SlideShare a Scribd company logo
Introduction to Algorithms
6.046J
Lecture 1
Prof. Shafi Goldwasser
Prof. Erik Demaine
L1.2
Welcome to Introduction to
Algorithms, Spring 2004
Handouts
1. Course Information
2. Course Calendar
3. Problem Set 1
4. Akra-Bazzi Handout
L1.3
Course information
1. Staff
2. Prerequisites
3. Lectures & Recitations
4. Handouts
5. Textbook (CLRS)
6. Website
8. Extra Help
9. Registration
10.Problem sets
11.Describing algorithms
12.Grading policy
13.Collaboration policy
L1.4
What is course about?
The theoretical study of design and
analysis of computer algorithms
Basic goals for an algorithm:
• always correct
• always terminates
• This class: performance
 Performance often draws the line betwee
what is possible and what is impossible.
L1.5
Design and Analysis of Algorithms
• Analysis: predict the cost of an algorithm in
terms of resources and performance
• Design: design algorithms which minimize the
cost
L1.7
The problem of sorting
Input: sequence a1, a2, …, an of numbers.
Example:
Input: 8 2 4 9 3 6
Output: 2 3 4 6 8 9
Output: permutation a'1, a'2, …, a'n such
that a'1  a'2 …  a'n .
L1.8
Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
for j ← 2 to n
do key ← A[ j]
i ← j – 1
while i > 0 and A[i] > key
do A[i+1] ← A[i]
i ← i – 1
A[i+1] = key
“pseudocode”
i j
key
sorted
A:
1 n
L1.9
Example of insertion sort
8 2 4 9 3 6
L1.10
Example of insertion sort
8 2 4 9 3 6
L1.11
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
L1.12
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
L1.13
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
L1.14
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
L1.15
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
L1.16
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
L1.17
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
L1.18
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
L1.19
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
2 3 4 6 8 9 done
L1.20
Running time
• The running time depends on the input: an
already sorted sequence is easier to sort.
• Major Simplifying Convention:
Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.
TA(n) = time of A on length n inputs
• Generally, we seek upper bounds on the
running time, to have a guarantee of
performance.
L1.21
Kinds of analyses
Worst-case: (usually)
• T(n) = maximum time of algorithm
on any input of size n.
Average-case: (sometimes)
• T(n) = expected time of algorithm
over all inputs of size n.
• Need assumption of statistical
distribution of inputs.
Best-case: (NEVER)
• Cheat with a slow algorithm that
works fast on some input.
L1.22
Machine-independent time
What is insertion sort’s worst-case time?
BIG IDEAS:
• Ignore machine dependent constants,
otherwise impossible to verify and to compare algorithms
• Look at growth of T(n) as n → ∞ .
“Asymptotic Analysis”
L1.23
-notation
• Drop low-order terms; ignore leading constants.
• Example: 3n3
+ 90n2
– 5n + 6046 = (n3
)
DEF:
(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }
Basic manipulations:
L1.24
Asymptotic performance
n
T(n)
n0
.
• Asymptotic analysis is a
useful tool to help to
structure our thinking
toward better algorithm
• We shouldn’t ignore
asymptotically
slower algorithms,
however.
• Real-world design
situations often call for a
When n gets large enough, a (n2
) algorithm
always beats a (n3
) algorithm.
L1.25
Insertion sort analysis
Worst case: Input reverse sorted.
 






n
j
n
j
n
T
2
2
)
(
)
(
Average case: All permutations equally likely.
 






n
j
n
j
n
T
2
2
)
2
/
(
)
(
Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.
[arithmetic series]
L1.26
Example 2: Integer
Multiplication
• Let X = A B and Y = C D where A,B,C
and D are n/2 bit integers
• Simple Method: XY = (2n/2
A+B)(2n/2
C+D)
• Running Time Recurrence
T(n) < 4T(n/2) + 100n
• Solution T(n) = (n2
)
L1.27
Better Integer Multiplication
• Let X = A B and Y = C D where A,B,C and D
are n/2 bit integers
• Karatsuba:
XY = (2n/2
+2n
)AC+2n/
2(A-B)(C-D) + (2n/2
+1) BD
• Running Time Recurrence
T(n) < 3T(n/2) + 100n
• Solution: (n) = O(n log 3
)
L1.28
Example 3:Merge sort
MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.
Key subroutine: MERGE
L1.29
Merging two sorted arrays
20
13
7
2
12
11
9
1
L1.30
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
L1.31
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
L1.32
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
L1.33
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
L1.34
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
L1.35
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
L1.36
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
L1.37
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
L1.38
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
L1.39
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
L1.40
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
12
L1.41
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
12
Time = (n) to merge a total
of n elements (linear time).
L1.42
Analyzing merge sort
MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists
T(n)
(1)
2T(n/2)
(n)
Sloppiness: Should be T( n/2 ) + T( n/2 ) ,
but it turns out not to matter asymptotically.
L1.43
Recurrence for merge sort
T(n) =
(1) if n = 1;
2T(n/2) + (n) if n > 1.
• We shall usually omit stating the base
case when T(n) = (1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.
• Lecture 2 provides several ways to find a
good upper bound on T(n).
L1.44
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
L1.45
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
T(n)
L1.46
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
T(n/2) T(n/2)
cn
L1.47
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
T(n/4) T(n/4) T(n/4) T(n/4)
cn/2 cn/2
L1.48
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
L1.49
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
L1.50
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
cn
L1.51
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
cn
cn
L1.52
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
cn
cn
cn
…
L1.53
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
cn
cn
cn
#leaves = n (n)
…
L1.54
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
(1)
…
h = lg n
cn
cn
cn
#leaves = n (n)
Total(n lg n)
…
L1.55
Conclusions
• (n lg n) grows more slowly than (n2
).
• Therefore, merge sort asymptotically
beats insertion sort in the worst case.
• In practice, merge sort beats insertion
sort for n > 30 or so.

More Related Content

PPT
l1.ppt
PPT
l1.ppt
PPT
Welcome to Introduction to Algorithms, Spring 2004
PDF
Introduction of Algorithm.pdf
PPT
PPT
Introduction to Algorithms- Design and analysis of Algorithms
PPTX
Algorithim lec1.pptx
PDF
Alg_Wks1_2.pdflklokjbhvkv jv .v.vk.hk kv h/k
l1.ppt
l1.ppt
Welcome to Introduction to Algorithms, Spring 2004
Introduction of Algorithm.pdf
Introduction to Algorithms- Design and analysis of Algorithms
Algorithim lec1.pptx
Alg_Wks1_2.pdflklokjbhvkv jv .v.vk.hk kv h/k

Similar to course information of design analysis of alg (20)

PPT
MITP Ch 2jbhjbhjbhjbhjbhjb Sbhjblides.ppt
PPT
Algorithm Design and Analysis
PPT
Introduction
PPTX
Unit 1.pptx
PPT
Algorithm.ppt
PDF
Chp-1 Quick Review of basic concepts.pdf
PDF
Data Structures (BE)
PPT
Algorithm in Computer, Sorting and Notations
PPTX
Algorithms - Rocksolid Tour 2013
PDF
DAA - chapter 1.pdf
PPT
1-Chapter One - Analysis of Algorithms.ppt
PPTX
ch16.pptx
PPTX
ch16 (1).pptx
PPTX
Lecture 7_introduction_algorithms.pptx
PPTX
Lecture 4 (1).pptx
PDF
PDF
Ln liers
PDF
Unit-1 DAA_Notes.pdf
PPT
03_sorting123456789454545454545444543.ppt
MITP Ch 2jbhjbhjbhjbhjbhjb Sbhjblides.ppt
Algorithm Design and Analysis
Introduction
Unit 1.pptx
Algorithm.ppt
Chp-1 Quick Review of basic concepts.pdf
Data Structures (BE)
Algorithm in Computer, Sorting and Notations
Algorithms - Rocksolid Tour 2013
DAA - chapter 1.pdf
1-Chapter One - Analysis of Algorithms.ppt
ch16.pptx
ch16 (1).pptx
Lecture 7_introduction_algorithms.pptx
Lecture 4 (1).pptx
Ln liers
Unit-1 DAA_Notes.pdf
03_sorting123456789454545454545444543.ppt
Ad

Recently uploaded (20)

PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Basic Mud Logging Guide for educational purpose
PPTX
master seminar digital applications in india
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Cell Types and Its function , kingdom of life
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
VCE English Exam - Section C Student Revision Booklet
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
O5-L3 Freight Transport Ops (International) V1.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pre independence Education in Inndia.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Insiders guide to clinical Medicine.pdf
TR - Agricultural Crops Production NC III.pdf
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Basic Mud Logging Guide for educational purpose
master seminar digital applications in india
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pharma ospi slides which help in ospi learning
Cell Types and Its function , kingdom of life
Ad

course information of design analysis of alg

  • 1. Introduction to Algorithms 6.046J Lecture 1 Prof. Shafi Goldwasser Prof. Erik Demaine
  • 2. L1.2 Welcome to Introduction to Algorithms, Spring 2004 Handouts 1. Course Information 2. Course Calendar 3. Problem Set 1 4. Akra-Bazzi Handout
  • 3. L1.3 Course information 1. Staff 2. Prerequisites 3. Lectures & Recitations 4. Handouts 5. Textbook (CLRS) 6. Website 8. Extra Help 9. Registration 10.Problem sets 11.Describing algorithms 12.Grading policy 13.Collaboration policy
  • 4. L1.4 What is course about? The theoretical study of design and analysis of computer algorithms Basic goals for an algorithm: • always correct • always terminates • This class: performance  Performance often draws the line betwee what is possible and what is impossible.
  • 5. L1.5 Design and Analysis of Algorithms • Analysis: predict the cost of an algorithm in terms of resources and performance • Design: design algorithms which minimize the cost
  • 6. L1.7 The problem of sorting Input: sequence a1, a2, …, an of numbers. Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Output: permutation a'1, a'2, …, a'n such that a'1  a'2 …  a'n .
  • 7. L1.8 Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i] i ← i – 1 A[i+1] = key “pseudocode” i j key sorted A: 1 n
  • 8. L1.9 Example of insertion sort 8 2 4 9 3 6
  • 9. L1.10 Example of insertion sort 8 2 4 9 3 6
  • 10. L1.11 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6
  • 11. L1.12 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6
  • 12. L1.13 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6
  • 13. L1.14 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6
  • 14. L1.15 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6
  • 15. L1.16 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6
  • 16. L1.17 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6
  • 17. L1.18 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6
  • 18. L1.19 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 2 3 4 6 8 9 done
  • 19. L1.20 Running time • The running time depends on the input: an already sorted sequence is easier to sort. • Major Simplifying Convention: Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones. TA(n) = time of A on length n inputs • Generally, we seek upper bounds on the running time, to have a guarantee of performance.
  • 20. L1.21 Kinds of analyses Worst-case: (usually) • T(n) = maximum time of algorithm on any input of size n. Average-case: (sometimes) • T(n) = expected time of algorithm over all inputs of size n. • Need assumption of statistical distribution of inputs. Best-case: (NEVER) • Cheat with a slow algorithm that works fast on some input.
  • 21. L1.22 Machine-independent time What is insertion sort’s worst-case time? BIG IDEAS: • Ignore machine dependent constants, otherwise impossible to verify and to compare algorithms • Look at growth of T(n) as n → ∞ . “Asymptotic Analysis”
  • 22. L1.23 -notation • Drop low-order terms; ignore leading constants. • Example: 3n3 + 90n2 – 5n + 6046 = (n3 ) DEF: (g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that 0  c1 g(n)  f (n)  c2 g(n) for all n  n0 } Basic manipulations:
  • 23. L1.24 Asymptotic performance n T(n) n0 . • Asymptotic analysis is a useful tool to help to structure our thinking toward better algorithm • We shouldn’t ignore asymptotically slower algorithms, however. • Real-world design situations often call for a When n gets large enough, a (n2 ) algorithm always beats a (n3 ) algorithm.
  • 24. L1.25 Insertion sort analysis Worst case: Input reverse sorted.         n j n j n T 2 2 ) ( ) ( Average case: All permutations equally likely.         n j n j n T 2 2 ) 2 / ( ) ( Is insertion sort a fast sorting algorithm? • Moderately so, for small n. • Not at all, for large n. [arithmetic series]
  • 25. L1.26 Example 2: Integer Multiplication • Let X = A B and Y = C D where A,B,C and D are n/2 bit integers • Simple Method: XY = (2n/2 A+B)(2n/2 C+D) • Running Time Recurrence T(n) < 4T(n/2) + 100n • Solution T(n) = (n2 )
  • 26. L1.27 Better Integer Multiplication • Let X = A B and Y = C D where A,B,C and D are n/2 bit integers • Karatsuba: XY = (2n/2 +2n )AC+2n/ 2(A-B)(C-D) + (2n/2 +1) BD • Running Time Recurrence T(n) < 3T(n/2) + 100n • Solution: (n) = O(n log 3 )
  • 27. L1.28 Example 3:Merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . n/2 ] and A[ n/2+1 . . n ] . 3. “Merge” the 2 sorted lists. Key subroutine: MERGE
  • 28. L1.29 Merging two sorted arrays 20 13 7 2 12 11 9 1
  • 29. L1.30 Merging two sorted arrays 20 13 7 2 12 11 9 1 1
  • 30. L1.31 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9
  • 31. L1.32 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2
  • 32. L1.33 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9
  • 33. L1.34 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7
  • 34. L1.35 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9
  • 35. L1.36 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9
  • 36. L1.37 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11
  • 37. L1.38 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11
  • 38. L1.39 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12
  • 39. L1.40 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12
  • 40. L1.41 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12 Time = (n) to merge a total of n elements (linear time).
  • 41. L1.42 Analyzing merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . n/2 ] and A[ n/2+1 . . n ] . 3. “Merge” the 2 sorted lists T(n) (1) 2T(n/2) (n) Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it turns out not to matter asymptotically.
  • 42. L1.43 Recurrence for merge sort T(n) = (1) if n = 1; 2T(n/2) + (n) if n > 1. • We shall usually omit stating the base case when T(n) = (1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. • Lecture 2 provides several ways to find a good upper bound on T(n).
  • 43. L1.44 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
  • 44. L1.45 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n)
  • 45. L1.46 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n/2) T(n/2) cn
  • 46. L1.47 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn T(n/4) T(n/4) T(n/4) T(n/4) cn/2 cn/2
  • 47. L1.48 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) …
  • 48. L1.49 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n
  • 49. L1.50 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n cn
  • 50. L1.51 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n cn cn
  • 51. L1.52 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n cn cn cn …
  • 52. L1.53 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n cn cn cn #leaves = n (n) …
  • 53. L1.54 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 (1) … h = lg n cn cn cn #leaves = n (n) Total(n lg n) …
  • 54. L1.55 Conclusions • (n lg n) grows more slowly than (n2 ). • Therefore, merge sort asymptotically beats insertion sort in the worst case. • In practice, merge sort beats insertion sort for n > 30 or so.