SlideShare a Scribd company logo
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 340
CONTROL ANALYSIS OF A HIGH FREQUENCY RESONANT
INVERTER FOR INDUCTION COOKING APPLICATION
C. P. Roy1
1
Bachelor of Technology, Department of Electrical Engineering, Indian School of Mines, Dhanbad, India
Abstract
Stability of three possible close-loop control of a series resonant inverter is studied for induction cooking application. Ultimately,
a single close-loop control technique is proposed in this work which can ensure both the power control as well as a satisfactory
zero voltage switching (ZVS) in a finite control range near the operating point. A phase shift controlled series resonant inverter is
used as a power supply for an induction cooking system. Its linearized model is developed for small signal analysis and a PID
controller is designed for the proposed close-loop control and its performances are judged under various operating conditions
using MATLAB/Simulink®
platform.
Keywords: ZVS, linearization, bode plot, step response, PID control.
--------------------------------------------------------------------***----------------------------------------------------------------------
1. INTRODUCTION
Induction cooking employs generation of thermal energy
directly into the cooking vessel. In order to achieve efficient
transfer of energy,thermal dissipation in the electrical supply
system and the coil must be as low as possible in
comparison to heat generated in the vessel.
Mechanically this is achieved by the special design of vessel
which permits maximum flux linkage [1, 2]. From the
electrical point of view, the load circuitry should be made to
be in resonance at the supply switching frequency so that
maximum power transfer can be ensured [3, 4]. However, in
case of high power induction heating systems, the variation
in resistance and inductance of the specimen at the high
temperature especially when the work-piece reaches the
curie temperature poses a major problem by changing the
resonant frequency of the load circuit [5]. Thus, in order to
have a robust design, the phase margin and the gain margin
of the system should be well beyond the expected limit.
For induction cooking, supply switching frequency should
be sufficiently high to increase heat generation. Lower limit
is set by the acoustic noise generated in the supply and the
utensils at the fundamental and the second harmonic to 20
kHz [6, 7]. Upper limit is decided by the problems posed on
power semiconductor switches and their performance at the
higher frequency owing to dissipation of heat generated in
them. This problem can be solved by using special
switching techniques like zero voltage switching (ZVS) [8],
applied to voltage source inverters and zero current
switching (ZCS) [9], applied to current source inverters.
Using these techniques, either turn-ON or turn-OFF losses
can be reduced to zero by making the load slightly inductive
or capacitive. However, capacitive loads have inherent
demerit of increase in diode reverse recovery stress which
may result in voltage spikes in output voltage. To achieve
ZVS in voltage source inverters, switching frequency is
made slightly higher than the resonant frequency so that the
load would be inductive and the current will be lagging in
nature [10].Moreover, the frequency at which ZVS is
achieved increases with the increase in phase shift between
the switching pulses.
For different food stuffs, there might be a demand of
different and accurate power transfer to maintain a given
temperature profile. This can be ensured by controlling the
output voltage of the resonant inverter. There are various
methods described in literature for this purpose like phase
shift control (PSC) [10, 11], asymmetrical voltage control
(AVC) [12], asymmetrical duty-cycle control (ADC) [13].
Out of these, PSC produces symmetrical alternating output
voltage (i.e. voltage pulse with equal positive and negative
area) whereas AVC and ADC gives an asymmetrical output
voltage pulse with a considerable DC content at the lower
reference value. In AVC, negative area is constant and
positive area is a function of duty-ratio; whereas in case of
ADC both positive as well as negative areas are the
functions of duty-ratio (with one being increasing and
another being decreasing in nature). Thus, they can be used
only for a limited band of operation. Apart from this, PSC
has the advantage of simplicity in its implementation. Fig.1
shows block diagram for the proposed control scheme.
PID
Pulse
Generator
INVERTER LOAD
SENSOR
+
-
Error Phase
Shift
Reference
Voltage
Output
Voltage
Pulses
Fig 1 Control scheme for controlling the output power
In present work, a phase shift controlled voltage source
series resonant inverter is used as power source for the
induction cooker. Its switching frequency is linearly varied
(within a finite acceptable range) [14] with change in phase
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 341
shift to ensure ZVS and its performances have been
analyzed for different reference values. Rest of the sections
have been categorized as such: section 2- system modeling
(which presents a critical analysis and trade-offs between
various complementary factors for load and frequency
selection), section 3- small signal modeling, section 4-
control scheme and operation, section 5- results and
discussions and section 6- conclusion.
2. SYSTEM MODELING
2.1. Load Parameters
For an induction cooker, the load is the utensil in which heat
is to be generated. For a fixed geometry and switching
frequency, the selection of utensil material must be proper to
obtain efficient heating. The surface resistance (Rs) offered
by these materials can be empirically given by (1) [6, 15].
 /SR (1)
Where, Ψ is the resistivity of the material and ∆ is the skin
depth. Hence, conductors with low value of resistivity and
high skin depth results in less resistance offered to the eddy
currents and thus in less generation of heat. Generally,
conventional magnetic materials with quite low skin depth
are used in such utensils. Again, the value of load resistance
should not be low enough to give a steep selectivity profile
at the resonant frequency (fo) (as shown in Fig.2) so that a
slight variation in switching frequency (f) doesn’t have a
much impact on output power.
In present work authors have considered a total load
resistance of 3.2Ω. Since, the load is series resonant (at
fundamental switching frequency), the values of inductance
(L) and capacitance (C) are so chosen that they form an
under damped circuit to produce required sinusoidal
oscillation. This can be ensured approximately by fulfilling
(2)
c
L
R 2 (2)
Where, R is the equivalent series resistant (ESR) of the
complete circuit including the resistance of the switches as
well as that of the coil and capacitor. Values parameters of
load and their values have been tabulated in Table-1.
Table 1 Load Parameters
Quantity Symbol Values
Load Resistance Rs 3.2 Ω
Inductance of Coil L 34 µH
Output Capacitance C 1 µF
Resistance of Coil RL 0.53 Ω
Resistance of
Capacitor
RC 0.1 Ω
Resonant Frequency fo 27.272 kHz
Characteristic
Impedance
Zo 5.83 Ω
2.2. Frequency Selection
For a full bridge inverter, the relation between output power
(Po) and the f can be given by (3)




















 22
22
2
8
f
f
f
f
Z
R
Z
RV
P
O
OO
L
O
Ldc
o

(3)
Fig.2 shows the variation of nominalised output power with
nominalised switching frequency, (f/fo) for the load
considered above. To ensure ZVS, f should be either slightly
less than or greater than the fo. However, operation below
resonance has the drawback of increased diode reverse
recovery stress which results in spikes in output voltage.
Thus, in the present work, load has been made slightly
inductive by selecting f as 1.1 times fo (i.e. 30 kHz) and is
linearly increased to 1.2 times fo (i.e. 33 kHz) as the phase
shift is increased to 180° (discussed in detail in section-4).
This increment doesn’t have a much impact on the variation
of output power as shown by blue curve in Fig.2.
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0
0.5
1
1.5
2
2.5
3
3.5
NominalisedFrequency
NominalisedPower
R/Zo
=0.8
R/Zo
=0.5
R/Zo
=1
Fig 2 Variation of nominalised power with nominalised frequency for different ratios of R/Zo
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 342
2.3. Switch Parameters
A full bridge inverter with power mosfets as the switching
element is used in the present study. Details regarding
various parameters have been provided in Table-2. Since f >
fo, turn-ON switching loss will be negligible for the switch
(as observed from Fig.6). However, turn-OFF loss will be
present.
Table 2 specification of switch
Quantity Symbol Values
Mosfet ON Resistance RDS 0.4 Ω
Diode ON Resistance Rd 0.1 Ω
Diode Forward Voltage
Drop
VT 0.7 V
Maximum Current
Stress
ISM 15 A
Maximum Voltage
Stress
VSM 48 V
DC Source Voltage VDC 48 V
3. SMALL SIGNAL MODELING
State space model of the system (inverter + load) has been
developed using harmonic approximation for the inductor
current and capacitor voltage and then applying extended
describing technique [16] to the input voltage [17]. The
system is then linearized at an arbitrary operating point
using Tailor’s series expansion method to give a small
signal model as shown by (4) to (7)
- -1
0
^
24
- -1 sin cos
- 0 ^2 2
0 0 -
1 ^
0 0 0 0
0 0 -
1
0 - 0
R
WS
L L VDC vR D D I DCCWo L LS
L Lx x dIS
W VS C wSC
VS
WS
C
 

 
 
 
                      
   
       
 
  
(4)
0 0y RI RI xS C    (5)
^ ^ ^ ^ T
x i i v vS C S C
 
 
 
(6)
^
Opy  (7)
Where, lower case letters with a sign of kappa (^) over them
represent a small amplitude perturbation and the upper case
letters represent corresponding values of the parameters at
an arbitrary operating point. Meanings of other symbols
have been described in Table-3.
Table3Description of symbols
Symbols Description
ic Magnitude of cosine component of
harmonically approximated output current
is Magnitude of sine component of
harmonically approximated output current
vc Magnitude of cosine component of
harmonically approximated output voltage
vs Magnitude of sine component of
harmonically approximated output voltage
d Duty ratio of output voltage wave form
ws Switching frequency
From the derived model, it can be observed that Po can be
controlled by varying either of the three inputs viz. vDC, wS
or d. Stability of the system is analyzed using Bode plot and
it is seen that it is stable for all the three inputs as shown in
Fig.3.
-20
-10
0
10
20
Magnitude(dB)
Bode Diagram
Frequency (rad/sec)
10
3
10
4
10
5
10
6
10
7
-90
-45
0
45
System: sys1
Phase Margin (deg): 93.3
Delay Margin (sec): 9.85e-007
At frequency (rad/sec): 1.65e+006
Closed Loop Stable? Yes
Phase(deg)
(a)
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 343
-10
0
10
20
30
40
50
Magnitude(dB)
Bode Diagram
Frequency (rad/sec)
10
3
10
4
10
5
10
6
10
7
10
8
-90
-45
0
45
System: sys2
Phase Margin (deg): 90.1
Delay Margin (sec): 3.98e-008
At frequency (rad/sec): 3.95e+007
Closed Loop Stable? Yes
Phase(deg)
(b)
10
4
10
5
10
6
10
7
0
45
90
135
180
Phase(deg)
Bode Diagram
Frequency (rad/sec)
-120
-100
-80
-60
-40
System: sys3
Gain Margin (dB): 56.9
At frequency (rad/sec): 0
Closed Loop Stable? Yes
Magnitude(dB)
(c)
Fig 3 Bode plot (both magnitude and phase) for inputs (a) vDC, (b) d and (c) wS
4. CONTROL SCHEME AND OPERATION
4.1 Control Scheme
In present work, authors have used duty ratio control (of
output voltage) using phase shift technique to control the
output power. The switching pulses as shown in Fig.4 were
applied to the four switches of the full bridge inverter shown
in Fig.5.By controlling the phase shift between the pulses
applied to S1 and S2,RMS value of output voltage is
controlled and hence the output power. Step input (reference
value) of unit magnitude in Fig.1 corresponds to zero phase
shift between the switching pulses (or D=1). As the
magnitude of step is decreased to zero, the phase shift is
gradually increased to pi and thus D is automatically
reduced to zero.
4.2 Zero Voltage Switching (ZVS)
When a pair of mosfets (present in complementary arms)
doesn’t conduct simultaneously, then the load current
completes its path via freewheeling diodes. These anti-
parallel diodes conduct after the mosfet’s output capacitance
is discharged. During diode conduction period, the voltage
across power mosfet is maintained to almost a negligible
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 344
value (equal to diode forward conduction voltage drop). It is
the interval during which mosfets should be turned ON to
achieve ZVS. If D is gradually decreased, maintaining the
resonant frequency fo, then ZVS will be lost at a certain
value when the load current becomes positive before S2
turns ON. This problem can be solved by increasing f so as
to allow more negative load current to flow before S2 turns
ON, ensuring a full discharge of the mosfet’s output
capacitance. This can be easily implemented using
microprocessor based firing circuit provided increment
required in f is an integral multiple of the clock frequency
applied to microprocessor.
In order to ensure ZVS at lower duty-ratio, the switching
frequency is increased linearly in parallel (open loop
control), according to (8).
fDff  )1(0 (8)
Here, f0 is taken as 30 kHz and ∆f as 3kHz; thus, the range
of frequency variation is limited to 30 kHz to 33 kHz.
S1
S4
S2
S3
Output
Voltage
Phase Shift
X
Y
D=X/Y
Fig 4 Switching pulses and output voltage
S+
S-
L+ L-
S1
S4
S3
S2
D1
D4
D3
D2
Fig 5 Full bridge inverter configuration
4.3 Operation & PID Controller design
A quasi square wave voltage pulse of peak to peak
magnitude of 96V is generated between the output terminals
L+ and L-(as shown in Fig.8). Fig.6 shows the voltage and
current across the switches (for an operating point
corresponding to D=0.7). From the graph it is clear that
ZVS is achieved in all the four switches.
1.2 1.3 1.4 1.5 1.6 1.7
x10
-4
-10
0
10
20
30
40
50
time(s)
Magnitude
Current(A)
Voltage(V)
Fig 6 Voltage and current across switches (for D=0.7)
From Fig.7 and Fig.8, it can be observed that magnitude of
both VL and VC is maximum at the same time (but with
opposite polarity) which is obvious in a resonant circuit and
the load current is maximum at the instant when the voltage
across the capacitor is zero, which is quite expected. The
maximum voltage stress developed across inductor during
the course of operation is around 110V and across capacitor,
it is around 62V.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 345
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x 10
-4
-150
-100
-50
0
50
100
150
Time(s)
Magnitude
VC
(V)
VL
(V)
Fig 7 Voltage across capacitor (VC) and inductor (VL) for D=0.8
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x 10
-4
-50
-40
-30
-20
-10
0
10
20
30
40
50
Time(s)
Magnitude
Voltage(V)
Current(A)
Fig 8 Output voltage and current (for D=0.8)
Fig.9 shows open loop response of the studied system with
power as the output. The curve shows that the system has a
settling time of around 0.02s under open loop condition.
Using this open loop response, a PID controller for closed
loop control system has been designed using Ziegler Nichols
method [18]. The values of Kp, Ki and Kd are obtained as
4.99, 568.33 and 0.0109 respectively and some manual
adjustment is made after that.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 346
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
Time(s)
NominalisedPower
Fig 9 Open loop response of the studied system for a unit step input
5. RESULTS AND DISCUSSIONS
A system as shown in Fig.1 was developed in
MATLAB/Simulink to study its performances and
properties under different conditions. A reference is set for
the output voltage and is compared with actual output
voltage to generate error signal which excites the PID
controller to produce manipulated phase shift which is fed to
a pulse generator to generate appropriate switching pulses.
0 0.05 0.1 0.15 0.2 0.25
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Time(s)
Magnitude
100 %
75 %
50 %
Figure 10 Response of close-loop system (with PID controller) for different reference values (step input)
Fig.10 shows the response of closed loop system with
various step reference values. The settling time of the
system is around 0.08s for a 3% band limit. However,
overshoot of the system gradually increases for lower values
of reference. Fig.11 shows the performance of PID
controller as designed in section 4.3 with intermittently
changing reference from (75% to 100% of rated value). The
curve is obtained with settling time of around 0.06s and 1.1s
for 5% and 3% band limit respectively and justifies the
performance and efficiency of designed PID controller.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 347
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Time (s)
Magnitude
Reference
Response
Fig 11 Response of closed loop system with intermittently changing reference from 75% to 100% of rated value
6. CONCLUSION
A close-loop power control of high frequency inverter for
induction cooking has been analyzed in this paper. Although
controller design is based on the linearized model of the
system near operating point corresponding to D=0.8,yet
simulation study shows that the controller works well to
control output power in the range of 50% to 100% of rated
value. The accuracy of the results obtained (in the specified
range) justifies the validity of the proposed method and
design.
REFERENCES
[1]. Crisafulli, V. ; Whirlpool Eur. srl, Cassinetta di
Biandronno, Italy ; Gallivanoni, A. ; Pastore, C. “Model
based design tool for EMC reduction using spread spectrum
techniques in induction heating platform”, 13th Int. Conf.on
Optimization of Electrical and Electronic Equipment
(OPTIM), 24-26 May 2012, Brasov,pp. 845-852.
[2]. Meng, L.C. ; Cheng, K.W.E. ; Chan, K.W., “Heating
performance improvement and field study of the induction
cooker” 3rd Int. Conf. on Power Electronics Systems and
Applications(PESA), 2009 , pp. 1-5.
[3]. Grajales, L., Sabat6, J. A., Wang. K. R., Tabisz, W. A.,
F. C. Lee, Wign, “Design of a 10 k W, 500kHz PhasaShift
Controlled Series-Resonant Inverter for Induction Heating”,
Prm. of Indutry Applications Smiety, Toronto. Canada 1993
pp. 843-849.
[4]. Jovanovi C, M. M. Hopkios, D. C., Lee, F. C., “Design
Aspects for High Frequency Off-line Quasi-Resonant
Convaters”, Prac. High FrequencyPower Conversion
Conference; Washingaton, D.C. ,1987, pp . 83-97.
[5]. Thomas, H.A. “The dependence on frequency of the
temperature-coefficient of inductance of coils”, In Proc.
Wireless Section, IEE,Vol. 14(40), 1939 , pp. 19-30.
[6]. Moreland , W. C., “The Induction Range: Its
Performance and Its Development Problems”, IEEE Trans.
On Ind. Apps., 1973, Vol. 1A-9 (1), pp. 81-85.
[7]. Lucia, O. ; Maussion, P. ; Dede, E.J. ; Burdio, J.M.,
“Induction Heating Technology and Its Applications: Past
Developments, Current Technology, and Future
Challenges”, IEEE Trans. on Industrial Electronics, Vol.
61(5), 2014, pp. 2509-2520.
[8]. Viriya, P. ; Yongyuth, N. ; Matsuse, K. “Analysis of
Transition Mode from Phase Shift to Zero-Phase Shift
Under ZVS and NON-ZVS Operation forInduction Heating
Inverter”, Pow. Conv. Conf., Nagoya (PCC '07), 2007, pp.
1512-1519.
[9]. Yoshida, D. ; Kifune, H. ; Hatanaka, Y. , “ZCS high
frequency inverter for induction heatingwith quasi-constant
frequency power control”, In Proc., 4th IEEE Int. Conf.
onPow. Elec. and Drive Syst., 2001, vol. 2, pp. 755-759.
[10]. Takami, C. ; Mishima, T. ; Nakaoka, M. , “A new ZVS
phase shift-controlled class D full-bridge high-frequency
resonant inverter for inductionheating” Int. Conf. on
Electrical Machines and Systems (ICEMS), 2012, pp. 1-6.
[11]. Bhaskar, D.V. ; Yagnyaseni, N. ; Maity, T. ;
Vishwanathan, N., “Comparison of control methods for high
frequency IH cooking applications”, Power and Energy
Systems Conference: Towards Sustainable Energy, 2014,
pp. 1-6.
[12]. rd o, J.M. ; Barragan, L.A. ; Monterde, F. ; Navarro,
D. ;Acero, J., “Asymmetrical voltage-cancellation control
for full-bridge series resonant inverters”,IEEE Transactions
on Power Electronics, 2004 , Vol. 19(2), pp. 461-469.
[13]. Lucia, O. ; Burdio, J.M. ; Mill n, I. ; Acero, J. ;
Llorente, S. , “Efficiency optimization of half-bridge series
resonant inverter with asymmetrical duty cycle control for
domestic induction heating” , 13th European Conf. on Pow.
Elec. and Apps. (EPE '09), 2009, pp. 1-6.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 348
[14]. Charette, A. ; AI Haddad, K. ; Simard, R. ;
Rajagopalan, V., “Variable Frequency and Variable Phase
Shift Control of Dual Series Resonant Converter for Utility
Interface” In Proc., 14th Annual Conf. of Ind. Elec. Society,
(IECON '8.), 1988,Vol. 3, pp. 563-568.
[15]. Tudbury, C. , “Electromagnetics in induction heating”
,IEEE Trans., Magnetics, 1974, Vol. 10(3), pp. 694-697.
[16]. Yang, E., Lee, F. C., JovMoV~C, M. M.,
“ExtendedDescribing FunctionTechnique Applied to the
Modeling of Resonant Converters”, In Proc., Virginia Pow.
Elec. Center Seminar, Blacksburg, VA, 1991,pp. 179-191.
[17]. Grajales, L. ; Lee, F.C. , “Control system design and
small-signal analysis of aphase-shift-controlled series-
resonant inverter for induction heating”, 26th Annual IEEE
Power Electronics Specialists Conference (PESC '95), 1995,
Vol. 1, pp. 450-456.
[18]. Gude, J.J. ; Kahoraho, E. , “Modified Ziegler-Nichols
method for fractional PI controllers”, IEEE Conf. on
Emerging Technologies and Factory Automation (ETFA),
2010 , pp. 1-5.

More Related Content

PDF
U4501117122
PDF
Ap35235240
PDF
Appropriate Switching State Selection to Avoid Sapacitor Imbalance in Five-Le...
PDF
A Novel Control Strategy of Indirect Matrix Converter Using Space Vector Modu...
PDF
Phase shedding in multiphase buck converters to improve the efficiency
PDF
Analysis of Modulation Strategies for Two-Stage Interleaved Voltage Source In...
PDF
11.vector control of wind driven self excited induction generator connected t...
PDF
Vector control of wind driven self excited induction generator connected to g...
U4501117122
Ap35235240
Appropriate Switching State Selection to Avoid Sapacitor Imbalance in Five-Le...
A Novel Control Strategy of Indirect Matrix Converter Using Space Vector Modu...
Phase shedding in multiphase buck converters to improve the efficiency
Analysis of Modulation Strategies for Two-Stage Interleaved Voltage Source In...
11.vector control of wind driven self excited induction generator connected t...
Vector control of wind driven self excited induction generator connected to g...

What's hot (20)

PDF
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PDF
Performance and High Robustness DPC for PWM Rectifier under Unstable VDC Bus
PDF
A novel control strategy for synchronous rectifier buck converter for improve...
PDF
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
PDF
High Power Density Multi-Mosfet-Based Series Resonant Inverter for Induction ...
PDF
D010223139
PDF
Improved Low Voltage High Speed FVF Based Current Comparator with Logical Eff...
PDF
Au4101266270
PDF
A new switching look-up table for direct power control of grid connected 3L-N...
PDF
Simulation of 3 Phase to 3 Phase Power Conversion Using Matrix Converter with...
PDF
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
PDF
Neutral Current and Frequency Response Analysis of Single and Multiple Turn F...
PDF
TOWARDS TEMPERATURE-INSENSITIVE NANOSCALE CMOS CIRCUITS WITH ADAPTIVELY REGUL...
PDF
ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR
PDF
E044043336
PDF
Ek33821826
PDF
TOWARDS TEMPERATURE-INSENSITIVE NANOSCALE CMOS CIRCUITS WITH ADAPTIVELY REGUL...
PDF
Ba4101300306
PDF
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
PDF
IRJET-Three Phase Interleaved Boost Converter
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
Performance and High Robustness DPC for PWM Rectifier under Unstable VDC Bus
A novel control strategy for synchronous rectifier buck converter for improve...
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
High Power Density Multi-Mosfet-Based Series Resonant Inverter for Induction ...
D010223139
Improved Low Voltage High Speed FVF Based Current Comparator with Logical Eff...
Au4101266270
A new switching look-up table for direct power control of grid connected 3L-N...
Simulation of 3 Phase to 3 Phase Power Conversion Using Matrix Converter with...
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
Neutral Current and Frequency Response Analysis of Single and Multiple Turn F...
TOWARDS TEMPERATURE-INSENSITIVE NANOSCALE CMOS CIRCUITS WITH ADAPTIVELY REGUL...
ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR
E044043336
Ek33821826
TOWARDS TEMPERATURE-INSENSITIVE NANOSCALE CMOS CIRCUITS WITH ADAPTIVELY REGUL...
Ba4101300306
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
IRJET-Three Phase Interleaved Boost Converter
Ad

Viewers also liked (6)

PDF
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
PDF
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
PDF
Miss Josee Harris Cover Letter & CV
PPTX
Frequency selective analyser
PDF
Process systems engineering lessons learned from the pulp and paper industr...
PDF
Commercial cooking-learning-module
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Miss Josee Harris Cover Letter & CV
Frequency selective analyser
Process systems engineering lessons learned from the pulp and paper industr...
Commercial cooking-learning-module
Ad

Similar to Control analysis of a high frequency resonant inverter for induction cooking application (20)

PDF
High gain dc dc converter with load regulation
PDF
Study and implementation of comparator in cmos 50 nm
PDF
Study and implementation of comparator in cmos 50 nm technology
PDF
Synchronous flyback converter with synchronous buck post regulator
PDF
Pi controller based of multi level upqc using dq0 transformation to improve p...
PDF
Analysis of a Quasi Resonant Switch Mode Power Supply for Low Voltage Applica...
PDF
Analysis of multiport dc dc converter in renewable energy sources
PDF
Analysis of multiport dc dc converter in renewable energy sources
PDF
THREE-PHASE OF BI-DIRECTIONAL Z-SOURCE CONVERTERS FOR VEHICLE-TO-GRID APPLICA...
PDF
Suppression methods for very fast transient over voltages on equipment of gis
PDF
Analysis of protection measures on equipment of gis for very fast transient o...
PDF
Control of inverters to support bidirectional power flow in grid connected sy...
PDF
Multilevel inverter fed induction motor drives
PDF
Modeling & analysis of standalone photovoltaic
PDF
Modeling & analysis of standalone photovoltaic system
PDF
Implementation and control of integral cycle controller for resistance spot w...
PDF
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
PDF
Vlsi implementation of a programmable low drop out voltage regulator
PDF
A fuzzy logic controlled dc dc converter for an
PDF
Modelling of fuzzy logic controller for variablestep
High gain dc dc converter with load regulation
Study and implementation of comparator in cmos 50 nm
Study and implementation of comparator in cmos 50 nm technology
Synchronous flyback converter with synchronous buck post regulator
Pi controller based of multi level upqc using dq0 transformation to improve p...
Analysis of a Quasi Resonant Switch Mode Power Supply for Low Voltage Applica...
Analysis of multiport dc dc converter in renewable energy sources
Analysis of multiport dc dc converter in renewable energy sources
THREE-PHASE OF BI-DIRECTIONAL Z-SOURCE CONVERTERS FOR VEHICLE-TO-GRID APPLICA...
Suppression methods for very fast transient over voltages on equipment of gis
Analysis of protection measures on equipment of gis for very fast transient o...
Control of inverters to support bidirectional power flow in grid connected sy...
Multilevel inverter fed induction motor drives
Modeling & analysis of standalone photovoltaic
Modeling & analysis of standalone photovoltaic system
Implementation and control of integral cycle controller for resistance spot w...
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
Vlsi implementation of a programmable low drop out voltage regulator
A fuzzy logic controlled dc dc converter for an
Modelling of fuzzy logic controller for variablestep

More from eSAT Journals (20)

PDF
Mechanical properties of hybrid fiber reinforced concrete for pavements
PDF
Material management in construction – a case study
PDF
Managing drought short term strategies in semi arid regions a case study
PDF
Life cycle cost analysis of overlay for an urban road in bangalore
PDF
Laboratory studies of dense bituminous mixes ii with reclaimed asphalt materials
PDF
Laboratory investigation of expansive soil stabilized with natural inorganic ...
PDF
Influence of reinforcement on the behavior of hollow concrete block masonry p...
PDF
Influence of compaction energy on soil stabilized with chemical stabilizer
PDF
Geographical information system (gis) for water resources management
PDF
Forest type mapping of bidar forest division, karnataka using geoinformatics ...
PDF
Factors influencing compressive strength of geopolymer concrete
PDF
Experimental investigation on circular hollow steel columns in filled with li...
PDF
Experimental behavior of circular hsscfrc filled steel tubular columns under ...
PDF
Evaluation of punching shear in flat slabs
PDF
Evaluation of performance of intake tower dam for recent earthquake in india
PDF
Evaluation of operational efficiency of urban road network using travel time ...
PDF
Estimation of surface runoff in nallur amanikere watershed using scs cn method
PDF
Estimation of morphometric parameters and runoff using rs & gis techniques
PDF
Effect of variation of plastic hinge length on the results of non linear anal...
PDF
Effect of use of recycled materials on indirect tensile strength of asphalt c...
Mechanical properties of hybrid fiber reinforced concrete for pavements
Material management in construction – a case study
Managing drought short term strategies in semi arid regions a case study
Life cycle cost analysis of overlay for an urban road in bangalore
Laboratory studies of dense bituminous mixes ii with reclaimed asphalt materials
Laboratory investigation of expansive soil stabilized with natural inorganic ...
Influence of reinforcement on the behavior of hollow concrete block masonry p...
Influence of compaction energy on soil stabilized with chemical stabilizer
Geographical information system (gis) for water resources management
Forest type mapping of bidar forest division, karnataka using geoinformatics ...
Factors influencing compressive strength of geopolymer concrete
Experimental investigation on circular hollow steel columns in filled with li...
Experimental behavior of circular hsscfrc filled steel tubular columns under ...
Evaluation of punching shear in flat slabs
Evaluation of performance of intake tower dam for recent earthquake in india
Evaluation of operational efficiency of urban road network using travel time ...
Estimation of surface runoff in nallur amanikere watershed using scs cn method
Estimation of morphometric parameters and runoff using rs & gis techniques
Effect of variation of plastic hinge length on the results of non linear anal...
Effect of use of recycled materials on indirect tensile strength of asphalt c...

Recently uploaded (20)

PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPT
Project quality management in manufacturing
PPTX
Lecture Notes Electrical Wiring System Components
PDF
PPT on Performance Review to get promotions
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
web development for engineering and engineering
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Construction Project Organization Group 2.pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
UNIT 4 Total Quality Management .pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
additive manufacturing of ss316l using mig welding
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Project quality management in manufacturing
Lecture Notes Electrical Wiring System Components
PPT on Performance Review to get promotions
Operating System & Kernel Study Guide-1 - converted.pdf
bas. eng. economics group 4 presentation 1.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
web development for engineering and engineering
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Construction Project Organization Group 2.pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
UNIT 4 Total Quality Management .pptx

Control analysis of a high frequency resonant inverter for induction cooking application

  • 1. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 340 CONTROL ANALYSIS OF A HIGH FREQUENCY RESONANT INVERTER FOR INDUCTION COOKING APPLICATION C. P. Roy1 1 Bachelor of Technology, Department of Electrical Engineering, Indian School of Mines, Dhanbad, India Abstract Stability of three possible close-loop control of a series resonant inverter is studied for induction cooking application. Ultimately, a single close-loop control technique is proposed in this work which can ensure both the power control as well as a satisfactory zero voltage switching (ZVS) in a finite control range near the operating point. A phase shift controlled series resonant inverter is used as a power supply for an induction cooking system. Its linearized model is developed for small signal analysis and a PID controller is designed for the proposed close-loop control and its performances are judged under various operating conditions using MATLAB/Simulink® platform. Keywords: ZVS, linearization, bode plot, step response, PID control. --------------------------------------------------------------------***---------------------------------------------------------------------- 1. INTRODUCTION Induction cooking employs generation of thermal energy directly into the cooking vessel. In order to achieve efficient transfer of energy,thermal dissipation in the electrical supply system and the coil must be as low as possible in comparison to heat generated in the vessel. Mechanically this is achieved by the special design of vessel which permits maximum flux linkage [1, 2]. From the electrical point of view, the load circuitry should be made to be in resonance at the supply switching frequency so that maximum power transfer can be ensured [3, 4]. However, in case of high power induction heating systems, the variation in resistance and inductance of the specimen at the high temperature especially when the work-piece reaches the curie temperature poses a major problem by changing the resonant frequency of the load circuit [5]. Thus, in order to have a robust design, the phase margin and the gain margin of the system should be well beyond the expected limit. For induction cooking, supply switching frequency should be sufficiently high to increase heat generation. Lower limit is set by the acoustic noise generated in the supply and the utensils at the fundamental and the second harmonic to 20 kHz [6, 7]. Upper limit is decided by the problems posed on power semiconductor switches and their performance at the higher frequency owing to dissipation of heat generated in them. This problem can be solved by using special switching techniques like zero voltage switching (ZVS) [8], applied to voltage source inverters and zero current switching (ZCS) [9], applied to current source inverters. Using these techniques, either turn-ON or turn-OFF losses can be reduced to zero by making the load slightly inductive or capacitive. However, capacitive loads have inherent demerit of increase in diode reverse recovery stress which may result in voltage spikes in output voltage. To achieve ZVS in voltage source inverters, switching frequency is made slightly higher than the resonant frequency so that the load would be inductive and the current will be lagging in nature [10].Moreover, the frequency at which ZVS is achieved increases with the increase in phase shift between the switching pulses. For different food stuffs, there might be a demand of different and accurate power transfer to maintain a given temperature profile. This can be ensured by controlling the output voltage of the resonant inverter. There are various methods described in literature for this purpose like phase shift control (PSC) [10, 11], asymmetrical voltage control (AVC) [12], asymmetrical duty-cycle control (ADC) [13]. Out of these, PSC produces symmetrical alternating output voltage (i.e. voltage pulse with equal positive and negative area) whereas AVC and ADC gives an asymmetrical output voltage pulse with a considerable DC content at the lower reference value. In AVC, negative area is constant and positive area is a function of duty-ratio; whereas in case of ADC both positive as well as negative areas are the functions of duty-ratio (with one being increasing and another being decreasing in nature). Thus, they can be used only for a limited band of operation. Apart from this, PSC has the advantage of simplicity in its implementation. Fig.1 shows block diagram for the proposed control scheme. PID Pulse Generator INVERTER LOAD SENSOR + - Error Phase Shift Reference Voltage Output Voltage Pulses Fig 1 Control scheme for controlling the output power In present work, a phase shift controlled voltage source series resonant inverter is used as power source for the induction cooker. Its switching frequency is linearly varied (within a finite acceptable range) [14] with change in phase
  • 2. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 341 shift to ensure ZVS and its performances have been analyzed for different reference values. Rest of the sections have been categorized as such: section 2- system modeling (which presents a critical analysis and trade-offs between various complementary factors for load and frequency selection), section 3- small signal modeling, section 4- control scheme and operation, section 5- results and discussions and section 6- conclusion. 2. SYSTEM MODELING 2.1. Load Parameters For an induction cooker, the load is the utensil in which heat is to be generated. For a fixed geometry and switching frequency, the selection of utensil material must be proper to obtain efficient heating. The surface resistance (Rs) offered by these materials can be empirically given by (1) [6, 15].  /SR (1) Where, Ψ is the resistivity of the material and ∆ is the skin depth. Hence, conductors with low value of resistivity and high skin depth results in less resistance offered to the eddy currents and thus in less generation of heat. Generally, conventional magnetic materials with quite low skin depth are used in such utensils. Again, the value of load resistance should not be low enough to give a steep selectivity profile at the resonant frequency (fo) (as shown in Fig.2) so that a slight variation in switching frequency (f) doesn’t have a much impact on output power. In present work authors have considered a total load resistance of 3.2Ω. Since, the load is series resonant (at fundamental switching frequency), the values of inductance (L) and capacitance (C) are so chosen that they form an under damped circuit to produce required sinusoidal oscillation. This can be ensured approximately by fulfilling (2) c L R 2 (2) Where, R is the equivalent series resistant (ESR) of the complete circuit including the resistance of the switches as well as that of the coil and capacitor. Values parameters of load and their values have been tabulated in Table-1. Table 1 Load Parameters Quantity Symbol Values Load Resistance Rs 3.2 Ω Inductance of Coil L 34 µH Output Capacitance C 1 µF Resistance of Coil RL 0.53 Ω Resistance of Capacitor RC 0.1 Ω Resonant Frequency fo 27.272 kHz Characteristic Impedance Zo 5.83 Ω 2.2. Frequency Selection For a full bridge inverter, the relation between output power (Po) and the f can be given by (3)                      22 22 2 8 f f f f Z R Z RV P O OO L O Ldc o  (3) Fig.2 shows the variation of nominalised output power with nominalised switching frequency, (f/fo) for the load considered above. To ensure ZVS, f should be either slightly less than or greater than the fo. However, operation below resonance has the drawback of increased diode reverse recovery stress which results in spikes in output voltage. Thus, in the present work, load has been made slightly inductive by selecting f as 1.1 times fo (i.e. 30 kHz) and is linearly increased to 1.2 times fo (i.e. 33 kHz) as the phase shift is increased to 180° (discussed in detail in section-4). This increment doesn’t have a much impact on the variation of output power as shown by blue curve in Fig.2. 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 0 0.5 1 1.5 2 2.5 3 3.5 NominalisedFrequency NominalisedPower R/Zo =0.8 R/Zo =0.5 R/Zo =1 Fig 2 Variation of nominalised power with nominalised frequency for different ratios of R/Zo
  • 3. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 342 2.3. Switch Parameters A full bridge inverter with power mosfets as the switching element is used in the present study. Details regarding various parameters have been provided in Table-2. Since f > fo, turn-ON switching loss will be negligible for the switch (as observed from Fig.6). However, turn-OFF loss will be present. Table 2 specification of switch Quantity Symbol Values Mosfet ON Resistance RDS 0.4 Ω Diode ON Resistance Rd 0.1 Ω Diode Forward Voltage Drop VT 0.7 V Maximum Current Stress ISM 15 A Maximum Voltage Stress VSM 48 V DC Source Voltage VDC 48 V 3. SMALL SIGNAL MODELING State space model of the system (inverter + load) has been developed using harmonic approximation for the inductor current and capacitor voltage and then applying extended describing technique [16] to the input voltage [17]. The system is then linearized at an arbitrary operating point using Tailor’s series expansion method to give a small signal model as shown by (4) to (7) - -1 0 ^ 24 - -1 sin cos - 0 ^2 2 0 0 - 1 ^ 0 0 0 0 0 0 - 1 0 - 0 R WS L L VDC vR D D I DCCWo L LS L Lx x dIS W VS C wSC VS WS C                                                  (4) 0 0y RI RI xS C    (5) ^ ^ ^ ^ T x i i v vS C S C       (6) ^ Opy  (7) Where, lower case letters with a sign of kappa (^) over them represent a small amplitude perturbation and the upper case letters represent corresponding values of the parameters at an arbitrary operating point. Meanings of other symbols have been described in Table-3. Table3Description of symbols Symbols Description ic Magnitude of cosine component of harmonically approximated output current is Magnitude of sine component of harmonically approximated output current vc Magnitude of cosine component of harmonically approximated output voltage vs Magnitude of sine component of harmonically approximated output voltage d Duty ratio of output voltage wave form ws Switching frequency From the derived model, it can be observed that Po can be controlled by varying either of the three inputs viz. vDC, wS or d. Stability of the system is analyzed using Bode plot and it is seen that it is stable for all the three inputs as shown in Fig.3. -20 -10 0 10 20 Magnitude(dB) Bode Diagram Frequency (rad/sec) 10 3 10 4 10 5 10 6 10 7 -90 -45 0 45 System: sys1 Phase Margin (deg): 93.3 Delay Margin (sec): 9.85e-007 At frequency (rad/sec): 1.65e+006 Closed Loop Stable? Yes Phase(deg) (a)
  • 4. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 343 -10 0 10 20 30 40 50 Magnitude(dB) Bode Diagram Frequency (rad/sec) 10 3 10 4 10 5 10 6 10 7 10 8 -90 -45 0 45 System: sys2 Phase Margin (deg): 90.1 Delay Margin (sec): 3.98e-008 At frequency (rad/sec): 3.95e+007 Closed Loop Stable? Yes Phase(deg) (b) 10 4 10 5 10 6 10 7 0 45 90 135 180 Phase(deg) Bode Diagram Frequency (rad/sec) -120 -100 -80 -60 -40 System: sys3 Gain Margin (dB): 56.9 At frequency (rad/sec): 0 Closed Loop Stable? Yes Magnitude(dB) (c) Fig 3 Bode plot (both magnitude and phase) for inputs (a) vDC, (b) d and (c) wS 4. CONTROL SCHEME AND OPERATION 4.1 Control Scheme In present work, authors have used duty ratio control (of output voltage) using phase shift technique to control the output power. The switching pulses as shown in Fig.4 were applied to the four switches of the full bridge inverter shown in Fig.5.By controlling the phase shift between the pulses applied to S1 and S2,RMS value of output voltage is controlled and hence the output power. Step input (reference value) of unit magnitude in Fig.1 corresponds to zero phase shift between the switching pulses (or D=1). As the magnitude of step is decreased to zero, the phase shift is gradually increased to pi and thus D is automatically reduced to zero. 4.2 Zero Voltage Switching (ZVS) When a pair of mosfets (present in complementary arms) doesn’t conduct simultaneously, then the load current completes its path via freewheeling diodes. These anti- parallel diodes conduct after the mosfet’s output capacitance is discharged. During diode conduction period, the voltage across power mosfet is maintained to almost a negligible
  • 5. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 344 value (equal to diode forward conduction voltage drop). It is the interval during which mosfets should be turned ON to achieve ZVS. If D is gradually decreased, maintaining the resonant frequency fo, then ZVS will be lost at a certain value when the load current becomes positive before S2 turns ON. This problem can be solved by increasing f so as to allow more negative load current to flow before S2 turns ON, ensuring a full discharge of the mosfet’s output capacitance. This can be easily implemented using microprocessor based firing circuit provided increment required in f is an integral multiple of the clock frequency applied to microprocessor. In order to ensure ZVS at lower duty-ratio, the switching frequency is increased linearly in parallel (open loop control), according to (8). fDff  )1(0 (8) Here, f0 is taken as 30 kHz and ∆f as 3kHz; thus, the range of frequency variation is limited to 30 kHz to 33 kHz. S1 S4 S2 S3 Output Voltage Phase Shift X Y D=X/Y Fig 4 Switching pulses and output voltage S+ S- L+ L- S1 S4 S3 S2 D1 D4 D3 D2 Fig 5 Full bridge inverter configuration 4.3 Operation & PID Controller design A quasi square wave voltage pulse of peak to peak magnitude of 96V is generated between the output terminals L+ and L-(as shown in Fig.8). Fig.6 shows the voltage and current across the switches (for an operating point corresponding to D=0.7). From the graph it is clear that ZVS is achieved in all the four switches. 1.2 1.3 1.4 1.5 1.6 1.7 x10 -4 -10 0 10 20 30 40 50 time(s) Magnitude Current(A) Voltage(V) Fig 6 Voltage and current across switches (for D=0.7) From Fig.7 and Fig.8, it can be observed that magnitude of both VL and VC is maximum at the same time (but with opposite polarity) which is obvious in a resonant circuit and the load current is maximum at the instant when the voltage across the capacitor is zero, which is quite expected. The maximum voltage stress developed across inductor during the course of operation is around 110V and across capacitor, it is around 62V.
  • 6. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 345 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 x 10 -4 -150 -100 -50 0 50 100 150 Time(s) Magnitude VC (V) VL (V) Fig 7 Voltage across capacitor (VC) and inductor (VL) for D=0.8 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 x 10 -4 -50 -40 -30 -20 -10 0 10 20 30 40 50 Time(s) Magnitude Voltage(V) Current(A) Fig 8 Output voltage and current (for D=0.8) Fig.9 shows open loop response of the studied system with power as the output. The curve shows that the system has a settling time of around 0.02s under open loop condition. Using this open loop response, a PID controller for closed loop control system has been designed using Ziegler Nichols method [18]. The values of Kp, Ki and Kd are obtained as 4.99, 568.33 and 0.0109 respectively and some manual adjustment is made after that.
  • 7. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 346 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time(s) NominalisedPower Fig 9 Open loop response of the studied system for a unit step input 5. RESULTS AND DISCUSSIONS A system as shown in Fig.1 was developed in MATLAB/Simulink to study its performances and properties under different conditions. A reference is set for the output voltage and is compared with actual output voltage to generate error signal which excites the PID controller to produce manipulated phase shift which is fed to a pulse generator to generate appropriate switching pulses. 0 0.05 0.1 0.15 0.2 0.25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time(s) Magnitude 100 % 75 % 50 % Figure 10 Response of close-loop system (with PID controller) for different reference values (step input) Fig.10 shows the response of closed loop system with various step reference values. The settling time of the system is around 0.08s for a 3% band limit. However, overshoot of the system gradually increases for lower values of reference. Fig.11 shows the performance of PID controller as designed in section 4.3 with intermittently changing reference from (75% to 100% of rated value). The curve is obtained with settling time of around 0.06s and 1.1s for 5% and 3% band limit respectively and justifies the performance and efficiency of designed PID controller.
  • 8. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 347 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Time (s) Magnitude Reference Response Fig 11 Response of closed loop system with intermittently changing reference from 75% to 100% of rated value 6. CONCLUSION A close-loop power control of high frequency inverter for induction cooking has been analyzed in this paper. Although controller design is based on the linearized model of the system near operating point corresponding to D=0.8,yet simulation study shows that the controller works well to control output power in the range of 50% to 100% of rated value. The accuracy of the results obtained (in the specified range) justifies the validity of the proposed method and design. REFERENCES [1]. Crisafulli, V. ; Whirlpool Eur. srl, Cassinetta di Biandronno, Italy ; Gallivanoni, A. ; Pastore, C. “Model based design tool for EMC reduction using spread spectrum techniques in induction heating platform”, 13th Int. Conf.on Optimization of Electrical and Electronic Equipment (OPTIM), 24-26 May 2012, Brasov,pp. 845-852. [2]. Meng, L.C. ; Cheng, K.W.E. ; Chan, K.W., “Heating performance improvement and field study of the induction cooker” 3rd Int. Conf. on Power Electronics Systems and Applications(PESA), 2009 , pp. 1-5. [3]. Grajales, L., Sabat6, J. A., Wang. K. R., Tabisz, W. A., F. C. Lee, Wign, “Design of a 10 k W, 500kHz PhasaShift Controlled Series-Resonant Inverter for Induction Heating”, Prm. of Indutry Applications Smiety, Toronto. Canada 1993 pp. 843-849. [4]. Jovanovi C, M. M. Hopkios, D. C., Lee, F. C., “Design Aspects for High Frequency Off-line Quasi-Resonant Convaters”, Prac. High FrequencyPower Conversion Conference; Washingaton, D.C. ,1987, pp . 83-97. [5]. Thomas, H.A. “The dependence on frequency of the temperature-coefficient of inductance of coils”, In Proc. Wireless Section, IEE,Vol. 14(40), 1939 , pp. 19-30. [6]. Moreland , W. C., “The Induction Range: Its Performance and Its Development Problems”, IEEE Trans. On Ind. Apps., 1973, Vol. 1A-9 (1), pp. 81-85. [7]. Lucia, O. ; Maussion, P. ; Dede, E.J. ; Burdio, J.M., “Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges”, IEEE Trans. on Industrial Electronics, Vol. 61(5), 2014, pp. 2509-2520. [8]. Viriya, P. ; Yongyuth, N. ; Matsuse, K. “Analysis of Transition Mode from Phase Shift to Zero-Phase Shift Under ZVS and NON-ZVS Operation forInduction Heating Inverter”, Pow. Conv. Conf., Nagoya (PCC '07), 2007, pp. 1512-1519. [9]. Yoshida, D. ; Kifune, H. ; Hatanaka, Y. , “ZCS high frequency inverter for induction heatingwith quasi-constant frequency power control”, In Proc., 4th IEEE Int. Conf. onPow. Elec. and Drive Syst., 2001, vol. 2, pp. 755-759. [10]. Takami, C. ; Mishima, T. ; Nakaoka, M. , “A new ZVS phase shift-controlled class D full-bridge high-frequency resonant inverter for inductionheating” Int. Conf. on Electrical Machines and Systems (ICEMS), 2012, pp. 1-6. [11]. Bhaskar, D.V. ; Yagnyaseni, N. ; Maity, T. ; Vishwanathan, N., “Comparison of control methods for high frequency IH cooking applications”, Power and Energy Systems Conference: Towards Sustainable Energy, 2014, pp. 1-6. [12]. rd o, J.M. ; Barragan, L.A. ; Monterde, F. ; Navarro, D. ;Acero, J., “Asymmetrical voltage-cancellation control for full-bridge series resonant inverters”,IEEE Transactions on Power Electronics, 2004 , Vol. 19(2), pp. 461-469. [13]. Lucia, O. ; Burdio, J.M. ; Mill n, I. ; Acero, J. ; Llorente, S. , “Efficiency optimization of half-bridge series resonant inverter with asymmetrical duty cycle control for domestic induction heating” , 13th European Conf. on Pow. Elec. and Apps. (EPE '09), 2009, pp. 1-6.
  • 9. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 348 [14]. Charette, A. ; AI Haddad, K. ; Simard, R. ; Rajagopalan, V., “Variable Frequency and Variable Phase Shift Control of Dual Series Resonant Converter for Utility Interface” In Proc., 14th Annual Conf. of Ind. Elec. Society, (IECON '8.), 1988,Vol. 3, pp. 563-568. [15]. Tudbury, C. , “Electromagnetics in induction heating” ,IEEE Trans., Magnetics, 1974, Vol. 10(3), pp. 694-697. [16]. Yang, E., Lee, F. C., JovMoV~C, M. M., “ExtendedDescribing FunctionTechnique Applied to the Modeling of Resonant Converters”, In Proc., Virginia Pow. Elec. Center Seminar, Blacksburg, VA, 1991,pp. 179-191. [17]. Grajales, L. ; Lee, F.C. , “Control system design and small-signal analysis of aphase-shift-controlled series- resonant inverter for induction heating”, 26th Annual IEEE Power Electronics Specialists Conference (PESC '95), 1995, Vol. 1, pp. 450-456. [18]. Gude, J.J. ; Kahoraho, E. , “Modified Ziegler-Nichols method for fractional PI controllers”, IEEE Conf. on Emerging Technologies and Factory Automation (ETFA), 2010 , pp. 1-5.