DESIGN BUILDING BY STAD PRO
There are more steps you have to following to do design 
for any building. Up to have we finished eight steps to 
design structure of building: 
1. Select a plan of building 
2. Draw the plan of a building in AUTOCAD program and 
show columns position. 
3. Calculate the slab load, wall load, beam self weight and 
total load for each beam in the building. 
4. Make a staad model. 
5. Do the columns and beam size and enter it in staad 
program. 
6. Enter the total loads in staad program. 
7. By using staad program select the grade of concrete and 
steel for the full structure of building. 
8. Do design of columns, beams and slabs of building.
PLAN OF COLLEGE BUILDING
ELEVATION OF COLLEGE BUILDING
Columns position
DESIGN BUILDING BY STAD PRO
Assume the load of slab 
•Overall of slab=?? 
Lx/d=32 
7500/32=d 
D=234.375mm 
h= Ø/2+c+d 
=12/2+20+234.375 
=260.375mm 
*Loading on 1m of slab 
Dl of concrete = vol x uw 
=1 x 1 x 0.260 x 24 
=6.24kn/m2 
Dl finishing=1KN/m2 
Imposed load live(Qk)=2.5kn/m2 
Ultimate load 
=1.4 x 7.24 x 1.6 x 2.5 
Wu=14.136kn/m2 
LX = 7.5m 
LY = 10.6m
Distribution of slab 
S1 
Ly/lx = 10604.5/7500=1.4 
1.4 < 2 two way slab 
Long beam = 
((Wu x lx)/6) x (3-(Lx/Ly)2) 
= ((14.136 x 7.5)/6) x {3- 
(7.5/10.6)2} = 44.15kN/m2 
Short beam =(Wu x lx)/3 
= (14.136 x 7.5)/3 = 35.34 KN/m2 
S2 
Ly/lx = 7500/7203=1.4 
1.4 < 2 two way slab 
Long beam =((Wu x lx)/6) x (3- 
(Lx/Ly)2) 
= ((14.136 x 7.203)/6) x (3- 
(7.203/10.6)2) = 43 KN/m2 
Short beam =(Wu x lx)/3 
= (14.136 x 7.203)/3 
= 34kn/m2 
S3 
Ly/lx = 7500/5353=1.4 
1.4 < 2 two way slab 
Long beam 
=((Wu x lx)/6) x {3-(Lx/Ly)2) 
= ((14.136 x 5.353)/6) x (3-(5.353/7.5)2) = 
31.4 kn/m2 
Short beam =(Wu x lx)/3 = (14.136 x 
5.353)/3 = 25.22kn/m2 
S4 
Ly/lx = 8804.5/7500=1.4 
1.1< 2 two way slab 
Long beam=((Wu x lx)/6) x (3-(Lx/Ly)2) = 
((14.136 x 7.5)/6) x (3-(7.5/8.8)2) = 40.17 
kn/m2 
Short beam=(Wu x lx)/3 = (14.136 x 7.5)/3 
= 35.34 kn/m2 
S5 
Ly/lx = 45771/3251=14 
14> 2 one way slab 
(Wu x lx)/2 = (14.136 x 3)/2 =21.204kn/m2
Slab load for staircase 
Dl of waist slab 1m2 
=1.16 x 0.260 x 24 = 6.2 kn/m2 
Dl of steps = 4 (0.5 x .25 x .15) x 24 
=108 kn/m2 
Floor finish = 1kn/m2 
Total DI load = 10 x 1.4 = 14 kn/m2 
Live load = 3 kn/m2 
= 3 x 1.6 =4.8 kn/m2 
Wu = 14+ 4.8 = 18.8 kn/m2 
For staircase design one way slab 
(Wu x lx)/2 = (18.8 x 5.25)/2 = 
49.35 kn/m2 
250mm 
1m 
150mm 
Ø 
Tan Ø=150/250 
Ø =30.9° 
Cos 30.9° =1/x 
X= 1.16m
Sunken slab load 
Dl of filling material 
= 1 x 1 x .3 x 12 
=3.6 x 1.4 = 5 KN/m2 
Wu = 14.13 + 5 = 19.136 KN/m2 
Ly/lx = 525/325=1.6 
1.6< 2 two way slab 
short beam=(Wu x lx)/3 
= (19.136 x 3.251)/3 
= 20.7 KN/m2 
Long beam 
=((Wu x lx)/6) x (3-(lx/ly)2) 
= ((19.136 x 3.251)/6) x (3- 
(3.251/5.35)2) 
= 27.129 KN/m2 
Filling material 
SLAB
Self weight of beam 
= 1 x 0.25 x 0.6 x 24 
= 3.6 x 1.4 
= 5.04 kn/m2 
250mm 
600mm 
Load of wall 
= 1x 0.200 x 3 x 15 
= 9 x 1.4 
=12.6 kn/m2 
0.2m 
3m
34 
34 
43 
43 
43 
43 
43 43 43 
34 
34 
34 
34 
35.34 35.34 35.34 35.34 
31.4 31.4 
44.15 44.15 
27.13 
35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 
43 
44.15 
44.15 
44.15 44.15 
25.22 
25.22 
40.17 
40.17 
44.15 44.15 44.15 44.15 
20.7 
20.7 
27.13 
49.35 
49.35 
21.2 
21.2
Beam 
designation 
Table 1 : Total slap load for each beam 
Slap load Wall load 
KN/M2 
Beam self 
weight 
KN/M2 
Total load 
LHS 
RHS 
KN/M2 KN/M2 
KN/M2 
AB 0 34 12.6 5.04 51.64 
BC 0 34 12.6 5.04 51.64 
CD 0 34 12.6 5.04 51.64 
DE 0 44.15 12.6 5.04 61.79 
EF 0 40.17 12.6 5.04 57.81 
FG 0 25.22 12.6 5.04 42.86 
GH 0 20.7 12.6 5.04 38.34 
IJ 34 21.2 12.6 5.04 72.84 
JK 34 21.2 12.6 5.04 72.84 
KL 44.15 21.2 12.6 5.04 82.99 
LM 40.17 21.2 12.6 5.04 79.01 
MN 25.22 21.2 12.6 5.04 64.06 
NN1 25.22 21.2 12.6 5.04 64.06 
OP 21.2 34 12.6 5.04 72.84 
PQ 21.2 44.15 12.6 5.04 82.99 
QR 21.2 44.15 12.6 5.04 82.99 
RS 21.2 44.15 12.6 5.04 82.99 
ST 21.2 44.15 12.6 5.04 82.99 
TT1 49.35 44.15 12.6 5.04 111.14 
UV 34 0 12.6 5.04 51.64 
VW 44.15 0 12.6 5.04 61.79
Beam 
designation 
Slap load Wall load 
Beam self 
Total load 
LHS 
RHS 
KN/M2 
weight 
KN/M2 KN/M2 
KN/M2 
KN/M2 
AI 0 34 12.6 5.04 51.64 
IO 0 0 12.6 5.04 17.64 
OU 0 43 12.6 5.04 60.64 
GG1 31.4 27.13 12.6 5.04 76.17 
HH1 27.13 0 12.6 5.04 44.77 
G1H1 49.35 20.7 12.6 5.04 87.69 
H1T 0 0 12.6 5.04 17.64 
TZ 35.34 0 12.6 5.04 52.98 
G1T1 31.4 0 12.6 5.04 49.04 
BJ 43 43 12.6 5.04 103.64 
CK 43 43 12.6 5.04 103.64 
DL 43 35.34 12.6 5.04 95.98 
EM 35.34 35.34 12.6 5.04 88.32 
FN 35.34 31.4 12.6 5.04 84.38 
PV 43 35.34 12.6 5.04 95.98 
QW 35.34 35.34 12.6 5.04 88.32 
RX 35.34 35.34 12.6 5.04 88.32 
WX 44.15 0 12.6 5.04 61.79 
XY 44.15 0 12.6 5.04 61.79 
YZ 44.15 0 12.6 5.04 61.79
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
Go to staad
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
Bar 
size 
(mm) 
Number of bars 
1 2 3 4 5 6 7 8 9 10 
6 28.3 56.6 84.9 113 142 170 198 226 255 283 
8 50.3 101 151 201 252 302 352 402 453 503 
10 78.5 157 236 314 393 471 550 628 707 785 
12 113 226 339 452 566 679 792 905 1020 1130 
16 201 402 603 804 1010 1210 1410 1610 1810 2010 
20 314 628 943 1260 1570 1890 2200 2510 2830 3140 
25 491 982 1470 1960 2450 2950 3440 3930 4420 4910 
32 804 1610 2410 3220 4020 4830 5630 6430 7240 8040 
40 1260 2510 3770 5030 6280 7540 8800 10100 11300 12600 
Table 3.5: Cross-sectional areas of bars (mm2)
. 
Table : bars of steel for beam 
Beam 
Size Top Bars 
Bottom 
Top Extra 
Bottom Extra Links 
Name 
mm 
Bars 
0.25L 
0.7L 
AB 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@150 C/c 
BC 600X250 2 T 25 2 T 16 2 T 20 1 T 16 8Ø@171C/c 
CD 600X250 2 T 32 2 T 12 2 T 25 1 T 16 8Ø@166C/c 
DE 800X250 2 T 32 2 T 16 2 T 25 1 T 25 10Ø@150C/c 
EF 800X250 2 T 32 2 T 16 2 T 25 1 T 20 8Ø@146C/c 
FG 600X250 2 T 16 2 T 8 2 T 12 1 T 8 8Ø@223C/c 
GH 450X250 2 T 10 2 T 8 2 T 8 1 T 10 8Ø@216C/c 
IJ 600X250 2 T 32 2 T 16 2 T 25 1 T 16 10Ø@150C/c 
JK 600X250 2 T 25 2 T 16 2 T 20 1 T 16 10Ø@120C/c 
KL 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@100 C/c 
LM 800X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c 
MN 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@163C/c 
NN1 
OP 600X250 2 T 25 2 T 16 2 T 20 1 T 25 8Ø@109C/c 
PQ 800X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c 
QR 800X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@66C/c 
RS 800X250 2 T 32 2 T 25 2 T 25 1 T 32 10Ø@120C/c 
ST 600X250 2 T 25 2 T 20 2 T 20 1 T 20 10Ø@120C/c 
TT1 450X250 2 T 25 2 T 10 2 T 20 1 T 12 10Ø@120C/c 
UV 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@160C/c 
VW 800X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@110C/c 
WX 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@103C/c 
XY 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@103C/c
. 
Beam 
Size Top Bars 
Bottom 
Top Extra 
Bottom Extra Links 
Name 
Mm 
Bars 
0.25L 
0.7L 
AI 600X250 2 T 25 2 T 25 2 T 20 1 T 25 8Ø@104C/c 
IO 450X250 2T25 2T20 2T20 1T16 10Ø@120 C/c 
OU 600X250 2 T 25 2 T 25 2 T 20 1 T 25 10Ø@120C/c 
G G1 450X250 2 T 25 2 T 16 2 T 20 1 T 16 8Ø@168C/c 
H H1 450X250 2 T 16 2 T 12 2 T 12 1 T 16 8Ø@116C/c 
G1 H1 450X250 2 T 10 2 T 12 2 T 10 1 T 12 8Ø@218C/c 
H1 T 450X250 2 T 16 2 T 8 2 T 16 1 T 10 10Ø@120C/c 
TZ 600X250 2 T 20 2 T 20 2 T 16 1 T 25 10Ø@120C/c 
G1 T1 600X250 2 T 25 2 T 16 2 T 20 1 T 16 10Ø@120C/c 
BJ 600X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c 
CK 600X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c 
DL 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c 
EM 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c 
FN 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c 
PV 600X250 2 T 32 2 T 25 2 T 25 1 T 32 8Ø@120 C/c 
QW 600X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@64C/c 
RX 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c 
SY 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
Bar 
size 
(mm) 
Number of bars 
1 2 3 4 5 6 7 8 9 10 
6 28.3 56.6 84.9 113 142 170 198 226 255 283 
8 50.3 101 151 201 252 302 352 402 453 503 
10 78.5 157 236 314 393 471 550 628 707 785 
12 113 226 339 452 566 679 792 905 1020 1130 
16 201 402 603 804 1010 1210 1410 1610 1810 2010 
20 314 628 943 1260 1570 1890 2200 2510 2830 3140 
25 491 982 1470 1960 2450 2950 3440 3930 4420 4910 
32 804 1610 2410 3220 4020 4830 5630 6430 7240 8040 
40 1260 2510 3770 5030 6280 7540 8800 10100 11300 12600 
Table 3.5: Cross-sectional areas of bars (mm2)
Table : bars of steel for column 
NO. of Links 
Bars 
Size 
MM 
Column 
Name 
A 600mm X 250mm T 16 6 8T @ 150 c/c 
B 250mm X 600mm T 16 8 8T @ 150 c/c 
C 250mm X 600mm T 16 4 8T @ 150 c/c 
D 250mm X 600mm T 16 8 8T @ 150 c/c 
E 250mm X 600mm T 16 8 8T @ 150 c/c 
F 250mm X 600mm T 16 4 8T @ 150 c/c 
G 250mm X 600mm T 16 4 8T @ 150 c/c 
G1 250mm X 600mm T 16 4 8T @ 150 c/c 
H 250mm X 600mm T 16 4 8T @ 150 c/c 
H1 250mm X 600mm T 16 4 8T @ 150 c/c 
I 600mm X 250mm T 16 4 8T @ 150 c/c 
J 600mm X 250mm T 25 6 8T @ 150 c/c 
K 250mm X 600mm T 20 4 8T @ 150 c/c 
L 250mm X 600mm T 20 8 8T @ 150 c/c 
M 250mm X 600mm T 20 8 8T @ 150 c/c 
N 250mm X 600mm T 20 4 8T @ 150 c/c 
O 600mm X 250mm T 16 4 8T @ 150 c/c 
P 250mm X 600mm T 20 8 8T @ 150 c/c
NO. of Links 
bars 
Size 
MM 
Column 
Name 
Q 250mm X 600mm T 20 8 8T @ 150 c/c 
R 250mm X 600mm T 20 8 8T @ 150 c/c 
S 250mm X 600mm T 16 4 8T @ 150 c/c 
T 600mm X 250mm T 16 4 8T @ 150 c/c 
T1 250mm X 600mm T 16 4 8T @ 150 c/c 
U 250mm X 600mm T 16 4 8T @ 150 c/c 
V 250mm X 600mm T 20 6 8T @ 150 c/c 
W 250mm X 600mm T 20 6 8T @ 150 c/c 
X 250mm X 600mm T 25 4 8T @ 150 c/c 
Y 250mm X 600mm T 20 6 8T @ 150 c/c 
Z 600mm X 250mm T 16 8 8T @ 150 c/c
DESIGN BUILDING BY STAD PRO
STEP 1 
Assume overall depth 
Lx/d =32 
7500/d=32 
d= 234 mm 
h=d+dia/2+c 
h=234+12/12+20=260 mm 
STEP 2: LOADS 
DL=GK=1x1x0.26x24+1=7.24 KN/m2 
L.L=QK=2.5 KN/m2 
Design load =1.4GK+1.6QK 
Wu =1.4x7.24+1.6x2.5=14.13 KN 
STEP3: bending moment max 
Msx=B Wu Lx 
= -0.068x14.13x7.22 
= -54 KNm 
Msy= -0.037x14.13x7.22 
= -29.4 KNm 
STEP 4: moment of resistance of 
c/r 
Mu=0.156fcu b d2 
=0.156x30x2342 
= 256.2x106 Nmm 
=256.2 KNm 
STEP 5 
Mu > M 
256.2 > 54 yes ok S.R slab
STEP 6 Equation of Design 
For shorten Direction 
K=M/fcubd2 
=54x106/30x1000x2342 
= 0.03 
Z=d(0.5+Squroot 0.25+k/0.9) 
=234(0.5+Squroot 0.25+0.03/0.9) 
=225.9 mm < 0.95d = 0.95x234 
=222 mm NOT OK 
Z=222 mm 
As=M/0.95fyZ 
=54x106/0.95x460x222 
=556 mm2 provide 12 T@200 c/c _ 566 
mm2 
Check for As min and As max 
As max = 4/100 x b x h 
= 4/100 x 1000 x 260 = 10400 mm2 
As min = 0.4/100 x b x h 
= 0.13/100 x 1000 x 260 =338 mm2 
For longer Direction 
K=M/fcubd2 
=29.4x106/30x1000x2342= 0.017 
Z=d(0.5+Squroot 0.25+k/0.9) 
=234(0.5+Squroot 0.25+0.017/0.9) 
=229 mm < 0.95d = 0.95x234 
=222 mm NOT OK 
Z=222 mm 
As=M/0.95fyZ 
=29.4x10^6/0.95x460x222 
=303 mm2 provide 10 T@200 c/c _ 393 
mm2 
Check for As min and As max 
As max = 4/100 x b x h 
= 4/100 x 1000 x 260 = 10400 mm2 
As min = 0.4/100 x b x h 
= 0.13/100 x 1000 x 260 =338 mm2
Bar 
Size 
(mm) 
Table 3.15: Cross-sectional area per meter width (mm2) Slabs 
Spacing of bars 
50 75 100 125 150 175 200 250 300 
6 566 377 283 226 189 162 142 113 94.3 
8 1010 671 503 402 335 287 252 201 168 
10 1570 1050 785 628 523 449 393 314 262 
12 2260 1510 1130 905 754 646 566 452 377 
16 4020 2680 2010 1610 1340 1150 1010 804 670 
20 6280 4190 3140 2510 2090 1800 1570 1260 1050 
25 9820 6550 4910 3930 3270 2810 2450 1960 1640 
32 16100 10700 8040 6430 5360 4600 4020 3220 2680 
40 25100 16800 12600 10100 8380 7180 6280 5030 4190
DESIGN BUILDING BY STAD PRO
Long side 
reinforceme 
nt 
Short side 
reinforceme 
nt 
Overall 
depth 
mm 
Slab size 
mm 
Slab name 
S1 1O604 X 7500 234 12T@200 C/C 10T@200C/C 
S2 7203 x7500 234 10T@200C/C 8T@175C/C 
S3 7203 x7500 234 10T@200C/C 10T@200C/C 
S4 10604 x 7500 234 12T@175C/C 10T@200C/C 
S5 8804 x 7500 234 12T@200C/C 10T@200C/C
DESIGN BUILDING BY STAD PRO

More Related Content

PDF
Rcc structure design by etabs (acecoms)
PPTX
Design and analasys of a g+2 residential building
PDF
Intze tank design
PDF
REPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWARE
PPTX
Unit III deflection and design of anchorage zone
PPTX
Modes of failure of retaining walls
PPTX
Etabs BY Subash Pathak
PPTX
Intze tank design
Rcc structure design by etabs (acecoms)
Design and analasys of a g+2 residential building
Intze tank design
REPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWARE
Unit III deflection and design of anchorage zone
Modes of failure of retaining walls
Etabs BY Subash Pathak
Intze tank design

What's hot (20)

PPTX
Construction of residential building summer training ppt
PPTX
Sums on Rigid Pavement Design
PPT
Combine piled raft foundation (cprf)_Er.Karan Chauhan
PPTX
Singly R.C beam
PPTX
Design of RCC Column footing
PDF
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
PPT
Design of columns biaxial bending as per IS 456-2000
PPTX
Design of R.C.C Beam
PDF
IS 875 5
PPT
Prestress concrete
PDF
Three.hinged.arch
PPTX
Analysis of g+3 rcc storied building
PDF
Sp16 latest
PDF
PROJECT REPORT ON ROAD CONSTRUCTION
PDF
Analysis of G+2 building with seismic load using Etabs
PPTX
ANALYSIS & DESIGN OF G+3 STORIED REINFORCED CONCRETE BUILDING
PDF
synopsis on design and estimation of intze tank
DOCX
DESIGN AND ANALYSIS OF G+3 RESIDENTIAL BUILDING BY S.MAHAMMAD FROM RAJIV GAND...
PDF
Design of portal frame structures
PDF
Bolted connections
Construction of residential building summer training ppt
Sums on Rigid Pavement Design
Combine piled raft foundation (cprf)_Er.Karan Chauhan
Singly R.C beam
Design of RCC Column footing
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
Design of columns biaxial bending as per IS 456-2000
Design of R.C.C Beam
IS 875 5
Prestress concrete
Three.hinged.arch
Analysis of g+3 rcc storied building
Sp16 latest
PROJECT REPORT ON ROAD CONSTRUCTION
Analysis of G+2 building with seismic load using Etabs
ANALYSIS & DESIGN OF G+3 STORIED REINFORCED CONCRETE BUILDING
synopsis on design and estimation of intze tank
DESIGN AND ANALYSIS OF G+3 RESIDENTIAL BUILDING BY S.MAHAMMAD FROM RAJIV GAND...
Design of portal frame structures
Bolted connections
Ad

Viewers also liked (11)

PPTX
Design of Doubly Reinforced Beam
PDF
Doubly reinforced beams...PRC-I
DOC
Columns lecture#6
PDF
Flexural design of beam...PRC-I
PPT
Flexural design of Beam...PRC-I
DOC
Columns lecture#4
PDF
Sp 34-1987 handbook on reinforcement and detailing
DOC
Columns lecture#1
PPTX
Structural System
PPTX
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
PPT
basic structural system in architecture
Design of Doubly Reinforced Beam
Doubly reinforced beams...PRC-I
Columns lecture#6
Flexural design of beam...PRC-I
Flexural design of Beam...PRC-I
Columns lecture#4
Sp 34-1987 handbook on reinforcement and detailing
Columns lecture#1
Structural System
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
basic structural system in architecture
Ad

Similar to DESIGN BUILDING BY STAD PRO (20)

PDF
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2
PPTX
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PDF
Tuladhar
DOC
Mechanical Building redesign
PPTX
Deduction of opening , Number of bars and Bar Bending Scheduling
PPT
Slabs Beam Reinforcement Detailing
PDF
Entrance arch japanese
PDF
Audiotorium Calcs.pdf
PDF
6. diseño de puente compuesto2
PDF
Lana formwork timber_beam_habe_h20
PPT
54307684 beam-column
PDF
PDF
Design of concrete structure 2 project-Loay Qabaha &Basel Salame
PDF
MAIN CANOPY BAJAJ HR(22.09.2016)
PPTX
phase 2ppt.pptx
PDF
IRJET - Design and Analysis of Residential Institute Building
PPTX
Analysis and design of 15 storey office and
PPTX
Analysis and design of 15 storey office and
PPTX
onw way slab design
PDF
Pvc conduit pipe fittings
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
Tuladhar
Mechanical Building redesign
Deduction of opening , Number of bars and Bar Bending Scheduling
Slabs Beam Reinforcement Detailing
Entrance arch japanese
Audiotorium Calcs.pdf
6. diseño de puente compuesto2
Lana formwork timber_beam_habe_h20
54307684 beam-column
Design of concrete structure 2 project-Loay Qabaha &Basel Salame
MAIN CANOPY BAJAJ HR(22.09.2016)
phase 2ppt.pptx
IRJET - Design and Analysis of Residential Institute Building
Analysis and design of 15 storey office and
Analysis and design of 15 storey office and
onw way slab design
Pvc conduit pipe fittings

Recently uploaded (20)

PDF
International_Financial_Reporting_Standa.pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
International_Financial_Reporting_Standa.pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Share_Module_2_Power_conflict_and_negotiation.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
Computer Architecture Input Output Memory.pptx
Race Reva University – Shaping Future Leaders in Artificial Intelligence
B.Sc. DS Unit 2 Software Engineering.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Environmental Education MCQ BD2EE - Share Source.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Virtual and Augmented Reality in Current Scenario
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf

DESIGN BUILDING BY STAD PRO

  • 2. There are more steps you have to following to do design for any building. Up to have we finished eight steps to design structure of building: 1. Select a plan of building 2. Draw the plan of a building in AUTOCAD program and show columns position. 3. Calculate the slab load, wall load, beam self weight and total load for each beam in the building. 4. Make a staad model. 5. Do the columns and beam size and enter it in staad program. 6. Enter the total loads in staad program. 7. By using staad program select the grade of concrete and steel for the full structure of building. 8. Do design of columns, beams and slabs of building.
  • 3. PLAN OF COLLEGE BUILDING
  • 7. Assume the load of slab •Overall of slab=?? Lx/d=32 7500/32=d D=234.375mm h= Ø/2+c+d =12/2+20+234.375 =260.375mm *Loading on 1m of slab Dl of concrete = vol x uw =1 x 1 x 0.260 x 24 =6.24kn/m2 Dl finishing=1KN/m2 Imposed load live(Qk)=2.5kn/m2 Ultimate load =1.4 x 7.24 x 1.6 x 2.5 Wu=14.136kn/m2 LX = 7.5m LY = 10.6m
  • 8. Distribution of slab S1 Ly/lx = 10604.5/7500=1.4 1.4 < 2 two way slab Long beam = ((Wu x lx)/6) x (3-(Lx/Ly)2) = ((14.136 x 7.5)/6) x {3- (7.5/10.6)2} = 44.15kN/m2 Short beam =(Wu x lx)/3 = (14.136 x 7.5)/3 = 35.34 KN/m2 S2 Ly/lx = 7500/7203=1.4 1.4 < 2 two way slab Long beam =((Wu x lx)/6) x (3- (Lx/Ly)2) = ((14.136 x 7.203)/6) x (3- (7.203/10.6)2) = 43 KN/m2 Short beam =(Wu x lx)/3 = (14.136 x 7.203)/3 = 34kn/m2 S3 Ly/lx = 7500/5353=1.4 1.4 < 2 two way slab Long beam =((Wu x lx)/6) x {3-(Lx/Ly)2) = ((14.136 x 5.353)/6) x (3-(5.353/7.5)2) = 31.4 kn/m2 Short beam =(Wu x lx)/3 = (14.136 x 5.353)/3 = 25.22kn/m2 S4 Ly/lx = 8804.5/7500=1.4 1.1< 2 two way slab Long beam=((Wu x lx)/6) x (3-(Lx/Ly)2) = ((14.136 x 7.5)/6) x (3-(7.5/8.8)2) = 40.17 kn/m2 Short beam=(Wu x lx)/3 = (14.136 x 7.5)/3 = 35.34 kn/m2 S5 Ly/lx = 45771/3251=14 14> 2 one way slab (Wu x lx)/2 = (14.136 x 3)/2 =21.204kn/m2
  • 9. Slab load for staircase Dl of waist slab 1m2 =1.16 x 0.260 x 24 = 6.2 kn/m2 Dl of steps = 4 (0.5 x .25 x .15) x 24 =108 kn/m2 Floor finish = 1kn/m2 Total DI load = 10 x 1.4 = 14 kn/m2 Live load = 3 kn/m2 = 3 x 1.6 =4.8 kn/m2 Wu = 14+ 4.8 = 18.8 kn/m2 For staircase design one way slab (Wu x lx)/2 = (18.8 x 5.25)/2 = 49.35 kn/m2 250mm 1m 150mm Ø Tan Ø=150/250 Ø =30.9° Cos 30.9° =1/x X= 1.16m
  • 10. Sunken slab load Dl of filling material = 1 x 1 x .3 x 12 =3.6 x 1.4 = 5 KN/m2 Wu = 14.13 + 5 = 19.136 KN/m2 Ly/lx = 525/325=1.6 1.6< 2 two way slab short beam=(Wu x lx)/3 = (19.136 x 3.251)/3 = 20.7 KN/m2 Long beam =((Wu x lx)/6) x (3-(lx/ly)2) = ((19.136 x 3.251)/6) x (3- (3.251/5.35)2) = 27.129 KN/m2 Filling material SLAB
  • 11. Self weight of beam = 1 x 0.25 x 0.6 x 24 = 3.6 x 1.4 = 5.04 kn/m2 250mm 600mm Load of wall = 1x 0.200 x 3 x 15 = 9 x 1.4 =12.6 kn/m2 0.2m 3m
  • 12. 34 34 43 43 43 43 43 43 43 34 34 34 34 35.34 35.34 35.34 35.34 31.4 31.4 44.15 44.15 27.13 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 43 44.15 44.15 44.15 44.15 25.22 25.22 40.17 40.17 44.15 44.15 44.15 44.15 20.7 20.7 27.13 49.35 49.35 21.2 21.2
  • 13. Beam designation Table 1 : Total slap load for each beam Slap load Wall load KN/M2 Beam self weight KN/M2 Total load LHS RHS KN/M2 KN/M2 KN/M2 AB 0 34 12.6 5.04 51.64 BC 0 34 12.6 5.04 51.64 CD 0 34 12.6 5.04 51.64 DE 0 44.15 12.6 5.04 61.79 EF 0 40.17 12.6 5.04 57.81 FG 0 25.22 12.6 5.04 42.86 GH 0 20.7 12.6 5.04 38.34 IJ 34 21.2 12.6 5.04 72.84 JK 34 21.2 12.6 5.04 72.84 KL 44.15 21.2 12.6 5.04 82.99 LM 40.17 21.2 12.6 5.04 79.01 MN 25.22 21.2 12.6 5.04 64.06 NN1 25.22 21.2 12.6 5.04 64.06 OP 21.2 34 12.6 5.04 72.84 PQ 21.2 44.15 12.6 5.04 82.99 QR 21.2 44.15 12.6 5.04 82.99 RS 21.2 44.15 12.6 5.04 82.99 ST 21.2 44.15 12.6 5.04 82.99 TT1 49.35 44.15 12.6 5.04 111.14 UV 34 0 12.6 5.04 51.64 VW 44.15 0 12.6 5.04 61.79
  • 14. Beam designation Slap load Wall load Beam self Total load LHS RHS KN/M2 weight KN/M2 KN/M2 KN/M2 KN/M2 AI 0 34 12.6 5.04 51.64 IO 0 0 12.6 5.04 17.64 OU 0 43 12.6 5.04 60.64 GG1 31.4 27.13 12.6 5.04 76.17 HH1 27.13 0 12.6 5.04 44.77 G1H1 49.35 20.7 12.6 5.04 87.69 H1T 0 0 12.6 5.04 17.64 TZ 35.34 0 12.6 5.04 52.98 G1T1 31.4 0 12.6 5.04 49.04 BJ 43 43 12.6 5.04 103.64 CK 43 43 12.6 5.04 103.64 DL 43 35.34 12.6 5.04 95.98 EM 35.34 35.34 12.6 5.04 88.32 FN 35.34 31.4 12.6 5.04 84.38 PV 43 35.34 12.6 5.04 95.98 QW 35.34 35.34 12.6 5.04 88.32 RX 35.34 35.34 12.6 5.04 88.32 WX 44.15 0 12.6 5.04 61.79 XY 44.15 0 12.6 5.04 61.79 YZ 44.15 0 12.6 5.04 61.79
  • 35. Bar size (mm) Number of bars 1 2 3 4 5 6 7 8 9 10 6 28.3 56.6 84.9 113 142 170 198 226 255 283 8 50.3 101 151 201 252 302 352 402 453 503 10 78.5 157 236 314 393 471 550 628 707 785 12 113 226 339 452 566 679 792 905 1020 1130 16 201 402 603 804 1010 1210 1410 1610 1810 2010 20 314 628 943 1260 1570 1890 2200 2510 2830 3140 25 491 982 1470 1960 2450 2950 3440 3930 4420 4910 32 804 1610 2410 3220 4020 4830 5630 6430 7240 8040 40 1260 2510 3770 5030 6280 7540 8800 10100 11300 12600 Table 3.5: Cross-sectional areas of bars (mm2)
  • 36. . Table : bars of steel for beam Beam Size Top Bars Bottom Top Extra Bottom Extra Links Name mm Bars 0.25L 0.7L AB 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@150 C/c BC 600X250 2 T 25 2 T 16 2 T 20 1 T 16 8Ø@171C/c CD 600X250 2 T 32 2 T 12 2 T 25 1 T 16 8Ø@166C/c DE 800X250 2 T 32 2 T 16 2 T 25 1 T 25 10Ø@150C/c EF 800X250 2 T 32 2 T 16 2 T 25 1 T 20 8Ø@146C/c FG 600X250 2 T 16 2 T 8 2 T 12 1 T 8 8Ø@223C/c GH 450X250 2 T 10 2 T 8 2 T 8 1 T 10 8Ø@216C/c IJ 600X250 2 T 32 2 T 16 2 T 25 1 T 16 10Ø@150C/c JK 600X250 2 T 25 2 T 16 2 T 20 1 T 16 10Ø@120C/c KL 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@100 C/c LM 800X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c MN 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@163C/c NN1 OP 600X250 2 T 25 2 T 16 2 T 20 1 T 25 8Ø@109C/c PQ 800X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c QR 800X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@66C/c RS 800X250 2 T 32 2 T 25 2 T 25 1 T 32 10Ø@120C/c ST 600X250 2 T 25 2 T 20 2 T 20 1 T 20 10Ø@120C/c TT1 450X250 2 T 25 2 T 10 2 T 20 1 T 12 10Ø@120C/c UV 600X250 2 T 32 2 T 16 2 T 25 1 T 16 8Ø@160C/c VW 800X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@110C/c WX 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@103C/c XY 800X250 2 T 32 2 T 20 2 T 25 1 T 20 8Ø@103C/c
  • 37. . Beam Size Top Bars Bottom Top Extra Bottom Extra Links Name Mm Bars 0.25L 0.7L AI 600X250 2 T 25 2 T 25 2 T 20 1 T 25 8Ø@104C/c IO 450X250 2T25 2T20 2T20 1T16 10Ø@120 C/c OU 600X250 2 T 25 2 T 25 2 T 20 1 T 25 10Ø@120C/c G G1 450X250 2 T 25 2 T 16 2 T 20 1 T 16 8Ø@168C/c H H1 450X250 2 T 16 2 T 12 2 T 12 1 T 16 8Ø@116C/c G1 H1 450X250 2 T 10 2 T 12 2 T 10 1 T 12 8Ø@218C/c H1 T 450X250 2 T 16 2 T 8 2 T 16 1 T 10 10Ø@120C/c TZ 600X250 2 T 20 2 T 20 2 T 16 1 T 25 10Ø@120C/c G1 T1 600X250 2 T 25 2 T 16 2 T 20 1 T 16 10Ø@120C/c BJ 600X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c CK 600X250 2 T 32 2 T 32 2 T 25 1 T 40 10Ø@120C/c DL 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c EM 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c FN 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c PV 600X250 2 T 32 2 T 25 2 T 25 1 T 32 8Ø@120 C/c QW 600X250 2 T 32 2 T 25 2 T 25 1 T 25 8Ø@64C/c RX 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c SY 600X250 2 T 32 2 T 25 2 T 25 1 T 25 10Ø@120C/c
  • 43. Bar size (mm) Number of bars 1 2 3 4 5 6 7 8 9 10 6 28.3 56.6 84.9 113 142 170 198 226 255 283 8 50.3 101 151 201 252 302 352 402 453 503 10 78.5 157 236 314 393 471 550 628 707 785 12 113 226 339 452 566 679 792 905 1020 1130 16 201 402 603 804 1010 1210 1410 1610 1810 2010 20 314 628 943 1260 1570 1890 2200 2510 2830 3140 25 491 982 1470 1960 2450 2950 3440 3930 4420 4910 32 804 1610 2410 3220 4020 4830 5630 6430 7240 8040 40 1260 2510 3770 5030 6280 7540 8800 10100 11300 12600 Table 3.5: Cross-sectional areas of bars (mm2)
  • 44. Table : bars of steel for column NO. of Links Bars Size MM Column Name A 600mm X 250mm T 16 6 8T @ 150 c/c B 250mm X 600mm T 16 8 8T @ 150 c/c C 250mm X 600mm T 16 4 8T @ 150 c/c D 250mm X 600mm T 16 8 8T @ 150 c/c E 250mm X 600mm T 16 8 8T @ 150 c/c F 250mm X 600mm T 16 4 8T @ 150 c/c G 250mm X 600mm T 16 4 8T @ 150 c/c G1 250mm X 600mm T 16 4 8T @ 150 c/c H 250mm X 600mm T 16 4 8T @ 150 c/c H1 250mm X 600mm T 16 4 8T @ 150 c/c I 600mm X 250mm T 16 4 8T @ 150 c/c J 600mm X 250mm T 25 6 8T @ 150 c/c K 250mm X 600mm T 20 4 8T @ 150 c/c L 250mm X 600mm T 20 8 8T @ 150 c/c M 250mm X 600mm T 20 8 8T @ 150 c/c N 250mm X 600mm T 20 4 8T @ 150 c/c O 600mm X 250mm T 16 4 8T @ 150 c/c P 250mm X 600mm T 20 8 8T @ 150 c/c
  • 45. NO. of Links bars Size MM Column Name Q 250mm X 600mm T 20 8 8T @ 150 c/c R 250mm X 600mm T 20 8 8T @ 150 c/c S 250mm X 600mm T 16 4 8T @ 150 c/c T 600mm X 250mm T 16 4 8T @ 150 c/c T1 250mm X 600mm T 16 4 8T @ 150 c/c U 250mm X 600mm T 16 4 8T @ 150 c/c V 250mm X 600mm T 20 6 8T @ 150 c/c W 250mm X 600mm T 20 6 8T @ 150 c/c X 250mm X 600mm T 25 4 8T @ 150 c/c Y 250mm X 600mm T 20 6 8T @ 150 c/c Z 600mm X 250mm T 16 8 8T @ 150 c/c
  • 47. STEP 1 Assume overall depth Lx/d =32 7500/d=32 d= 234 mm h=d+dia/2+c h=234+12/12+20=260 mm STEP 2: LOADS DL=GK=1x1x0.26x24+1=7.24 KN/m2 L.L=QK=2.5 KN/m2 Design load =1.4GK+1.6QK Wu =1.4x7.24+1.6x2.5=14.13 KN STEP3: bending moment max Msx=B Wu Lx = -0.068x14.13x7.22 = -54 KNm Msy= -0.037x14.13x7.22 = -29.4 KNm STEP 4: moment of resistance of c/r Mu=0.156fcu b d2 =0.156x30x2342 = 256.2x106 Nmm =256.2 KNm STEP 5 Mu > M 256.2 > 54 yes ok S.R slab
  • 48. STEP 6 Equation of Design For shorten Direction K=M/fcubd2 =54x106/30x1000x2342 = 0.03 Z=d(0.5+Squroot 0.25+k/0.9) =234(0.5+Squroot 0.25+0.03/0.9) =225.9 mm < 0.95d = 0.95x234 =222 mm NOT OK Z=222 mm As=M/0.95fyZ =54x106/0.95x460x222 =556 mm2 provide 12 T@200 c/c _ 566 mm2 Check for As min and As max As max = 4/100 x b x h = 4/100 x 1000 x 260 = 10400 mm2 As min = 0.4/100 x b x h = 0.13/100 x 1000 x 260 =338 mm2 For longer Direction K=M/fcubd2 =29.4x106/30x1000x2342= 0.017 Z=d(0.5+Squroot 0.25+k/0.9) =234(0.5+Squroot 0.25+0.017/0.9) =229 mm < 0.95d = 0.95x234 =222 mm NOT OK Z=222 mm As=M/0.95fyZ =29.4x10^6/0.95x460x222 =303 mm2 provide 10 T@200 c/c _ 393 mm2 Check for As min and As max As max = 4/100 x b x h = 4/100 x 1000 x 260 = 10400 mm2 As min = 0.4/100 x b x h = 0.13/100 x 1000 x 260 =338 mm2
  • 49. Bar Size (mm) Table 3.15: Cross-sectional area per meter width (mm2) Slabs Spacing of bars 50 75 100 125 150 175 200 250 300 6 566 377 283 226 189 162 142 113 94.3 8 1010 671 503 402 335 287 252 201 168 10 1570 1050 785 628 523 449 393 314 262 12 2260 1510 1130 905 754 646 566 452 377 16 4020 2680 2010 1610 1340 1150 1010 804 670 20 6280 4190 3140 2510 2090 1800 1570 1260 1050 25 9820 6550 4910 3930 3270 2810 2450 1960 1640 32 16100 10700 8040 6430 5360 4600 4020 3220 2680 40 25100 16800 12600 10100 8380 7180 6280 5030 4190
  • 51. Long side reinforceme nt Short side reinforceme nt Overall depth mm Slab size mm Slab name S1 1O604 X 7500 234 12T@200 C/C 10T@200C/C S2 7203 x7500 234 10T@200C/C 8T@175C/C S3 7203 x7500 234 10T@200C/C 10T@200C/C S4 10604 x 7500 234 12T@175C/C 10T@200C/C S5 8804 x 7500 234 12T@200C/C 10T@200C/C