SlideShare a Scribd company logo
Introduction AHP Decentralized Group AHP Application Example Conclusions
Decentralized Group Analytical Hierarchical
Process on Multilayer Networks by Consensus
M. Rebollo, A. Palomares, C. Carrascosa
Universitat Politècnica de València
PAAMS 2016
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Decentralized Group AHP in Multilayer Networks by Consensus
Decentralized Group AHP in Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Problem
Analytic Hierarchical Process (AHP)
How a group of people can take a complex decision?
optimization process
multi-criteria
complete knowledge
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
The Proposal
Combination of consensus and gradient descent over a multilayer
network
decentralized
personal, private preferences
people connected in a network
locally calculated (bounded rationality)
layers capture the criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
AHP decision scenario [Saaty, 2008]
Choose a candidate.
Select the most suitable
candidate based on 4 criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
AHP decision scenario [Saaty, 2008]
Choose a candidate.
Criteria are weighted
depending on its importance.
p
α=1
wα
= 1
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Scale for Pairwise comparisons
Importance Definition Explanation
1 equal imp. 2 elements contribute equally
3 moderate imp. preference moderately in favor of one
element
5 strong imp. preference strongly in favor of one el-
ement
7 very strong imp. strong preference, demonstrate in
practice
9 extreme imp. highest possible evidence
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Pairwise matrix
For each criterion, a
pairwise matrix that
compares all the
alternatives is defined
aij =
1
aji
Tom Dick Harry L.p. (lα
i )
Tom 1 1/4 4
Dick 4 1 9
Harry 1/4 1/9 1
Experience
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Pairwise matrix
The local priority is
calculated as the
values of the principal
right eigenvector of
the matrix
Tom Dick Harry L.p. (lα
i )
Tom 1 1/4 4 0.217
Dick 4 1 9 0.717
Harry 1/4 1/9 1 0.066
Experience
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Making a decision
The final priorities are calculated as the weighted average
pi =
α
wα
lα
i
Candidate Exp Edu Char Age G.p. (pi )
Tom 0.119 0.024 0.201 0.015 0.358
Dick 0.392 0.010 0.052 0.038 0.492
Harry 0.036 0.093 0.017 0.004 0.149
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Group AHP
Participants have their own (private) weights for the criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Main idea
Each criterion is negotiated in
a layer of a multiplex network
consensus process (fi )
executed in each layer α
deviations from individual
preferences compensated
with a gradient ascent
(gi ) among layers
xα
i (t + 1) = xα
i (t) + fi (xα
1 (t), . . . , xα
n (t))
+ gi (x1
i (t), . . . , xp
i (t))
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Consensus [Olfati, 2004]
Gossiping process
xi (t+1) = xi (t)+
ε
wi j∈Ni
[xj(t) − xi (t)]
converges to the weighted average of
the initial values xi (0)
lim
t→∞
xi (t) = i wi xi (0)
i wi
∀i
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Individual preferences as utility functions
Desired behavior
max. value in the local priority
lα
i
higher weight → faster decay
Local utility defined for each criterion
as a renormalized multi-dimensional
gaussian with ui (lα
i ) = 1.
uα
i (xα
i ) = e
−1
2
xα
i
−lα
i
1−wα
i
2
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Global utility function
The final purpose of the system is to maximize the global utility U
defined as the sum of the individual properties
ui (xi ) =
α
uα
i (xα
i ) U(x) =
i
ui (xi )
This function U is never calculated nor known by anyone
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Multidimensional Networked Decision Process
Two-step process
1 consensus in each layer
2 individual gradient ascent crossing layers
xα
i (t + 1) = xα
i +
fi
ε
wα
i j∈Nα
i
(xα
j (t) − xα
i (t)) +
+ϕ ui (x1
i (t), . . . , xp
i (t))
gi
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Gradient calculation
In the case of the chosen utility functions (normal distributions),
ui (xi ) =
∂ui (xi )
∂x1
i
, . . . ,
∂ui (xi )
∂xp
i
and each one of the terms of ui
∂ui (xi )
∂xα
i
= −
xα
i (t) − lα
i
(1 − wα
i )2
ui (xi )
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Convergence of the gradient
The convergence of this method depends on the stepsize ϕ
ϕ ≤ min
i
1
Lui
where Lui is the Lipschitz constant of the each utility function
Normal distribution the maximum value of the derivative appears
in its inflection point xα
i ± (1 − wα
i ).
∂ui (xα
i − (1 − wα
i ))
∂xα
i
=
1
1 − wα
i
e−p/2
Lui =
α
e−p/2
1 − wα
i
1/2
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Final model
Complete consensus and gradient equation
xα
i (t + 1) = xα
i +
ε
wα
i j∈Nα
i
(xα
j (t) − xα
i (t)) −
−
1
maxi || ui (xi )||2
·
xα
i (t) − lα
i
(1 − wα
i )2
ui (xi )
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Initial conditions
9 nodes
2 criteria
connection by proximity of preferences
—————–
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Evolution of the group decision
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Evolution of the priority values
The group obtain common priorities for both criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Counterexample: local maximum
If some participants have ui = 0 in the solution space, it not
converges to the global optimum value.
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Solution: break links
Break links with undesired neighbors is allowed.
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Group identification
The networks is split into separated components
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Consensus process
The group obtain common priorities for both criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Performance. Network topology, size and criteria
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Performance. Execution time
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
Introduction AHP Decentralized Group AHP Application Example Conclusions
Conclusions
Conclusions
solve group AHP in a network with private priorities and
bounded communication
combination of consensus and gradient ascent process
break links to avoid a local optimum
Future work
extend to networks of preferences (ANP)
extend to dynamic networks that evolve during the process
@mrebollo UPV
Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus

More Related Content

PDF
Extended pso algorithm for improvement problems k means clustering algorithm
PDF
Enhanced Genetic Algorithm with K-Means for the Clustering Problem
PDF
A Non Parametric Estimation Based Underwater Target Classifier
PDF
Big data Clustering Algorithms And Strategies
PDF
[slide] A Compare-Aggregate Model with Latent Clustering for Answer Selection
PDF
A Study of Firefly Algorithm and its Application in Non-Linear Dynamic Systems
PDF
Improve the Performance of Clustering Using Combination of Multiple Clusterin...
PPT
Extended pso algorithm for improvement problems k means clustering algorithm
Enhanced Genetic Algorithm with K-Means for the Clustering Problem
A Non Parametric Estimation Based Underwater Target Classifier
Big data Clustering Algorithms And Strategies
[slide] A Compare-Aggregate Model with Latent Clustering for Answer Selection
A Study of Firefly Algorithm and its Application in Non-Linear Dynamic Systems
Improve the Performance of Clustering Using Combination of Multiple Clusterin...

What's hot (17)

DOCX
Comparative analysis of algorithms_MADI
PDF
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
PPT
3.2 partitioning methods
PPT
10 clusbasic
PDF
P229 godfrey
PDF
A HYBRID CLUSTERING ALGORITHM FOR DATA MINING
PDF
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
PDF
Design of ternary sequence using msaa
DOCX
JAVA 2013 IEEE DATAMINING PROJECT Region based foldings in process discovery
PDF
Relational knowledge distillation
PDF
10 clusbasic
PDF
Av33274282
PDF
A Novel Penalized and Compensated Constraints Based Modified Fuzzy Possibilis...
PDF
Efficient projections
PPT
CLUSTERING
PDF
COMBINED CLASSIFIERS FOR TIME SERIES SHAPELETS
PPT
Chapter 11 cluster advanced : web and text mining
Comparative analysis of algorithms_MADI
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
3.2 partitioning methods
10 clusbasic
P229 godfrey
A HYBRID CLUSTERING ALGORITHM FOR DATA MINING
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
Design of ternary sequence using msaa
JAVA 2013 IEEE DATAMINING PROJECT Region based foldings in process discovery
Relational knowledge distillation
10 clusbasic
Av33274282
A Novel Penalized and Compensated Constraints Based Modified Fuzzy Possibilis...
Efficient projections
CLUSTERING
COMBINED CLASSIFIERS FOR TIME SERIES SHAPELETS
Chapter 11 cluster advanced : web and text mining
Ad

Viewers also liked (20)

PDF
Análisis de sentimientos en Twitter mediante HMM
PDF
Comunica 2016
PDF
La (poca) soledad del corredor de fondo
PDF
Consensus in Smart Grids for Decentralized Energy Management
PPTX
¿Sueñan las cosas con ovejas conectadas a Internet?
PDF
Procesos de consenso en redes dinámicas
PDF
Análisis dinámico de redes sociales en diferentes eventos
PDF
Análisis de redes comercio mediante procesos de consenso
PDF
Presentacion AIWS
PDF
Consensus on Multiplex Network To Calculate User Influence in Social Networks
PDF
Generalized consensus process in dynamic networks
PDF
Strategies for Cooperation Emergence in Distributed Service Discovery
PDF
El poder de las redes
PDF
Guía para el uso de redes sociales en el aprendizaje inverso
PDF
Cómo crear mi PLE
PDF
Analysis of the Evolution of Events on Online Social Networks
PDF
Supportive consensus for smart grid management
PDF
Taller Mv2009
PPTX
Redes sociales: ¿Ángeles o demonios?
PDF
U-Tool: A Urban-Toolkit for enhancing city maps through citizens’ activity
Análisis de sentimientos en Twitter mediante HMM
Comunica 2016
La (poca) soledad del corredor de fondo
Consensus in Smart Grids for Decentralized Energy Management
¿Sueñan las cosas con ovejas conectadas a Internet?
Procesos de consenso en redes dinámicas
Análisis dinámico de redes sociales en diferentes eventos
Análisis de redes comercio mediante procesos de consenso
Presentacion AIWS
Consensus on Multiplex Network To Calculate User Influence in Social Networks
Generalized consensus process in dynamic networks
Strategies for Cooperation Emergence in Distributed Service Discovery
El poder de las redes
Guía para el uso de redes sociales en el aprendizaje inverso
Cómo crear mi PLE
Analysis of the Evolution of Events on Online Social Networks
Supportive consensus for smart grid management
Taller Mv2009
Redes sociales: ¿Ángeles o demonios?
U-Tool: A Urban-Toolkit for enhancing city maps through citizens’ activity
Ad

Similar to Decentralized Group AHP in Multilayer Networks by Consensus (13)

PDF
Distributed Group Analytical Hierarchical Process by Consensus
PPT
Lecture 1b AHP - Copy.pptwjsjw ww s d dd
PPTX
AHP fundamentals
PPTX
Analytic Hierarchy Process Presentation.pptx
PPTX
Ahp and anp
PDF
MCGDM with AHP based on Adaptive interval Value Fuzzy
PDF
Analytical Hierarchy Process Approach An Application Of Engineering Education
PDF
1989-Article Text-8444-2-10-20180204.pdf
PDF
Anp 1999
PDF
Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step A...
PDF
Reading week08 saaty_ahp_fundamentals
PPTX
Decision Making Using The Analytic Hierarchy Process
PPTX
Intelligent decision support systems-SCT
Distributed Group Analytical Hierarchical Process by Consensus
Lecture 1b AHP - Copy.pptwjsjw ww s d dd
AHP fundamentals
Analytic Hierarchy Process Presentation.pptx
Ahp and anp
MCGDM with AHP based on Adaptive interval Value Fuzzy
Analytical Hierarchy Process Approach An Application Of Engineering Education
1989-Article Text-8444-2-10-20180204.pdf
Anp 1999
Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step A...
Reading week08 saaty_ahp_fundamentals
Decision Making Using The Analytic Hierarchy Process
Intelligent decision support systems-SCT

More from Miguel Rebollo (20)

PDF
Multilayered Asynchronous Consensus-based Federated Learning
PDF
Percepción del alumnado de actividades de alto impacto en un primer curso de ...
PPTX
IA en entornos rurales aplicada a la viticultura
PDF
Inteligencia artificial para una transformación inteligente
PDF
GTG-CoL: A Decentralized Federated Learning Based on Consensus for Dynamic N...
PDF
Co-Learning: Consensus-based Learning for Multi-Agent Systems
PPTX
Análisis de la red de autores de ciencia ficción de Clarkesworld
PDF
Y sin embargo... se mueve. Dinámica de las redes complejas
PDF
Exámenes en grupo y pruebas de corrección como alternativas a la evaluación
PDF
Gamification. Key Concepts
PDF
Using Distributed Risk Maps by Consensus as a Complement to Contact Tracing Apps
PDF
Distributed Ledger and Robust Consensus for Agreements
PDF
Detección de nodos tramposos en procesos de consenso en redes
PDF
La hora del código: ApS para fomentar el pensamiento computacional
PDF
Procesos de enseñanza-aprendizaje en red
PDF
desarrollo de competencias a través de narrativas transmedia
PDF
Análisis de ciudades a través de su actividad en redes sociales
PDF
Análisis de datos en redes sociales
PDF
The multigent Layer for CALMeD SURF
PDF
Narrativa transmedia en el aula
Multilayered Asynchronous Consensus-based Federated Learning
Percepción del alumnado de actividades de alto impacto en un primer curso de ...
IA en entornos rurales aplicada a la viticultura
Inteligencia artificial para una transformación inteligente
GTG-CoL: A Decentralized Federated Learning Based on Consensus for Dynamic N...
Co-Learning: Consensus-based Learning for Multi-Agent Systems
Análisis de la red de autores de ciencia ficción de Clarkesworld
Y sin embargo... se mueve. Dinámica de las redes complejas
Exámenes en grupo y pruebas de corrección como alternativas a la evaluación
Gamification. Key Concepts
Using Distributed Risk Maps by Consensus as a Complement to Contact Tracing Apps
Distributed Ledger and Robust Consensus for Agreements
Detección de nodos tramposos en procesos de consenso en redes
La hora del código: ApS para fomentar el pensamiento computacional
Procesos de enseñanza-aprendizaje en red
desarrollo de competencias a través de narrativas transmedia
Análisis de ciudades a través de su actividad en redes sociales
Análisis de datos en redes sociales
The multigent Layer for CALMeD SURF
Narrativa transmedia en el aula

Recently uploaded (20)

PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
BIOMOLECULES PPT........................
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
Microbiology with diagram medical studies .pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Sciences of Europe No 170 (2025)
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
BIOMOLECULES PPT........................
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Cell Membrane: Structure, Composition & Functions
Introduction to Cardiovascular system_structure and functions-1
ECG_Course_Presentation د.محمد صقران ppt
Classification Systems_TAXONOMY_SCIENCE8.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
2. Earth - The Living Planet Module 2ELS
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Comparative Structure of Integument in Vertebrates.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Derivatives of integument scales, beaks, horns,.pptx
2Systematics of Living Organisms t-.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Introduction to Fisheries Biotechnology_Lesson 1.pptx
7. General Toxicologyfor clinical phrmacy.pptx
Microbiology with diagram medical studies .pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Sciences of Europe No 170 (2025)

Decentralized Group AHP in Multilayer Networks by Consensus

  • 1. Introduction AHP Decentralized Group AHP Application Example Conclusions Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus M. Rebollo, A. Palomares, C. Carrascosa Universitat Politècnica de València PAAMS 2016 @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 4. Introduction AHP Decentralized Group AHP Application Example Conclusions Problem Analytic Hierarchical Process (AHP) How a group of people can take a complex decision? optimization process multi-criteria complete knowledge @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 5. Introduction AHP Decentralized Group AHP Application Example Conclusions The Proposal Combination of consensus and gradient descent over a multilayer network decentralized personal, private preferences people connected in a network locally calculated (bounded rationality) layers capture the criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 6. Introduction AHP Decentralized Group AHP Application Example Conclusions AHP decision scenario [Saaty, 2008] Choose a candidate. Select the most suitable candidate based on 4 criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 7. Introduction AHP Decentralized Group AHP Application Example Conclusions AHP decision scenario [Saaty, 2008] Choose a candidate. Criteria are weighted depending on its importance. p α=1 wα = 1 @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 8. Introduction AHP Decentralized Group AHP Application Example Conclusions Scale for Pairwise comparisons Importance Definition Explanation 1 equal imp. 2 elements contribute equally 3 moderate imp. preference moderately in favor of one element 5 strong imp. preference strongly in favor of one el- ement 7 very strong imp. strong preference, demonstrate in practice 9 extreme imp. highest possible evidence @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 9. Introduction AHP Decentralized Group AHP Application Example Conclusions Pairwise matrix For each criterion, a pairwise matrix that compares all the alternatives is defined aij = 1 aji Tom Dick Harry L.p. (lα i ) Tom 1 1/4 4 Dick 4 1 9 Harry 1/4 1/9 1 Experience @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 10. Introduction AHP Decentralized Group AHP Application Example Conclusions Pairwise matrix The local priority is calculated as the values of the principal right eigenvector of the matrix Tom Dick Harry L.p. (lα i ) Tom 1 1/4 4 0.217 Dick 4 1 9 0.717 Harry 1/4 1/9 1 0.066 Experience @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 11. Introduction AHP Decentralized Group AHP Application Example Conclusions Making a decision The final priorities are calculated as the weighted average pi = α wα lα i Candidate Exp Edu Char Age G.p. (pi ) Tom 0.119 0.024 0.201 0.015 0.358 Dick 0.392 0.010 0.052 0.038 0.492 Harry 0.036 0.093 0.017 0.004 0.149 @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 12. Introduction AHP Decentralized Group AHP Application Example Conclusions Group AHP Participants have their own (private) weights for the criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 13. Introduction AHP Decentralized Group AHP Application Example Conclusions Main idea Each criterion is negotiated in a layer of a multiplex network consensus process (fi ) executed in each layer α deviations from individual preferences compensated with a gradient ascent (gi ) among layers xα i (t + 1) = xα i (t) + fi (xα 1 (t), . . . , xα n (t)) + gi (x1 i (t), . . . , xp i (t)) @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 14. Introduction AHP Decentralized Group AHP Application Example Conclusions Consensus [Olfati, 2004] Gossiping process xi (t+1) = xi (t)+ ε wi j∈Ni [xj(t) − xi (t)] converges to the weighted average of the initial values xi (0) lim t→∞ xi (t) = i wi xi (0) i wi ∀i @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 15. Introduction AHP Decentralized Group AHP Application Example Conclusions Individual preferences as utility functions Desired behavior max. value in the local priority lα i higher weight → faster decay Local utility defined for each criterion as a renormalized multi-dimensional gaussian with ui (lα i ) = 1. uα i (xα i ) = e −1 2 xα i −lα i 1−wα i 2 @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 16. Introduction AHP Decentralized Group AHP Application Example Conclusions Global utility function The final purpose of the system is to maximize the global utility U defined as the sum of the individual properties ui (xi ) = α uα i (xα i ) U(x) = i ui (xi ) This function U is never calculated nor known by anyone @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 17. Introduction AHP Decentralized Group AHP Application Example Conclusions Multidimensional Networked Decision Process Two-step process 1 consensus in each layer 2 individual gradient ascent crossing layers xα i (t + 1) = xα i + fi ε wα i j∈Nα i (xα j (t) − xα i (t)) + +ϕ ui (x1 i (t), . . . , xp i (t)) gi @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 18. Introduction AHP Decentralized Group AHP Application Example Conclusions Gradient calculation In the case of the chosen utility functions (normal distributions), ui (xi ) = ∂ui (xi ) ∂x1 i , . . . , ∂ui (xi ) ∂xp i and each one of the terms of ui ∂ui (xi ) ∂xα i = − xα i (t) − lα i (1 − wα i )2 ui (xi ) @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 19. Introduction AHP Decentralized Group AHP Application Example Conclusions Convergence of the gradient The convergence of this method depends on the stepsize ϕ ϕ ≤ min i 1 Lui where Lui is the Lipschitz constant of the each utility function Normal distribution the maximum value of the derivative appears in its inflection point xα i ± (1 − wα i ). ∂ui (xα i − (1 − wα i )) ∂xα i = 1 1 − wα i e−p/2 Lui = α e−p/2 1 − wα i 1/2 @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 20. Introduction AHP Decentralized Group AHP Application Example Conclusions Final model Complete consensus and gradient equation xα i (t + 1) = xα i + ε wα i j∈Nα i (xα j (t) − xα i (t)) − − 1 maxi || ui (xi )||2 · xα i (t) − lα i (1 − wα i )2 ui (xi ) @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 21. Introduction AHP Decentralized Group AHP Application Example Conclusions Initial conditions 9 nodes 2 criteria connection by proximity of preferences —————– @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 22. Introduction AHP Decentralized Group AHP Application Example Conclusions Evolution of the group decision @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 23. Introduction AHP Decentralized Group AHP Application Example Conclusions Evolution of the priority values The group obtain common priorities for both criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 24. Introduction AHP Decentralized Group AHP Application Example Conclusions Counterexample: local maximum If some participants have ui = 0 in the solution space, it not converges to the global optimum value. @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 25. Introduction AHP Decentralized Group AHP Application Example Conclusions Solution: break links Break links with undesired neighbors is allowed. @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 26. Introduction AHP Decentralized Group AHP Application Example Conclusions Group identification The networks is split into separated components @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 27. Introduction AHP Decentralized Group AHP Application Example Conclusions Consensus process The group obtain common priorities for both criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 28. Introduction AHP Decentralized Group AHP Application Example Conclusions Performance. Network topology, size and criteria @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 29. Introduction AHP Decentralized Group AHP Application Example Conclusions Performance. Execution time @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus
  • 30. Introduction AHP Decentralized Group AHP Application Example Conclusions Conclusions Conclusions solve group AHP in a network with private priorities and bounded communication combination of consensus and gradient ascent process break links to avoid a local optimum Future work extend to networks of preferences (ANP) extend to dynamic networks that evolve during the process @mrebollo UPV Decentralized Group Analytical Hierarchical Process on Multilayer Networks by Consensus