but fails fpr
pepper noise



xy
S
t
s t
s
g
mn
y
x
f
)
,
( )
,
(
1
)
,
(
ˆ
 Contraharmonic mean filter
 : eliminates pepper noise
 : eliminates salt noise






xy
xy
S
t
s
Q
S
t
s
Q
t
s
g
t
s
g
y
x
f
)
,
(
)
,
(
1
)
,
(
)
,
(
)
,
(
ˆ
0

Q
0

Q
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
 Usage
 Arithmetic and geometric mean filters:
suited for Gaussian or uniform noise
 Contraharmonic filters: suited for
impulse noise
chapter5-2 restoration and depredations.ppt
 Order-statistics filters
 Median filter
 Effective in the presence of both bipolar
and unipolar impulse noise
)}
,
(
{
median
)
,
(
ˆ
)
,
(
t
s
g
y
x
f
xy
S
t
s 

 Max and min filters
 max filters reduce pepper noise
 min filters salt noise
)}
,
(
{
max
)
,
(
ˆ
)
,
(
t
s
g
y
x
f
xy
S
t
s 

)}
,
(
{
min
)
,
(
ˆ
)
,
(
t
s
g
y
x
f
xy
S
t
s 

 Midpoint filter
 Works best for randomly distributed noise,
like Gaussian or uniform noise





 



)}
,
(
{
min
)}
,
(
{
max
2
1
)
,
(
ˆ
)
,
(
)
,
(
t
s
g
t
s
g
y
x
f
xy
xy S
t
s
S
t
s
 Alpha-trimmed mean filter
 Delete the d/2 lowest and the d/2 highest
gray-level values
 Useful in situations involving multiple
types of noise, such as a combination of
salt-and-pepper and Gaussian noise




xy
S
t
s
r t
s
g
d
mn
y
x
f
)
,
(
)
,
(
1
)
,
(
ˆ
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
 Adaptive, local noise reduction filter
 If is zero, return simply the value
of
 If , return a value close to
 If , return the arithmetic
mean value
2


)
,
( y
x
g
2
2
L

 
)
,
( y
x
g
2
2
L

 
L
m
 
L
L
m
y
x
g
y
x
g
y
x
f 

 )
,
(
)
,
(
)
,
(
ˆ
2
2


chapter5-2 restoration and depredations.ppt
 Adaptive median filter
 = minimum gray level value in
 = maximum gray level value in
 = median of gray levels in
 = gray level at coordinates
 = maximum allowed size of
min
z
max
z
med
z
xy
z
max
S
xy
S
xy
S
xy
S
xy
S
)
,
( y
x
 Algorithm:
 Level A: A1=
 A2=
 If A1>0 AND A2<0, Go to
 level B
 Else increase the window size
 If window size
 repeat level A
 Else output
min
z
zmed 
max
z
zmed 
max
S

med
z
 Level B: B1=
 B2=
 If B1>0 AND B2<0, output
 Else output
min
z
zxy 
max
z
zxy 
xy
z
med
z
 Purposes of the algorithm
 Remove salt-and-pepper (impulse) noise
 Provide smoothing
 Reduce distortion, such as excessive
thinning or thickening of object
boundaries
chapter5-2 restoration and depredations.ppt
Periodic Noise Reduction by Frequency
Domain Filtering
 Bandreject filters
 Ideal bandreject filter


















2
D
v)
D(u,
if
1
2
D
v)
D(u,
2
D
if
0
2
D
v)
D(u,
if
1
)
,
(
0
0
0
0
W
W
W
W
v
u
H
  2
/
1
2
2
)
2
/
(
)
2
/
(
)
,
( N
v
M
u
v
u
D 



 Butterworth bandreject filter of order n
 Gaussian bandreject filter
n
D
v
u
D
W
v
u
D
v
u
H 2
2
0
2
)
,
(
)
,
(
1
1
)
,
(









2
2
0
2
)
,
(
)
,
(
2
1
1
)
,
( 






 



W
v
u
D
D
v
u
D
e
v
u
H
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
 Bandpass filters
)
,
(
1
)
,
( v
u
H
v
u
H br
bp 

chapter5-2 restoration and depredations.ppt
 Notch filters
 Ideal notch reject filter


 


otherwise
1
D
v)
(u,
D
or
D
v)
(u,
D
if
0
)
,
( 0
2
0
1
v
u
H
  2
/
1
2
0
2
0
1 )
2
/
(
)
2
/
(
)
,
( v
N
v
u
M
u
v
u
D 





  2
/
1
2
0
2
0
2 )
2
/
(
)
2
/
(
)
,
( v
N
v
u
M
u
v
u
D 





 Butterworth notch reject filter of
order n
n
v
u
D
v
u
D
D
v
u
H








)
,
(
)
,
(
1
1
)
,
(
2
1
2
0
 Gaussian notch reject filter











2
0
2
1 )
,
(
)
,
(
2
1
1
)
,
(
D
v
u
D
v
u
D
e
v
u
H
chapter5-2 restoration and depredations.ppt
 Notch pass filter
)
,
(
1
)
,
( v
u
H
v
u
H nr
np 

chapter5-2 restoration and depredations.ppt
 Optimum notch filtering
 Interference noise pattern
 Interference noise pattern in the spatial
domain
 Subtract from a weighted
portion of to obtain an
estimate of
)
,
(
)
,
(
)
,
( v
u
G
v
u
H
v
u
N 
)}
,
(
)
,
(
{
)
,
( 1
v
u
G
v
u
H
y
x 



)
,
(
)
,
(
)
,
(
)
,
(
ˆ y
x
y
x
w
y
x
g
y
x
f 


)
,
( y
x
g
)
,
( y
x

)
,
( y
x
f
 Minimize the local variance of
 The detailed steps are listed in Page
251
 Result
)
,
(
ˆ y
x
f
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
2
2
y
x
y
x
y
x
y
x
g
y
x
y
x
g
y
x
w







chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
Linear, Position-Invariant Degradations
 Input-output relationship
)
,
(
)]
,
(
[
)
,
( y
x
y
x
f
H
y
x
g 


)]
,
(
[
)
,
( y
x
f
H
y
x
g 
0
)
,
( 
y
x

 H is linear if
 Additivity
)]
,
(
[
)]
,
(
[
)]
,
(
)
,
(
[
2
1
2
1
y
x
f
bH
y
x
f
aH
y
x
bf
y
x
af
H



)]
,
(
[
)]
,
(
[
)]
,
(
)
,
(
[
2
1
2
1
y
x
f
H
y
x
f
H
y
x
f
y
x
f
H



 Homogeneity
 Position (or space) invariant
)]
,
(
[
)]
,
(
[ 1
1 y
x
f
aH
y
x
af
H 
)]
,
(
)]
,
(
[ 


 



 y
x
g
y
x
f
H
 In terms of a continuous impulse
function
 








 





 d
d
y
x
f
y
x
f )
,
(
)
,
(
)
,
(





 



 












 d
d
y
x
f
H
y
x
f
H
y
x
g
)
,
(
)
,
(
)]
,
(
[
)
,
(
 
 
 
 
 













































d
d
y
x
h
f
d
d
y
x
H
f
d
d
y
x
f
H
y
x
g
)
,
,
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
 Impulse response of H
 In optics, the impulse becomes a point
of light
 Point spread function (PSF)
 All physical optical systems blur
(spread) a point of light to some
degree
)]
,
(
[
)
,
,
,
( 



 

 y
x
H
y
x
h
)
,
,
,
( 
 y
x
h
 Superposition (or Fredholm) integral of
the first kind
 












 d
d
y
x
h
f
y
x
g
)
,
,
,
(
)
,
(
)
,
(
 If H is position invariant
 Convolution integral
)
,
(
)]
,
(
[ 



 



 y
x
h
y
x
H
 














 d
d
y
x
h
f
y
x
g
)
,
(
)
,
(
)
,
(
 In the presence of additive noise
 If H is position invariant
)
,
(
)
,
,
,
(
)
,
(
)
,
(
y
x
d
d
y
x
h
f
y
x
g






 

 






)
,
(
)
,
(
)
,
(
)
,
(
y
x
d
d
y
x
h
f
y
x
g






 



 






 If H is position invariant
 Restoration approach
 Image deconvolution
 Deconvolution filter
)
,
(
)
,
(
)
,
(
)
,
( y
x
y
x
f
y
x
h
y
x
g 



)
,
(
)
,
(
)
,
(
)
,
( v
u
N
v
u
F
v
u
H
v
u
G 

Estimating the Degradation Function
 Estimation by image observation
 In order to reduce the effect of noise in
our observation, we would look for
areas of strong signal content
)
,
(
ˆ
)
,
(
)
,
(
v
u
F
v
u
G
v
u
H
s
s
s 
 Estimation by experimentation
 Obtain the impulse response of the
degradation by imaging an impulse
(small dot of light) using the same
system settings
 Observed image
 The strength of the impulse
A
v
u
G
v
u
H
)
,
(
)
,
( 
)
,
( v
u
G
A
chapter5-2 restoration and depredations.ppt
 Estimation by modeling
 Hufnagel and Stanley
 Physical characteristic of atmospheric
turbulence
6
5
2
2
)
(
)
,
( v
u
k
e
v
u
H 


chapter5-2 restoration and depredations.ppt
 Image motion
dt
t
y
y
t
x
x
f
y
x
g
T
]
)
(
),
(
[
)
,
(
0
0
0
 


dt
dy
dx
e
t
y
y
t
x
x
f
dy
dx
e
dt
t
y
y
t
x
x
f
dy
dx
e
y
x
g
v
u
G
y
v
x
u
j
T
y
v
x
u
j
T
y
v
x
u
j
)]
(
),
(
[
]
)
(
),
(
[
)
,
(
)
,
(
)
(
2
0
0
0
)
(
2
0
0
0
)
(
2
























  
  
 


 







 






 Where
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
0
)]
(
)
(
[
2
0
)]
(
)
(
[
2
0
0
0
0
v
u
H
v
u
F
dt
e
v
u
F
dt
e
v
u
F
v
u
G
T t
y
v
t
x
u
j
T t
y
v
t
x
u
j















T t
y
v
t
x
u
j
dt
e
v
u
H
0
)]
(
)
(
[
2 0
0
)
,
( 
 If and
T
at
t
x /
)
(
0  0
)
(
0 
t
y
ua
j
T
T
at
u
j
T t
x
u
j
e
ua
ua
T
dt
e
dt
e
v
u
H
0
]
/
[
2
0
)]
(
[
2
)
sin(
)
,
( 0













 If and
T
at
t
x /
)
(
0  T
bt
t
y /
)
(
0 
)
(
)]
(
sin[
)
(
)
,
(
vb
ua
j
e
vb
ua
vb
ua
T
v
u
H




 


chapter5-2 restoration and depredations.ppt
Inverse Filtering
 Direct inverse filtering
 Limiting the analysis to frequencies
near the origin
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
ˆ
v
u
H
v
u
N
v
u
F
v
u
H
v
u
G
v
u
F



chapter5-2 restoration and depredations.ppt
Minimum Mean Square Error (Wiener)
Filtering
 Minimize
 Terms
 = degradation function

 = complex conjugate of

 =

}
)
ˆ
{( 2
2
f
f
E
e 

)
,
( v
u
H
)
,
( v
u
H  )
,
( v
u
H
2
)
,
( v
u
H )
,
(
)
,
( v
u
H
v
u
H 
 = power spectrum
of the noise
 = power spectrum
of the undegraded image
2
)
,
(
)
,
( v
u
N
v
u
S 

2
)
,
(
)
,
( v
u
F
v
u
S f 
 Wiener filter
)
,
(
)
,
(
/
)
,
(
)
,
(
)
,
(
)
,
(
1
)
,
(
)
,
(
/
)
,
(
)
,
(
)
,
(
*
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
*
)
,
(
ˆ
2
2
2
2
v
u
G
v
u
S
v
u
S
v
u
H
v
u
H
v
u
H
v
u
G
v
u
S
v
u
S
v
u
H
v
u
H
v
u
G
v
u
S
v
u
H
v
u
S
v
u
S
v
u
H
v
u
F
f
f
f
f

































 White noise
)
,
(
)
,
(
)
,
(
)
,
(
1
)
,
(
ˆ
2
2
v
u
G
K
v
u
H
v
u
H
v
u
H
v
u
F










chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
Constrained Least Squares Filtering
 Vector-matrix form

 , , :
 :
g
)
,
(
)
,
(
*
)
,
(
)
,
( y
x
y
x
f
y
x
h
y
x
g 


1

MN
MN
MN 
H
η
f
η
Hf
g 

 Minimize
 Subject to
 







1
0
1
0
2
2
)
,
(
M
x
N
y
y
x
f
C
2
2
ˆ η
f
H
g 

 The solution
 Where is the Fourier transform
of the function
)
,
(
)
,
(
)
,
(
)
,
(
*
)
,
(
ˆ
2
2
v
u
G
v
u
P
v
u
H
v
u
H
v
u
F











)
,
( v
u
P















0
1
0
1
4
1
0
1
0
)
,
( y
x
P
chapter5-2 restoration and depredations.ppt
 Computing by iteration
 Adjust so that

f
H
g
r ˆ



a


2
2
η
r
 Computation






1
0
1
0
2
2
)
,
(
M
x
N
y
y
x
r
r
 
2
1
0
1
0
2
)
,
(
1







M
x
N
y
m
y
x
MN

 







1
0
1
0
)
,
(
1 M
x
N
y
y
x
MN
m 

]
[ 2
2
2


 m
MN 

η
 Algorithm
 1: Specify an initial value of
 2: Compute
 3: Stop if is satisfied;
otherwise return to Step 2 after
increasing if or
 decreasing if .
a


2
2
η
r

 a


2
2
η
r
a


2
2
η
r
chapter5-2 restoration and depredations.ppt
Geometric Mean FIlter
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
*
)
,
(
)
,
(
*
)
,
(
ˆ
1
2
2
v
u
G
v
u
S
v
u
S
v
u
H
v
u
H
v
u
H
v
u
H
v
u
F
f





































Geometric Transformations
 Spatial transformations
 Tiepoints
)
,
(
' y
x
r
x 
)
,
(
' y
x
s
y 
chapter5-2 restoration and depredations.ppt
 Bilinear equations
4
3
2
1
)
,
(
' c
xy
c
y
c
x
c
y
x
r
x 




8
7
6
5
)
,
(
' c
xy
c
y
c
x
c
y
x
s
y 




 Gray-level interpolation
d
y
cx
by
ax
y
x
v 


 '
'
'
'
)
'
,
'
(
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt
chapter5-2 restoration and depredations.ppt

More Related Content

PPT
Image restoration and enhancement techniques
PPTX
Digital Image restoration
PPTX
DIP -Unit 3 ppt.pptx
PPTX
Module 31
PDF
Module 3 Computer Vision Image restoration and segmentation
PDF
restoration_recon_chap5_GW.pdf
PPTX
Image Restoration and Reconstruction in Digital Image Processing
PPSX
Noise models presented by Nisha Menon K
Image restoration and enhancement techniques
Digital Image restoration
DIP -Unit 3 ppt.pptx
Module 31
Module 3 Computer Vision Image restoration and segmentation
restoration_recon_chap5_GW.pdf
Image Restoration and Reconstruction in Digital Image Processing
Noise models presented by Nisha Menon K

Similar to chapter5-2 restoration and depredations.ppt (20)

PDF
Digital Image processing is the class of methods that deal with manipulating ...
PPTX
Unit3 dip
PPTX
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
PPTX
IMAGE PROCESSING--image restoration.pptx
PPTX
IMAGE PROCESSING--image restoration.pptx
PPTX
Image Restoration ppt unit III for III years.pptx
PPT
Image denoising
PPTX
Image Restoration And Reconstruction
PPT
Filtering.ppt
PDF
Ch5_Restoration (1).pdf
PDF
Lecture 2-Filtering.pdf
PDF
Lecture 5
PPTX
M03 - Imagerestoration digital image processing ppt
PPTX
Image denoising
PDF
Performance Assessment of Several Filters for Removing Salt and Pepper Noise,...
PDF
Lecture 6-2023.pdf
PPT
Image Restoration
PDF
M.sc.iii sem digital image processing unit iv
PDF
D122733
PPTX
Image_filtering (1).pptx
Digital Image processing is the class of methods that deal with manipulating ...
Unit3 dip
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
IMAGE PROCESSING--image restoration.pptx
IMAGE PROCESSING--image restoration.pptx
Image Restoration ppt unit III for III years.pptx
Image denoising
Image Restoration And Reconstruction
Filtering.ppt
Ch5_Restoration (1).pdf
Lecture 2-Filtering.pdf
Lecture 5
M03 - Imagerestoration digital image processing ppt
Image denoising
Performance Assessment of Several Filters for Removing Salt and Pepper Noise,...
Lecture 6-2023.pdf
Image Restoration
M.sc.iii sem digital image processing unit iv
D122733
Image_filtering (1).pptx
Ad

More from Iftikhar70 (20)

PPT
m1-intro artificial intelligence for .ppt
PPTX
introductioartificial intelligencen.pptx
PPT
dcscw07aetificial intelligence for 1.ppt
PPT
Ch1-2 (artificial intelligence for 3).ppt
PPTX
توظيف ادوات الذكاء الاصطناعي في البحث العلمي الاعلامي - saad kadhim.pptx
PPTX
introduction technology technology tec.pptx
PPT
cps270_game_playing technology intelligence.ppt
PPT
Chapter_9_Morphological_Image_Processing.ppt
PPTX
10_2020_12_10!09_25_23_AM technology.pptx
PPT
14580hffggcdfghcfgvcsdvbcdgbvcdgg968.ppt
PPT
1424403vfdfdfghljhhggvgfggffgddgd6trf.ppt
PPT
12_2017_09_17!02_48_41_Aengerrings M.ppt
PPTX
امن سيبر اني للحوسبة في الجزء الثاني.pptx
PPT
Alhadeff cloud computing cyber technology.ppt
PPT
Introduction to artificial intelligence.ppt
PPTX
777137036 image processing bacherde.pptx
PPT
m1-intro artificial intelligence tec.ppt
PPT
cps270_intro artificial intelligence.ppt
PPT
cps270_game_playing artificial intelligence.ppt
PPTX
في الذكاء الاصطناعي وتقنيه المعلوماتالعملي.pptx
m1-intro artificial intelligence for .ppt
introductioartificial intelligencen.pptx
dcscw07aetificial intelligence for 1.ppt
Ch1-2 (artificial intelligence for 3).ppt
توظيف ادوات الذكاء الاصطناعي في البحث العلمي الاعلامي - saad kadhim.pptx
introduction technology technology tec.pptx
cps270_game_playing technology intelligence.ppt
Chapter_9_Morphological_Image_Processing.ppt
10_2020_12_10!09_25_23_AM technology.pptx
14580hffggcdfghcfgvcsdvbcdgbvcdgg968.ppt
1424403vfdfdfghljhhggvgfggffgddgd6trf.ppt
12_2017_09_17!02_48_41_Aengerrings M.ppt
امن سيبر اني للحوسبة في الجزء الثاني.pptx
Alhadeff cloud computing cyber technology.ppt
Introduction to artificial intelligence.ppt
777137036 image processing bacherde.pptx
m1-intro artificial intelligence tec.ppt
cps270_intro artificial intelligence.ppt
cps270_game_playing artificial intelligence.ppt
في الذكاء الاصطناعي وتقنيه المعلوماتالعملي.pptx
Ad

Recently uploaded (20)

PDF
Design Guidelines and solutions for Plastics parts
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
Current and future trends in Computer Vision.pptx
PDF
737-MAX_SRG.pdf student reference guides
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
introduction to high performance computing
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Software Engineering and software moduleing
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Artificial Intelligence
Design Guidelines and solutions for Plastics parts
"Array and Linked List in Data Structures with Types, Operations, Implementat...
R24 SURVEYING LAB MANUAL for civil enggi
Information Storage and Retrieval Techniques Unit III
Current and future trends in Computer Vision.pptx
737-MAX_SRG.pdf student reference guides
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Soil Improvement Techniques Note - Rabbi
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
III.4.1.2_The_Space_Environment.p pdffdf
introduction to high performance computing
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Software Engineering and software moduleing
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Artificial Intelligence

chapter5-2 restoration and depredations.ppt

  • 1. Digital Image Processing Chapter 5: Image Restoration
  • 2. A Model of the Image Degradation/Restoration Process
  • 3.  Degradation  Degradation function H  Additive noise  Spatial domain  Frequency domain ) , ( y x  ) , ( ) , ( * ) , ( ) , ( y x y x f y x h y x g    ) , ( ) , ( ) , ( ) , ( v u N v u F v u H v u G  
  • 5. Noise Models  Sources of noise  Image acquisition, digitization, transmission  White noise  The Fourier spectrum of noise is constant  Assuming  Noise is independent of spatial coordinates  Noise is uncorrelated with respect to the image itself
  • 6.  Gaussian noise  The PDF of a Gaussian random variable, z,  Mean:  Standard deviation:  Variance: 2 2 2 / ) ( 2 1 ) (        z e z p   2 
  • 7.  70% of its values will be in the range  95% of its values will be in the range   ) ( ), (         ) 2 ( ), 2 (      
  • 8.  Rayleigh noise  The PDF of Rayleigh noise,  Mean:  Variance:            a z a z e a z b z p b a z for 0 for ) ( 2 ) ( / ) ( 2 4 / b a     4 ) 4 ( 2     b
  • 10.  Erlang (Gamma) noise  The PDF of Erlang noise, , is a positive integer,  Mean:  Variance:            0 for 0 0 for )! 1 ( ) ( 1 z z e b z a z p z a b b a b   2 2 a b   0  a b
  • 11.  Exponential noise  The PDF of exponential noise, ,  Mean:  Variance:        0 for 0 0 for ) ( z z ae z p z a a 1   2 2 1 a   0  a
  • 12.  Uniform noise  The PDF of uniform noise,  Mean:  Variance:          otherwise 0 if 1 ) ( b z a a b z p 2 b a    12 ) ( 2 2 a b   
  • 13.  Impulse (salt-and-pepper) noise  The PDF of (bipolar) impulse noise,  : gray-level will appear as a light dot, while level will appear like a dark dot  Unipolar: either or is zero         otherwise 0 for for ) ( b z P a z P z p b a a b  b a a P b P
  • 14.  Usually, for an 8-bit image, =0 (black) and =0 (white) b a
  • 15.  Modeling  Gaussian  Electronic circuit noise, sensor noise due to poor illumination and/or high temperature  Rayleigh  Range imaging  Exponential and gamma  Laser imaging
  • 16.  Impulse  Quick transients, such as faulty switching  Uniform  Least descriptive  Basis for numerous random number generators
  • 20.  Periodic noise  Arises typically from electrical or electromechanical interference  Reduced significantly via frequency domain filtering
  • 22.  Estimation of noise parameters  Inspection of the Fourier spectrum  Small patches of reasonably constant gray level  For example, 150*20 vertical strips  Calculate , , , from   a b    S z i i i z p z ) (      S z i i i z p z ) ( ) ( 2 2  
  • 24. Restoration in the Presence of Noise Only-Spatial Filtering  Degradation  Spatial domain  Frequency domain ) , ( ) , ( ) , ( y x y x f y x g    ) , ( ) , ( ) , ( v u N v u F v u G  
  • 25.  Mean filters  Arithmetic mean filter  Geometric mean filter    xy S t s t s g mn y x f ) , ( ) , ( 1 ) , ( ˆ mn S t s xy t s g y x f 1 ) , ( ) , ( ) , ( ˆ           
  • 26.  Harmonic mean filter  Works well for salt noise, but fails fpr pepper noise    xy S t s t s g mn y x f ) , ( ) , ( 1 ) , ( ˆ
  • 27.  Contraharmonic mean filter  : eliminates pepper noise  : eliminates salt noise       xy xy S t s Q S t s Q t s g t s g y x f ) , ( ) , ( 1 ) , ( ) , ( ) , ( ˆ 0  Q 0  Q
  • 30.  Usage  Arithmetic and geometric mean filters: suited for Gaussian or uniform noise  Contraharmonic filters: suited for impulse noise
  • 32.  Order-statistics filters  Median filter  Effective in the presence of both bipolar and unipolar impulse noise )} , ( { median ) , ( ˆ ) , ( t s g y x f xy S t s  
  • 33.  Max and min filters  max filters reduce pepper noise  min filters salt noise )} , ( { max ) , ( ˆ ) , ( t s g y x f xy S t s   )} , ( { min ) , ( ˆ ) , ( t s g y x f xy S t s  
  • 34.  Midpoint filter  Works best for randomly distributed noise, like Gaussian or uniform noise           )} , ( { min )} , ( { max 2 1 ) , ( ˆ ) , ( ) , ( t s g t s g y x f xy xy S t s S t s
  • 35.  Alpha-trimmed mean filter  Delete the d/2 lowest and the d/2 highest gray-level values  Useful in situations involving multiple types of noise, such as a combination of salt-and-pepper and Gaussian noise     xy S t s r t s g d mn y x f ) , ( ) , ( 1 ) , ( ˆ
  • 39.  Adaptive, local noise reduction filter  If is zero, return simply the value of  If , return a value close to  If , return the arithmetic mean value 2   ) , ( y x g 2 2 L    ) , ( y x g 2 2 L    L m   L L m y x g y x g y x f    ) , ( ) , ( ) , ( ˆ 2 2  
  • 41.  Adaptive median filter  = minimum gray level value in  = maximum gray level value in  = median of gray levels in  = gray level at coordinates  = maximum allowed size of min z max z med z xy z max S xy S xy S xy S xy S ) , ( y x
  • 42.  Algorithm:  Level A: A1=  A2=  If A1>0 AND A2<0, Go to  level B  Else increase the window size  If window size  repeat level A  Else output min z zmed  max z zmed  max S  med z
  • 43.  Level B: B1=  B2=  If B1>0 AND B2<0, output  Else output min z zxy  max z zxy  xy z med z
  • 44.  Purposes of the algorithm  Remove salt-and-pepper (impulse) noise  Provide smoothing  Reduce distortion, such as excessive thinning or thickening of object boundaries
  • 46. Periodic Noise Reduction by Frequency Domain Filtering  Bandreject filters  Ideal bandreject filter                   2 D v) D(u, if 1 2 D v) D(u, 2 D if 0 2 D v) D(u, if 1 ) , ( 0 0 0 0 W W W W v u H   2 / 1 2 2 ) 2 / ( ) 2 / ( ) , ( N v M u v u D    
  • 47.  Butterworth bandreject filter of order n  Gaussian bandreject filter n D v u D W v u D v u H 2 2 0 2 ) , ( ) , ( 1 1 ) , (          2 2 0 2 ) , ( ) , ( 2 1 1 ) , (             W v u D D v u D e v u H
  • 50.  Bandpass filters ) , ( 1 ) , ( v u H v u H br bp  
  • 52.  Notch filters  Ideal notch reject filter       otherwise 1 D v) (u, D or D v) (u, D if 0 ) , ( 0 2 0 1 v u H   2 / 1 2 0 2 0 1 ) 2 / ( ) 2 / ( ) , ( v N v u M u v u D         2 / 1 2 0 2 0 2 ) 2 / ( ) 2 / ( ) , ( v N v u M u v u D      
  • 53.  Butterworth notch reject filter of order n n v u D v u D D v u H         ) , ( ) , ( 1 1 ) , ( 2 1 2 0
  • 54.  Gaussian notch reject filter            2 0 2 1 ) , ( ) , ( 2 1 1 ) , ( D v u D v u D e v u H
  • 56.  Notch pass filter ) , ( 1 ) , ( v u H v u H nr np  
  • 58.  Optimum notch filtering
  • 59.  Interference noise pattern  Interference noise pattern in the spatial domain  Subtract from a weighted portion of to obtain an estimate of ) , ( ) , ( ) , ( v u G v u H v u N  )} , ( ) , ( { ) , ( 1 v u G v u H y x     ) , ( ) , ( ) , ( ) , ( ˆ y x y x w y x g y x f    ) , ( y x g ) , ( y x  ) , ( y x f
  • 60.  Minimize the local variance of  The detailed steps are listed in Page 251  Result ) , ( ˆ y x f ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( 2 2 y x y x y x y x g y x y x g y x w       
  • 64. Linear, Position-Invariant Degradations  Input-output relationship ) , ( )] , ( [ ) , ( y x y x f H y x g    )] , ( [ ) , ( y x f H y x g  0 ) , (  y x 
  • 65.  H is linear if  Additivity )] , ( [ )] , ( [ )] , ( ) , ( [ 2 1 2 1 y x f bH y x f aH y x bf y x af H    )] , ( [ )] , ( [ )] , ( ) , ( [ 2 1 2 1 y x f H y x f H y x f y x f H   
  • 66.  Homogeneity  Position (or space) invariant )] , ( [ )] , ( [ 1 1 y x f aH y x af H  )] , ( )] , ( [          y x g y x f H
  • 67.  In terms of a continuous impulse function                   d d y x f y x f ) , ( ) , ( ) , (                          d d y x f H y x f H y x g ) , ( ) , ( )] , ( [ ) , (
  • 68.                                                        d d y x h f d d y x H f d d y x f H y x g ) , , , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , (
  • 69.  Impulse response of H  In optics, the impulse becomes a point of light  Point spread function (PSF)  All physical optical systems blur (spread) a point of light to some degree )] , ( [ ) , , , (         y x H y x h ) , , , (   y x h
  • 70.  Superposition (or Fredholm) integral of the first kind                d d y x h f y x g ) , , , ( ) , ( ) , (
  • 71.  If H is position invariant  Convolution integral ) , ( )] , ( [           y x h y x H                  d d y x h f y x g ) , ( ) , ( ) , (
  • 72.  In the presence of additive noise  If H is position invariant ) , ( ) , , , ( ) , ( ) , ( y x d d y x h f y x g                  ) , ( ) , ( ) , ( ) , ( y x d d y x h f y x g                   
  • 73.  If H is position invariant  Restoration approach  Image deconvolution  Deconvolution filter ) , ( ) , ( ) , ( ) , ( y x y x f y x h y x g     ) , ( ) , ( ) , ( ) , ( v u N v u F v u H v u G  
  • 74. Estimating the Degradation Function  Estimation by image observation  In order to reduce the effect of noise in our observation, we would look for areas of strong signal content ) , ( ˆ ) , ( ) , ( v u F v u G v u H s s s 
  • 75.  Estimation by experimentation  Obtain the impulse response of the degradation by imaging an impulse (small dot of light) using the same system settings  Observed image  The strength of the impulse A v u G v u H ) , ( ) , (  ) , ( v u G A
  • 77.  Estimation by modeling  Hufnagel and Stanley  Physical characteristic of atmospheric turbulence 6 5 2 2 ) ( ) , ( v u k e v u H   
  • 81.  Where ) , ( ) , ( ) , ( ) , ( ) , ( 0 )] ( ) ( [ 2 0 )] ( ) ( [ 2 0 0 0 0 v u H v u F dt e v u F dt e v u F v u G T t y v t x u j T t y v t x u j                T t y v t x u j dt e v u H 0 )] ( ) ( [ 2 0 0 ) , ( 
  • 82.  If and T at t x / ) ( 0  0 ) ( 0  t y ua j T T at u j T t x u j e ua ua T dt e dt e v u H 0 ] / [ 2 0 )] ( [ 2 ) sin( ) , ( 0             
  • 83.  If and T at t x / ) ( 0  T bt t y / ) ( 0  ) ( )] ( sin[ ) ( ) , ( vb ua j e vb ua vb ua T v u H        
  • 85. Inverse Filtering  Direct inverse filtering  Limiting the analysis to frequencies near the origin ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ˆ v u H v u N v u F v u H v u G v u F   
  • 87. Minimum Mean Square Error (Wiener) Filtering  Minimize  Terms  = degradation function   = complex conjugate of   =  } ) ˆ {( 2 2 f f E e   ) , ( v u H ) , ( v u H  ) , ( v u H 2 ) , ( v u H ) , ( ) , ( v u H v u H 
  • 88.  = power spectrum of the noise  = power spectrum of the undegraded image 2 ) , ( ) , ( v u N v u S   2 ) , ( ) , ( v u F v u S f 
  • 93. Constrained Least Squares Filtering  Vector-matrix form   , , :  : g ) , ( ) , ( * ) , ( ) , ( y x y x f y x h y x g    1  MN MN MN  H η f η Hf g  
  • 94.  Minimize  Subject to          1 0 1 0 2 2 ) , ( M x N y y x f C 2 2 ˆ η f H g  
  • 95.  The solution  Where is the Fourier transform of the function ) , ( ) , ( ) , ( ) , ( * ) , ( ˆ 2 2 v u G v u P v u H v u H v u F            ) , ( v u P                0 1 0 1 4 1 0 1 0 ) , ( y x P
  • 97.  Computing by iteration  Adjust so that  f H g r ˆ    a   2 2 η r
  • 98.  Computation       1 0 1 0 2 2 ) , ( M x N y y x r r   2 1 0 1 0 2 ) , ( 1        M x N y m y x MN           1 0 1 0 ) , ( 1 M x N y y x MN m   ] [ 2 2 2    m MN   η
  • 99.  Algorithm  1: Specify an initial value of  2: Compute  3: Stop if is satisfied; otherwise return to Step 2 after increasing if or  decreasing if . a   2 2 η r   a   2 2 η r a   2 2 η r
  • 102. Geometric Transformations  Spatial transformations  Tiepoints ) , ( ' y x r x  ) , ( ' y x s y 
  • 104.  Bilinear equations 4 3 2 1 ) , ( ' c xy c y c x c y x r x      8 7 6 5 ) , ( ' c xy c y c x c y x s y     
  • 105.  Gray-level interpolation d y cx by ax y x v     ' ' ' ' ) ' , ' (