The document discusses covariance and correlation, which are mathematical models used to assess relationships between variables. Covariance measures how two variables change together, while correlation measures both the strength and direction of the linear relationship between variables. Correlation coefficients range from -1 to 1, where values closer to 1 or -1 indicate a strong linear relationship and values closer to 0 indicate no linear relationship. The document also discusses partial correlation and multiple correlation, which measure relationships while controlling for additional variables. Factors that can affect correlation analyses include sample size and outliers.