SlideShare a Scribd company logo
Networks, complexity,
and privacy
Antonio A. Casilli
(Telecom ParisTech SES)

Institut Mines-Télécom
Social networks

2

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

3

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

4

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

5

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

6

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

7

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

8

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

9

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

10

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
If I say «social network»

11

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks

Social network: a way of describing human groups as a set of
social actors (nodes) and relationships existing among them
(ties)

12

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks

13

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks

14

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks

15

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks

16

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Human groups as networks
Bridges

Peripherals

Group
Members

Central Members

Isolate

17

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions

 Is computer-mediated interaction changing the overall
structure of human networks?
 Comparing computer-mediated and face-to-face
relationships: which networks are larger?
 Further refinements: are personal networks mainly
composed of "strong" or "weak" ties? Are there more weak
ties in online personal networks?
 Are personal networks densely knitted, or sparse? Are online
personal networks sparser?

18

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
1992 Robin Dunbar

148

19

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
2000 Peter Killworth

290

20

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
2010 Matthew Salganik

610

21

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
2012

22

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
1969: six degrees of separation

23

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
2012: four degrees of separation

24

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
 Two possible
explanations
 Higher transitivity of online
networks
 Presence of big hubs

25

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
Different types of online «social
capital»

Bonding

 Bonding : homogenous groups
and cohesion
 Bridging : information
circulating among heterogenous
groups
Bridging

26

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
From a “little boxes” society

27

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
…to “networked individualism”?

28

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions

29

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Computer-mediated interactions
“Glocal” networks

30

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

 Experiment: create two accounts
 The fomer (actual profile) discloses
more personal details, the latter
(control profile) discloses less
 Invite 100 users to friend them (50
each)
 Friends provide feedback on how to
enrich profiles (Comments,
Messages, Likes, Shares)
 Compare two accounts over 50
days

31

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment
 Observation notes:
– « Jusqu’à aujourd’hui, les retours sur les deux
profils sont assez négatifs. Les connaissances
de sexe féminin surtout ne se gênent pas pour
exprimer leur aversion. Une amie définit le profil
1 comme ‘effrayant’, une autre qualifie la photo
du profil 2 de ‘monstrueuse’ ».
–« Indication : utilisateur du profil 1 apprécie la
cuisine japonaise et écoute de la musique punk.
Il lit des bandes dessinées et des poètes de la
beat generation ».
–« Profil 1 constamment ouvert dans mon
navigateur. En automatique des petites fenêtres
contenant des suggestions ou des ‘morceaux
choisis’ par ses amis. ‘L’utilisatrice X est fan de
l’artiste peintre Tel’ ; ‘L’utilisateur Y a aimé le
dernier livre de l’écrivain Telautre’ ».

32

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

1. Two Facebook profiles initial state
33

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

2. Profile 1 discloses personal preferences
34

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

3. Profile 1 discloses bio
35

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

4. Profile 1 uploads a photo album
36

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment
 Compare social graphs

 Disclosing profile has a larger, more
varied network
 Better management of social capital:
balance bw bonding (social
cohesion) and bridging (social
connectivity)

37

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment
Bonding

Bridging

38

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
A social media experiment

39

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Studying complexity

40

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Complexity and social science

 Chaos, social dynamics,
emergent behaviours
41

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Complexity and social science
 Social systems, self-organization,
autopoiesis, complex adaptive systems

42

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling
 Agent-based computer
simulations
 Generate socially consistent
scenarios on a computer;
 Analyse the resulting scenario
outcomes to:
 Identify sufficient conditions
under which different
outcomes emerge;
 Assess their sensitivity to
parameter changes.
 An aid to perform a thought
experiment.

43

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling
 The logic of an agent-based
model
 Generate an artificial
population of agents in an
environment;
 Endow them with basic rules
of behaviour;
 Let them interact for a certain
time and step aside;
 Observe outcomes at the
system level at the end.

44

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling
 KISS (Keep It Simple and
Stupid)
 Schelling‟s segregation model
(1973)
 How tolerant individuals have
to be in order to avoid
collective segregation (the
creation of ghettoes) in a
given social space?
 Some surprising results…

45

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling
„„Pure‟‟ models

„„Empirical‟‟ models

. Built by abstraction from a target
. Open to estimation and validation via
system (a social phenomenon or context). qualitative and quantitative data.
. Mainly regarded as tools for
generating, expressing and testing
theories.
. Not always realistically representing
choices and behaviors at the micro level.
. Enable in-depth reflection on the
possible unintended social consequences
of purposeful individual actions.

46

11/19/2013

Institut Mines-Télécom

. Quantitative data can be used to
assess the probability that a certain event
takes place within a given population of
agents (either predictively or
retrodictively).
. Use of qualitative data to inform
simulation rules and parameters is also
attested since the late 1990s (structural
validation).

Télécom ParisTech
Agent-based modelling

47

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling

48

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Agent-based modelling

49

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Privacy

50

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
The end of privacy online?
 The privacy challenge in
social media
 Periodic privacy incidents on
FB
 Mark Zuckerberg: ”Public is
the new social norm”
 Are we approaching the “End
of Privacy” as we know it?
 Alleged tendency to
"renounce privacy" for an
open, connected existence
(publicness)?
51

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
The end of privacy online?

52

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
The end of privacy online?

53

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Date

Privacy-related incident

Users’ reaction

05/09/2006

Introduction of News Feed (content and user
updates aggregator).

Users’ uproar over the default opt-in policy. Creation of the advocacy group “Students
against Facebook News Feed” to protest the new feature. The group attracts almost
300,000 members, leading to apologies by Mark Zuckerberg, Facebook’s funder and
CEO.

26/09/2006

Facebook reinforces privacy options for users
(to limit searchability and tie formation) to
anticipate the gradual opening of its
membership to any US and Canada college
students with a valid email address and over
the age of 13.

06/11/2007

Introduction of Beacon (advertising system
aggregating purchase data over several
platforms, most prominently Amazon).

Prominent political activist group MoveOn.org creates an online petition against Beacon.
Their Facebook group reaches 50,000 members, which leads Mr Zuckerberg to issue an
official apology. Beacon ultimately shut down in September 2009.

09/12/2009

Facebook changes its privacy settings,
making sharing with everyone compulsory:
legal names, profile pictures, and gender are
now public by default.

An alliance of privacy organisations files a complaint with America’s Federal Trade
Commission (FTC).

21/04/2010

Facebook introduces the Like button social
plugin for external websites. Users can now
log in, like and share contents (“frictionless
sharing”) on other services through their
Facebook account.

Prompted by their constituents, a group of American senators asks the FTC to establish
privacy guidelines for Facebook. Privacy groups file a formal complaint to the FTC
against Facebook’s “unfair and deceptive trade practice of sharing user information with
the public and with third-party application developers”. At the end of May 2010, Mr
Zuckerberg announces new and simplified privacy settings.

14/01/2011

Facebook makes users’ addresses and phone
numbers available to external websites.

After negative feedback from users, Facebook disables the feature. At the end of the
month, the fan page of Mr Zuckerberg is hacked and compromised. The following day,
Facebook starts implementing https secure pages.

08/2011

Following a series of complaints filed by
Austrian student association Europe v.
Facebook. org, it emerges that Facebook fails
to comply with the rule of allowing its users to
download their own personal data: it provides
only 39 over 84 personal data categories.

Negative media attention and creation of several campaigns requiring Facebook to give
users full access to their data.

05/2012

Facebook proposes a new and more complex
privacy policy while asking for generic “users’
feedback”.

40,000 user comments force vote on proposed alternatives to privacy policies.

20/06/2012

54

Facebook announces acquisition of facial
recognition technology company Face.com
Télécom
11/19/2013
Institut of users’ biometric
Mines-Télécom
(creates
database
ParisTech
information through photo-tagging).

Privacy advocacy groups file complaint to the FTC recommending suspension of facial
recognition technology and protesting creation of biometric profiles of users without
their explicit consent.
Modelling privacy
 To find an answer to this
question let‟s try and
build an agent-based
model that represent the
possible equilibriums for
a system of agents
disclosing personal
informations online
 Phase 1: empirical
observation
 Phase 2: modelling
55

11/19/2013

Institut Mines-Télécom

1

2

Télécom ParisTech
Modelling privacy
 Remember our experiment
on disclosure
 Personal network of actual
profile continues to grow in
size and displays a
distinctive balance between
social cohesion (bonding)
and social connectedness
(bridging)
 Disclosure is crucial: does
this necessarily validate the
„End-of-privacy‟
hypothesis?
56

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Modelling privacy
 Problematizing privacy
 In fact, online interactions
complexify the very notion of
privacy
 Traditional notion based on
metaphor of concentric circles
of intimacy
 Mono-directional notion: a
core of sensitive data to be
protected.
 This notion no longer seems
adapted to interactions in a
networked society.
57

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Modelling privacy
 Privacy as a multi-directional,
dynamic process
 Online privacy better
described through multidirectional negotiation
 Individuals send signals to,
and receive feedback from,
their social environment.
 Self-disclosure accompanies
adaptation to signals from the
(social) environment over
time.
58

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Modelling privacy
 We need to design a social system with:
 Formation of personal networks through bonding
and bridging ;
• Disclosure needed to form ties;
• Adaptation to signals from the environment through a
feedback process;

 What will be the final configuration of the system, in
terms of degree of disclosure?

59

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Our simulation model
 Behavioral rules:
•
•
•

Tie formation allowing for both
bonding and bridging social
capital;
Binary on/off visibility settings;
Homophilous choice of network
contacts.

 Parameters:
•
•

Tendency to value bonding /
bridging social capital;
Openness to cultural diversity.

 Indicators:
•
•

60

11/19/2013

Mean privacy level;
Number and size of components.

Institut Mines-Télécom

Télécom ParisTech
Our simulation model
 Resulting system configurations

(1) Echo-chambers

61

11/19/2013

(2) Large components

Institut Mines-Télécom

(3) Generalized connectedness.

Télécom ParisTech
Our simulation model
 How parameter values affect results

Treemap: varying modes of valuing bonding/bridging ties and levels of cultural openness. Size of
rectangles is proportional to size of largest network component, colour represents differences in number of
components.
62

11/19/2013

Institut Mines-Télécom

Télécom ParisTech
Our simulation model
 Effects on social division
•

•

When bonding prevails, echochambers always emerge
regardless of the cultural
openness of agents;
When bridging prevails, the
degree of cultural openness
determines whether the result is
one or few large components.

 Effects on privacy choices
•

•

63

11/19/2013

When bonding prevails, average
privacy changes little regardless
of the cultural openness of
agents;
When bridging prevails, high
cultural openness prompts
increased privacy protection.
Institut Mines-Télécom

Evolution of mean privacy over time, with high
bridging social capital and high cultural openness.

Télécom ParisTech
Results
 Network structure matters
• Relative value of
bonding/bridging ties affects
final outcomes;
• Homophily need not be socially
divisive;

 Important to focus on
motivations on people to
form social capital online;
 Networking service
architecture likely to play a
key role.
64

11/19/2013

Institut Mines-Télécom

Evolution of mean privacy over time, with high
bridging social capital and high cultural openness.

Télécom ParisTech
Results
 No “End of Privacy” in
sight
 Social media usage is
not bound to destroy
privacy
 It is when
connectedness is at its
highest that privacy resurfaces;
 It becomes important to
consider users‟ attitudes
in discussions of
providers‟ privacy
policies.

65

11/19/2013

Institut Mines-Télécom

Privacy cycles in the presence of service provider
interventions to unlock privacy setting by default

Télécom ParisTech
 Thank you!

 Email : antonio.casilli@telecom-paristech.fr
 Blog : http://www.bodyspacesociety.eu
 Twitter : @bodyspacesoc

66

11/19/2013

Institut Mines-Télécom

Télécom ParisTech

More Related Content

PDF
Autobiography, Mobile Social Life-Logging and the Transition from Ephemeral t...
PDF
Adaptive Collective Systems - Herding black sheep
PPT
Visualizando red FB Digicom SIyP con Gephi
PDF
Disc2013 keynote speakers
PDF
Rug hogan-10-03-2012
PDF
Multilayer tutorial-netsci2014-slightlyupdated
PDF
Online conversation as networks
PPTX
Gephi Plugin Developer Workshop
Autobiography, Mobile Social Life-Logging and the Transition from Ephemeral t...
Adaptive Collective Systems - Herding black sheep
Visualizando red FB Digicom SIyP con Gephi
Disc2013 keynote speakers
Rug hogan-10-03-2012
Multilayer tutorial-netsci2014-slightlyupdated
Online conversation as networks
Gephi Plugin Developer Workshop

Similar to Antonio A. Casilli - Networks, complexity, and privacy (20)

PDF
SADproject.tv
PDF
the near future of tourism services based on digital traces
PPT
Smart Cities: How are they different?
PDF
Defense, Tech and Internet. The World Changed.
PPTX
ppt.TECHNICALfffgvggfssdcvvvgggfddffg.pptx
PDF
Complex Networks 1st Edition Ronaldo Menezes Alexandre Evsukoff
PDF
Modern technologies and cybersecurity
PDF
Last Mile Internet Access for Emerging Economies Wynand Lambrechts
PPT
Mladen Vukmir, ECTA Dubrovnik 16-06-24, "Rogue Wawes and Crosswinds: Trademar...
PPT
Mladen Vukmir, ECTA Dubrovnik 16-06-24, "Rogue Wawes and Crosswinds: Trademar...
PPT
MVA_ECTA_Abundance160624
PDF
Short and Long of Data Driven Innovation
PDF
Network analysis for computational biology
PPTX
Social Video & Visual Strategy - Lezione 4 Ubiquitous Computing & Augmented R...
PDF
Governing Platforms by Algorithms? Digital Sovereignty and the Technological ...
PDF
Web and Wireless Geographical Information Systems 14th International Symposiu...
PDF
Web and Wireless Geographical Information Systems 14th International Symposiu...
PDF
The Rise Of The New Network Industries Regulating Digital Platforms 1st Editi...
PDF
A peek at privacy in an increasingly connected social world
SADproject.tv
the near future of tourism services based on digital traces
Smart Cities: How are they different?
Defense, Tech and Internet. The World Changed.
ppt.TECHNICALfffgvggfssdcvvvgggfddffg.pptx
Complex Networks 1st Edition Ronaldo Menezes Alexandre Evsukoff
Modern technologies and cybersecurity
Last Mile Internet Access for Emerging Economies Wynand Lambrechts
Mladen Vukmir, ECTA Dubrovnik 16-06-24, "Rogue Wawes and Crosswinds: Trademar...
Mladen Vukmir, ECTA Dubrovnik 16-06-24, "Rogue Wawes and Crosswinds: Trademar...
MVA_ECTA_Abundance160624
Short and Long of Data Driven Innovation
Network analysis for computational biology
Social Video & Visual Strategy - Lezione 4 Ubiquitous Computing & Augmented R...
Governing Platforms by Algorithms? Digital Sovereignty and the Technological ...
Web and Wireless Geographical Information Systems 14th International Symposiu...
Web and Wireless Geographical Information Systems 14th International Symposiu...
The Rise Of The New Network Industries Regulating Digital Platforms 1st Editi...
A peek at privacy in an increasingly connected social world
Ad

More from Bodyspacesociety Blog (20)

PPTX
Elinor Wahal - Amazon Mechanical Turk: Structure et fonctionnement de la plat...
PDF
Jérôme Denis - Avant le déluge : le travail invisible des données
PDF
Enchères en temps réel et données personnelles : une expérimentation
PDF
“Combien vaut un clic ? Données, industries culturelles, plateformes”
PPTX
Antonio Casilli -- Digital labor studies : Antécédents théoriques et nouvelle...
ODP
Sébastien Broca - De l'open source au digital labour : deux critiques du capi...
PPT
Antonio Casilli, Yonsei University (Seoul, 198.09.2015) "Four theses on mass ...
PPT
Ksenia Ermoshina - Code warriors et civic apps Russes (#ecnEHESS 16 mars 2015)
PDF
L'Economie collaborative - Séminaire EHESS Benjamin Tincq, Arthur de Grave
PDF
Algopol : une expérimentation sociologique sur Facebook
PDF
Antonio A. CASILLI -- Web et privacy : Sur le prétendu renoncement à la vie p...
PPT
Paola TUBARO - Web et Privacy : sur le prétendu renoncement à la vie privée d...
PDF
Anne Dalsuet "Y a-t-il une philia numérique ?" (notes 16 déc. 2013)
PDF
Paola Tubaro ANAMIA INSNA Sunbelt2014 St. Pete's Beach FL 22.02.2014
PDF
Fred Pailler ANAMIA ESAD Reims 20.02.2014
PDF
Antonio A. Casilli ANAMIA IFAC CHU Nantes 18.02.2014
PPT
Antonio CASILLI - EUROCOS - Désintermédiation médicale et communautés pro-ana
PPT
Antonio CASILLI - Le rôle des visualisations de données dans la recherche sur...
PPT
Visualizing personal network data. Examples from a study on EDs websites
PPT
Antonio CASILLI - Régimes de production des visualisations de données
Elinor Wahal - Amazon Mechanical Turk: Structure et fonctionnement de la plat...
Jérôme Denis - Avant le déluge : le travail invisible des données
Enchères en temps réel et données personnelles : une expérimentation
“Combien vaut un clic ? Données, industries culturelles, plateformes”
Antonio Casilli -- Digital labor studies : Antécédents théoriques et nouvelle...
Sébastien Broca - De l'open source au digital labour : deux critiques du capi...
Antonio Casilli, Yonsei University (Seoul, 198.09.2015) "Four theses on mass ...
Ksenia Ermoshina - Code warriors et civic apps Russes (#ecnEHESS 16 mars 2015)
L'Economie collaborative - Séminaire EHESS Benjamin Tincq, Arthur de Grave
Algopol : une expérimentation sociologique sur Facebook
Antonio A. CASILLI -- Web et privacy : Sur le prétendu renoncement à la vie p...
Paola TUBARO - Web et Privacy : sur le prétendu renoncement à la vie privée d...
Anne Dalsuet "Y a-t-il une philia numérique ?" (notes 16 déc. 2013)
Paola Tubaro ANAMIA INSNA Sunbelt2014 St. Pete's Beach FL 22.02.2014
Fred Pailler ANAMIA ESAD Reims 20.02.2014
Antonio A. Casilli ANAMIA IFAC CHU Nantes 18.02.2014
Antonio CASILLI - EUROCOS - Désintermédiation médicale et communautés pro-ana
Antonio CASILLI - Le rôle des visualisations de données dans la recherche sur...
Visualizing personal network data. Examples from a study on EDs websites
Antonio CASILLI - Régimes de production des visualisations de données
Ad

Recently uploaded (20)

PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Pre independence Education in Inndia.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Institutional Correction lecture only . . .
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Cell Structure & Organelles in detailed.
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Pharma ospi slides which help in ospi learning
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
RMMM.pdf make it easy to upload and study
PDF
Anesthesia in Laparoscopic Surgery in India
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Supply Chain Operations Speaking Notes -ICLT Program
Renaissance Architecture: A Journey from Faith to Humanism
Abdominal Access Techniques with Prof. Dr. R K Mishra
Sports Quiz easy sports quiz sports quiz
Pre independence Education in Inndia.pdf
Microbial disease of the cardiovascular and lymphatic systems
Institutional Correction lecture only . . .
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
01-Introduction-to-Information-Management.pdf
Cell Types and Its function , kingdom of life
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Cell Structure & Organelles in detailed.
Module 4: Burden of Disease Tutorial Slides S2 2025
Pharma ospi slides which help in ospi learning
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
RMMM.pdf make it easy to upload and study
Anesthesia in Laparoscopic Surgery in India

Antonio A. Casilli - Networks, complexity, and privacy

  • 1. Networks, complexity, and privacy Antonio A. Casilli (Telecom ParisTech SES) Institut Mines-Télécom
  • 3. If I say «social network» 3 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 4. If I say «social network» 4 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 5. If I say «social network» 5 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 6. If I say «social network» 6 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 7. If I say «social network» 7 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 8. If I say «social network» 8 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 9. If I say «social network» 9 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 10. If I say «social network» 10 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 11. If I say «social network» 11 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 12. Human groups as networks Social network: a way of describing human groups as a set of social actors (nodes) and relationships existing among them (ties) 12 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 13. Human groups as networks 13 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 14. Human groups as networks 14 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 15. Human groups as networks 15 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 16. Human groups as networks 16 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 17. Human groups as networks Bridges Peripherals Group Members Central Members Isolate 17 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 18. Computer-mediated interactions  Is computer-mediated interaction changing the overall structure of human networks?  Comparing computer-mediated and face-to-face relationships: which networks are larger?  Further refinements: are personal networks mainly composed of "strong" or "weak" ties? Are there more weak ties in online personal networks?  Are personal networks densely knitted, or sparse? Are online personal networks sparser? 18 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 19. Computer-mediated interactions 1992 Robin Dunbar 148 19 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 20. Computer-mediated interactions 2000 Peter Killworth 290 20 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 21. Computer-mediated interactions 2010 Matthew Salganik 610 21 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 23. Computer-mediated interactions 1969: six degrees of separation 23 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 24. Computer-mediated interactions 2012: four degrees of separation 24 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 25. Computer-mediated interactions  Two possible explanations  Higher transitivity of online networks  Presence of big hubs 25 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 26. Computer-mediated interactions Different types of online «social capital» Bonding  Bonding : homogenous groups and cohesion  Bridging : information circulating among heterogenous groups Bridging 26 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 27. Computer-mediated interactions From a “little boxes” society 27 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 28. Computer-mediated interactions …to “networked individualism”? 28 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 31. A social media experiment  Experiment: create two accounts  The fomer (actual profile) discloses more personal details, the latter (control profile) discloses less  Invite 100 users to friend them (50 each)  Friends provide feedback on how to enrich profiles (Comments, Messages, Likes, Shares)  Compare two accounts over 50 days 31 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 32. A social media experiment  Observation notes: – « Jusqu’à aujourd’hui, les retours sur les deux profils sont assez négatifs. Les connaissances de sexe féminin surtout ne se gênent pas pour exprimer leur aversion. Une amie définit le profil 1 comme ‘effrayant’, une autre qualifie la photo du profil 2 de ‘monstrueuse’ ». –« Indication : utilisateur du profil 1 apprécie la cuisine japonaise et écoute de la musique punk. Il lit des bandes dessinées et des poètes de la beat generation ». –« Profil 1 constamment ouvert dans mon navigateur. En automatique des petites fenêtres contenant des suggestions ou des ‘morceaux choisis’ par ses amis. ‘L’utilisatrice X est fan de l’artiste peintre Tel’ ; ‘L’utilisateur Y a aimé le dernier livre de l’écrivain Telautre’ ». 32 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 33. A social media experiment 1. Two Facebook profiles initial state 33 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 34. A social media experiment 2. Profile 1 discloses personal preferences 34 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 35. A social media experiment 3. Profile 1 discloses bio 35 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 36. A social media experiment 4. Profile 1 uploads a photo album 36 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 37. A social media experiment  Compare social graphs  Disclosing profile has a larger, more varied network  Better management of social capital: balance bw bonding (social cohesion) and bridging (social connectivity) 37 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 38. A social media experiment Bonding Bridging 38 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 39. A social media experiment 39 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 41. Complexity and social science  Chaos, social dynamics, emergent behaviours 41 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 42. Complexity and social science  Social systems, self-organization, autopoiesis, complex adaptive systems 42 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 43. Agent-based modelling  Agent-based computer simulations  Generate socially consistent scenarios on a computer;  Analyse the resulting scenario outcomes to:  Identify sufficient conditions under which different outcomes emerge;  Assess their sensitivity to parameter changes.  An aid to perform a thought experiment. 43 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 44. Agent-based modelling  The logic of an agent-based model  Generate an artificial population of agents in an environment;  Endow them with basic rules of behaviour;  Let them interact for a certain time and step aside;  Observe outcomes at the system level at the end. 44 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 45. Agent-based modelling  KISS (Keep It Simple and Stupid)  Schelling‟s segregation model (1973)  How tolerant individuals have to be in order to avoid collective segregation (the creation of ghettoes) in a given social space?  Some surprising results… 45 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 46. Agent-based modelling „„Pure‟‟ models „„Empirical‟‟ models . Built by abstraction from a target . Open to estimation and validation via system (a social phenomenon or context). qualitative and quantitative data. . Mainly regarded as tools for generating, expressing and testing theories. . Not always realistically representing choices and behaviors at the micro level. . Enable in-depth reflection on the possible unintended social consequences of purposeful individual actions. 46 11/19/2013 Institut Mines-Télécom . Quantitative data can be used to assess the probability that a certain event takes place within a given population of agents (either predictively or retrodictively). . Use of qualitative data to inform simulation rules and parameters is also attested since the late 1990s (structural validation). Télécom ParisTech
  • 51. The end of privacy online?  The privacy challenge in social media  Periodic privacy incidents on FB  Mark Zuckerberg: ”Public is the new social norm”  Are we approaching the “End of Privacy” as we know it?  Alleged tendency to "renounce privacy" for an open, connected existence (publicness)? 51 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 52. The end of privacy online? 52 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 53. The end of privacy online? 53 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 54. Date Privacy-related incident Users’ reaction 05/09/2006 Introduction of News Feed (content and user updates aggregator). Users’ uproar over the default opt-in policy. Creation of the advocacy group “Students against Facebook News Feed” to protest the new feature. The group attracts almost 300,000 members, leading to apologies by Mark Zuckerberg, Facebook’s funder and CEO. 26/09/2006 Facebook reinforces privacy options for users (to limit searchability and tie formation) to anticipate the gradual opening of its membership to any US and Canada college students with a valid email address and over the age of 13. 06/11/2007 Introduction of Beacon (advertising system aggregating purchase data over several platforms, most prominently Amazon). Prominent political activist group MoveOn.org creates an online petition against Beacon. Their Facebook group reaches 50,000 members, which leads Mr Zuckerberg to issue an official apology. Beacon ultimately shut down in September 2009. 09/12/2009 Facebook changes its privacy settings, making sharing with everyone compulsory: legal names, profile pictures, and gender are now public by default. An alliance of privacy organisations files a complaint with America’s Federal Trade Commission (FTC). 21/04/2010 Facebook introduces the Like button social plugin for external websites. Users can now log in, like and share contents (“frictionless sharing”) on other services through their Facebook account. Prompted by their constituents, a group of American senators asks the FTC to establish privacy guidelines for Facebook. Privacy groups file a formal complaint to the FTC against Facebook’s “unfair and deceptive trade practice of sharing user information with the public and with third-party application developers”. At the end of May 2010, Mr Zuckerberg announces new and simplified privacy settings. 14/01/2011 Facebook makes users’ addresses and phone numbers available to external websites. After negative feedback from users, Facebook disables the feature. At the end of the month, the fan page of Mr Zuckerberg is hacked and compromised. The following day, Facebook starts implementing https secure pages. 08/2011 Following a series of complaints filed by Austrian student association Europe v. Facebook. org, it emerges that Facebook fails to comply with the rule of allowing its users to download their own personal data: it provides only 39 over 84 personal data categories. Negative media attention and creation of several campaigns requiring Facebook to give users full access to their data. 05/2012 Facebook proposes a new and more complex privacy policy while asking for generic “users’ feedback”. 40,000 user comments force vote on proposed alternatives to privacy policies. 20/06/2012 54 Facebook announces acquisition of facial recognition technology company Face.com Télécom 11/19/2013 Institut of users’ biometric Mines-Télécom (creates database ParisTech information through photo-tagging). Privacy advocacy groups file complaint to the FTC recommending suspension of facial recognition technology and protesting creation of biometric profiles of users without their explicit consent.
  • 55. Modelling privacy  To find an answer to this question let‟s try and build an agent-based model that represent the possible equilibriums for a system of agents disclosing personal informations online  Phase 1: empirical observation  Phase 2: modelling 55 11/19/2013 Institut Mines-Télécom 1 2 Télécom ParisTech
  • 56. Modelling privacy  Remember our experiment on disclosure  Personal network of actual profile continues to grow in size and displays a distinctive balance between social cohesion (bonding) and social connectedness (bridging)  Disclosure is crucial: does this necessarily validate the „End-of-privacy‟ hypothesis? 56 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 57. Modelling privacy  Problematizing privacy  In fact, online interactions complexify the very notion of privacy  Traditional notion based on metaphor of concentric circles of intimacy  Mono-directional notion: a core of sensitive data to be protected.  This notion no longer seems adapted to interactions in a networked society. 57 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 58. Modelling privacy  Privacy as a multi-directional, dynamic process  Online privacy better described through multidirectional negotiation  Individuals send signals to, and receive feedback from, their social environment.  Self-disclosure accompanies adaptation to signals from the (social) environment over time. 58 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 59. Modelling privacy  We need to design a social system with:  Formation of personal networks through bonding and bridging ; • Disclosure needed to form ties; • Adaptation to signals from the environment through a feedback process;  What will be the final configuration of the system, in terms of degree of disclosure? 59 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 60. Our simulation model  Behavioral rules: • • • Tie formation allowing for both bonding and bridging social capital; Binary on/off visibility settings; Homophilous choice of network contacts.  Parameters: • • Tendency to value bonding / bridging social capital; Openness to cultural diversity.  Indicators: • • 60 11/19/2013 Mean privacy level; Number and size of components. Institut Mines-Télécom Télécom ParisTech
  • 61. Our simulation model  Resulting system configurations (1) Echo-chambers 61 11/19/2013 (2) Large components Institut Mines-Télécom (3) Generalized connectedness. Télécom ParisTech
  • 62. Our simulation model  How parameter values affect results Treemap: varying modes of valuing bonding/bridging ties and levels of cultural openness. Size of rectangles is proportional to size of largest network component, colour represents differences in number of components. 62 11/19/2013 Institut Mines-Télécom Télécom ParisTech
  • 63. Our simulation model  Effects on social division • • When bonding prevails, echochambers always emerge regardless of the cultural openness of agents; When bridging prevails, the degree of cultural openness determines whether the result is one or few large components.  Effects on privacy choices • • 63 11/19/2013 When bonding prevails, average privacy changes little regardless of the cultural openness of agents; When bridging prevails, high cultural openness prompts increased privacy protection. Institut Mines-Télécom Evolution of mean privacy over time, with high bridging social capital and high cultural openness. Télécom ParisTech
  • 64. Results  Network structure matters • Relative value of bonding/bridging ties affects final outcomes; • Homophily need not be socially divisive;  Important to focus on motivations on people to form social capital online;  Networking service architecture likely to play a key role. 64 11/19/2013 Institut Mines-Télécom Evolution of mean privacy over time, with high bridging social capital and high cultural openness. Télécom ParisTech
  • 65. Results  No “End of Privacy” in sight  Social media usage is not bound to destroy privacy  It is when connectedness is at its highest that privacy resurfaces;  It becomes important to consider users‟ attitudes in discussions of providers‟ privacy policies. 65 11/19/2013 Institut Mines-Télécom Privacy cycles in the presence of service provider interventions to unlock privacy setting by default Télécom ParisTech
  • 66.  Thank you!  Email : antonio.casilli@telecom-paristech.fr  Blog : http://www.bodyspacesociety.eu  Twitter : @bodyspacesoc 66 11/19/2013 Institut Mines-Télécom Télécom ParisTech