SlideShare a Scribd company logo
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 167
Design of an Analog CMOS Based Interval Type-2 Fuzzy Logic
Controller Chip
Mamta Khosla khoslam@nitj.ac.in
Associate professor
Department of Electronics and Communication Engineering
Dr B R Ambekdar National Institute of Technology
Jalandhar – 144011. India
Rakesh Kumar Sarin sarinrk@nitj.ac.in
Professor
Department of Electronics and Communication Engineering
Dr B R Ambekdar National Institute of Technology
Jalandhar – 144011. India
Moin Uddin prof_moin@yahoo.com
Pro Vice Chancellor
Delhi Technological University
Delhi – 110042. India
Abstract
We propose the design of an analog Interval Type-2 (IT2) fuzzy logic controller chip that is based
on the realization approach of averaging of two Type-1 Fuzzy Logic Systems (T1 FLSs). The
fuzzifier is realized using transconductance mode membership function generator circuits. The
membership functions are made tunable by setting some reference voltages on the IC pins. The
inference is realized using current mode MIN circuits. The consequents are also tunable by
providing five reference current sources on chip. Defuzzification of both the T1 FLSs is based on
weighted average method realized through scalar and multiplier-divider circuits. An analog
current-mode averager circuit is used for obtaining the defuzzified output of the IT2 fuzzy logic
controller chip. The chip is designed for two inputs, one output and nine tunable fuzzy rules and is
realized in 0.18 µm technology. Cadence Virtuoso Schematic/Layout Editor has been used for the
chip design and the performances of all the circuits are confirmed through the simulations carried
out using Cadence Spectre tool. The proposed architecture has an operation speed of 20
MFLIPS and a power consumption of 20mW. The whole chip occupies an area of 0.32 mm
2
. As
compared to the previous designs, the proposed design has achieved a considerable high speed
along with a significant reduction in power and area.
Keywords: Type-2 Fuzzy logic Systems, Interval Type-2 Fuzzy Logic Systems, Footprint of
Uncertainty, CMOS, Current Mirror.
1. INTRODUCTION
Type-1 fuzzy logic has been the most popular form of fuzzy logic, and has been successfully
used in various domains. However, there are various sources of uncertainties facing T1 FLSs,
which are usually present in most of the real world applications. T1 FLSs cannot fully model and
handle these uncertainties since they use precise and crisp Type-1 Fuzzy Sets (T1 FSs).
However, Type-2 Fuzzy Logic Systems (T2 FLSs), which use Type-2 FSs (T2 FSs) characterized
by fuzzy membership functions (MFs), have an additional third dimension. This third dimension
and Footprint of Uncertainty (FOU) provide additional design degrees of freedom for T2 FLSs to
directly model and handle uncertainties [1]. Thus, T2 FLSs are expected to perform better than
their traditional counter parts.
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 168
Although T2 FLSs have been used successfully in a number of applications [2-7], their design
and implementation is comparatively more difficult, time consuming and slower than T1 FLSs.
This is attributed to their much higher computational complexities, difficulty in visualization and
use, and non availability of suitable software tools. Thus, the designers cannot reap the benefits
of T2 FLSs. Whereas, T1 FLSs are much simpler to design, simulate and realize, and their
popularity has been greatly aided by the Graphical User Interface (GUI) based software tools like
Fuzzy Logic Toolbox for MATLAB.
Hardware implementation of T1 FLSs is a well-known area [8]. The approaches for implementing
these systems cover technologies like microcontrollers, FPGAs, digital and analog VLSI among
others [8]-[16]. On the other hand, the hardware realization of T2 FLSs is a relatively nascent
research area and a few digital implementations reported in literature have been around
microcontrollers, FPGAs etc. [17]-[20]. Digital VLSI implementation was presented by Huang and
Chen [21] where the T2 FLS was designed at the transistor level on a single chip based on 0.35
µm technology. Particularly, these implementations have focused on Interval Type-2 Fuzzy Logic
Systems (IT2 FLSs), which are a special case of the T2 FLSs and are computationally much
simpler than general T2 FLSs. Furthermore, many researchers have validated that IT2 FLS
outperforms T1 FLS [2, 22-24].
In this paper, we have designed an analog IT2 fuzzy chip, which is based on the realization
methodology of averaging of two T1 FLSs. This methodology has been validated though two case
studies by the authors [25] and has also been adopted for the implementation of IT2 FLSs on
FPGAs [26, 27]. To the best of our knowledge, there is no report of an analog CMOS based
hardware realization of an IT2 FLS in the literature. Analog implementation is superior to digital
implementation in terms of processing speed, power dissipation and chip size. The main
drawback of analog circuits is their comparatively low accuracy than the digital circuits, which
however, is not a severe limitation in view of the typical demands of most fuzzy applications. The
main processing stages of the IT2 FLS viz. fuzzification, rule inference, defuzzification all are
realized using analog circuits designed in UMC 180 MMRF CMOS (180nm 1P/6M 3.3V)
technology. The workings of all the modules are verified through the simulations carried out in
Cadence Spectre tool. The synthesis of the modules as a two input, one output, nine rules FLS is
simulated and the results demonstrate an inference speed of 20MFLIPS and power consumption
of 20mW.
The paper is organized in five sections. Section 2 briefly describes the IT2 FSs and the working of
IT2 FLSs. In Section 3, we discuss the design of the IT2 processor in detail; the realization
methodology followed for designing IT2 FLS using T1 FLSs is discussed; the circuits of all the
analog modules used in the design and their simulation results are presented under this section.
In Section 4, the design and performance of analog IT2 fuzzy chip is presented, that has been
obtained by combining the various modules presented in Section 3. Finally, Section 5 concludes
the paper.
2. OVERVIEW OF IT2 FSS AND IT2 FLSS
2.1 Generalized T2 FSs and Interval T2 FSs
A T2 FS can be informally defined as a fuzzy set that is characterized by a fuzzy or non-crisp
membership function. This means there is uncertainty in the primary membership grades of a T2
MF, which introduces a third dimension to the MF, defined by the secondary membership grades
[28, 29].
Such a T2 FS, denoted by à can be expressed mathematically as in (1)
]}10[,|),(),,{(
~
~ ⊆∈∀= xA
JXxuxuxA µ (1)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 169
Where, ),(Ã
uxµ is the T2 MF, 1),(0and ~ ≤≤ uxA
µ ; x, the primary variable, has domain X; u U∈ ,
the secondary variable, has domain xJ at each x X∈ ; xJ is called the primary membership of x
and ]1,0[⊆∈ xJu
Uncertainty in the primary memberships of a T2 FS consists of a bounded region which is called
the Footprint of Uncertainty (FOU). All the embedded FSs of FOU are T1 FSs and their union
covers the entire FOU, [1] as in (2)
U
Xx
xJAFOU
∈
=)
~
( (2)
IT2 is a special case of a T2 FS where all the secondary membership grades equal one. IT2 FS is
completely characterized by its 2-D FOU that is bound by a Lower MF (LMF) and an Upper MF
(UMF), )(~ xA
µ and )(~ xAµ , respectively, both of which are T1 MFs. The FOU of an IT2 FS is
described in terms of these MFs, as in (3).
U
Xx
AA
xxAFOU
∈
= )](),([)
~
( ~~ µµ (3)
IT2 FSs are the most widely used T2 FSs to date, used in almost all applications because all
calculations are easy to perform. Because of the computational complexity of using a general T2
FLS, most designers only use IT2 FSs in a T2 FLS, the result being an IT2 FLS. LMF and UMF
together are popularly used in most of research papers to represent IT2 FLSs [28].
2.2 Working of IT2 FLS
A general block diagram for a T2 FLS is depicted in Fig. 1 [28]. It is very similar to a T1 FLS, the
major structural difference being that the defuzzifier block of a T1 FLS is replaced by the Output
Processing block in a T2 FLS. This block consists of a Type-Reduction sub-module followed by a
Defuzzifier.
FIGURE 1: A T2 FLS block diagram.
An IT2 FLS is an FLS, where all of the consequent and antecedent T2 FSs are IT2 FSs. Hence,
the working of an IT2 FLS is also similar to that of a general T2 FLS, as depicted in Fig.1. The IT2
FLS works as follows: the crisp inputs are first fuzzified into IT2 FSs, which then activate the
inference engine and the rule base to produce output IT2 FSs. These IT2 FSs are then processed
by a type-reducer. Type-reduction basically represents mapping of T2 FS into a T1 FS that is
called a type-reduced set. A defuzzifier then defuzzifies the type-reduced set to produce crisp
outputs [29].
3. DESIGN OF ANALOG MODULES FOR IT2 FLS
3.1 Realization Methodology for IT2 FLS with T1 FLSs
As mentioned in Section II, an IT2 FS can be completely characterized by its 2-D FOU, which in
turn can be represented in terms of two T1 FSs. There are two approaches for obtaining these T1
FSs and the corresponding T1 FLSs as shown in Fig 2.
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 170
a) In the first approach, one T1 FLS can be formed with the LMFs of all the input and
output IT2 FSs and the second T1 FLS with their corresponding UMFs. UMF and LMF
are the outer and inner envelopes of the FOU respectively as shown in Fig 2.
b) In the second approach, one T1 FLS can be obtained with the Left FSs of all the input
and output IT2 FSs and the second T1 FLS with their corresponding Right FSs. These
Left and Right FSs are represented with bold red and blue lines respectively in Fig 2.
FIGURE 2: FOU of an IT2 FS.
Authors have proposed and validated [25] that IT2 FLS can be realized with the average of two
T1 FLSs, where two T1 FLSs were formed based on the first approach as described above. For
validation, this methodology was applied on (i) an arbitrary system of two inputs, one output and
nine rules, and (ii) the Mackey-Glass time-series forecasting. In the second case study, T1 FLS
was evolved using Particle Swarm Optimization (PSO) algorithm for the Mackey-Glass time-
series data with added noise, and was then upgraded to IT2 FLS by adding FOU. Further, four
experiments were conducted in the second case study for four different noise levels. For each
case study, a comparative study of the results of the average of two T1 FLSs and the
corresponding IT2 FLS, obtained through computer simulations in MATLAB environment
validated that IT2 FLS performance is equivalent to the average of two T1 FLSs; that proves the
effectiveness of the realization approach.
The design of IT2 fuzzy logic controller chip presented in this paper is based on the architecture
shown in Fig. 3. This architecture uses two T1 FLSs to emulate an IT2 FLS and uses the first
approach for obtaining two T1 FLSs. Here, the first T1 FLS is constructed using UMFs and the
second one with the LMFs so as to emulate the FOUs of all IT2 FSs in an IT2 FLS. The
fuzzification, fuzzy inference and defuzzification are done as traditionally for two T1 FLSs and the
outputs are then averaged to yield the final output of the IT2 FLS. The advantage of using this
realization methodology is that it avoids the complications and intensive computations required
for type reduction.
FIGURE 3: Realization Methodology for IT2 FLS with T1 FLSs.
Interval Type-2 FLS
Crisp
Input
Type-1 FLS
(UMFs)
Type-1 FLS
(LMFs)
Average Crisp
Output
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 171
3.2 Analog Functional Blocks of IT2 FLS
In this section, we describe the complete structure of the designed IT2 fuzzy processor in detail.
A zero order TSK fuzzy model is used for implementing each T1 FLS i.e. the rule consequents
are constant values called singletons and each rule has the format described in (4).
In the above, x and y are input variables, A and B are linguistic variables of x and y, defined by
FSs. Furthermore, z is an output variable and c is some constant. The output is computed from a
weighted average represented by (5), in which each consequent value zi is weighted by the
activation degree wi of its corresponding rule, iα being the weight associated to ith
rule.
The complete schematic arrangement for the hardware implementation of the IT2 FLS is shown
in Fig. 4. It has the following functional blocks:
a) Fuzzifier block fuzzifies the inputs and it contains membership function generators
(MFGs) that generate MFs of different shapes viz. Z, trapezoidal, triangle and S.
b) MIN circuit is used in the inference engine for computing the activation degree of each
rule.
c) Scalar circuits are used to weight the singleton consequents.
d) Multiplier-Divider circuits are used for calculating the defuzzified output of each T1
FLS.
e) Averager circuit calculates the defuzzified output of the IT2 processor by computing
the average of the two defuzzified values obtained from both T1 FLSs.
In the present work, an IT2 fuzzy chip for two input variables, partitioned into three FSs, and one
output having five singletons is designed. Therefore, each T1 FLS viz. the T1 FLS (UMFs) and
the T1 FLS (LMFs), have 2 inputs (3 MFs for each input) and 1 output (5 singletons). We use MIN
method for the inference engine of T1 FLSs. For the defuzzification of each T1 FLS, weighted
average method is used. Detailed description of the circuits used for each functional block of the
IT2 fuzzy chip is given below.
3.2.1 Fuzzifier Circuit [31]
Fuzzifier, which converts a crisp input to a fuzzy set, is the first stage in a fuzzy controller. We
have used transconductance mode CMOS based circuits for implementing the fuzzifier block and
its schematic is shown in Fig. 5. It consists of two differential amplifiers with one PMOS current
mirror load. Vref1 and Vref2 are the control voltages that are fed to one input of each differential
pair. And VIN is applied to the second inputs of both the differential pairs. Iout can be written as in
(6).
IF (x is A) AND (y is B)
THEN z = c
(4)
∑
∑
=
i
ii
i
i
ii
w
zw
Output
α
α (5)
42 DDout III += (6)
Since all transistors in this circuit operate in saturation region i.e. VGS>VT and VDS>VGS-VT for
each MOS transistor, therefore their drain currents can be defined by (7) and (8).
)( 2
1 12,1 TGSD VVKI −= (7)
)( 2
2 24,3 TGSD VVKI −= (8)
parameteructancetranscondtheis,
2
)/(
,
2
)/(
where 2
2
1
1 K
LWK
K
LWK
K ==
ref2INGSref1INGS VVVandVVV 21
−=−=
1)/( LW =size of M1 & M2, 2)/( LW =size of M3 & M4
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 172
FIGURE 4: Functional Blocks of IT2 FLS.
For MOS transistors operating in saturation region, the drain currents can be approximated in a
quadratic form [14]. So (7) and (8) are written in quadratic from and are given in (9) and (10)
respectively.
+ sign for ID1 and ID3
− sign for ID2 and ID4
Where α1, α2, β1 and β2 are defined as in (11) and (12)
Using the values of ID2 and ID4 as obtained from above equations and putting them in (6), the
output current of the circuit can be written as (13)
Thus α and β are the two control parameters of this circuit, which tune the position and slope of
the MF respectively. The values of these parameters should be so chosen as to obtain the
desired shape of the MF. Αs suggested by (11), the value of α can be varied by varying the value
of Vref for each differential pair. Similarly (12) suggests that β can be changed by changing the
(W/L) of the differential pairs.
The results from Cadence Spectre simulation run for trapezoidal, S and Z shapes implemented
by the fuzzifier circuit are shown in Figs. 6 (a) to (d). For trapezoidal and triangular shapes, the
characteristics of Iout are shifted up because two currents ID2 and ID4 are added up. Suitable
current mirrors are used to scale output currents of all MFGs in the same range. Figs. 6 (b) and 6
(c) show how the programmability of Z and S shaped MFs can be affected by varying the
difference in Vref1 and Vref2. Fig. 6 (d) shows the slope tuning of a trapezoidal MF. By varying
(W/L)1, the left hand slope of this curve changes and by varying (W/L)2, the right hand slope of
the curve changes. Thus by varying both the (W/L) ratios together, the width of the curve can be
changed. Similarly, the slopes of Z and S MFs can be changed. When symmetrical MFs are
desired, the (W/L)1 must match (W/L)2. All MFs are symmetrical in the current design.
2
22
2
1
2
11
1
2,1
αββ
α
−±= S
D
I
I
(9)
2
22
2
2
2
22
2
4,3
αββ
α
−±= S
D
I
I
(10)
, 21
21
T
refIN
T
refIN
V
VV
V
VV −
=
−
= αα
(11)
2
,
2 2
2
1
1 





=





=
L
W
I
VK
L
W
I
VK
S
T
S
T
ββ
(12)
2
2
2
2
2
2
2
22
22
1
2
11
1
αββ
α
αββ
α
−−−−= Sout II
(13)
MFG
MIN
MIN
Scalar
Scalar
T1 FLS
(LMFs)
Fuzzifier
Rule
Inference
Defuzzifier
Crisp
Inputs
MFG
Crisp
Outputs
T1 FLS
(UMFs)
Multiplier-
Divider
Multiplier-
Divider
Averager
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 173
FIGURE 5: Membership Function Generator (MFG) circuit.
3.2.2. MIN-MAX Circuits
The most popular fuzzy logic operators used to compute the inference of a rule are logical “AND”
and logical “OR”. MIN and MAX modules can be used to implement the AND and OR operations
respectively. We have used current mode MIN circuits to implement the rule base. One MIN is
required for calculating the inference of each rule. The circuit schematics of a two-input MIN is
shown in Fig. 7 (a) [16]. It consists of MAX circuit block as shown in Fig. 7 (b) with extra current
sources to complement the directions of currents [32]. Transistors M1 and M3 are source follower
transistors. M2 and M4 are current sensor transistors that can sink high current. The value of VBias,
which is applied to M1, M3 and M5 transistor gates, is calculated from (14).
Where, VGS= Transistor gate-source voltage, and ∆=overdrive voltage
FIGURE 6: (a). Trapezoidal curve obtained through simulation of MFG circuit Vref1=1.5V, Vref2=2V,
W/L=5 6(b). S-shaped curve obtained through simulation of MFG circuit Vref1=0V, Vref2=1V, 1.3V,
4,23,1
VVV GSBias ∆+= (14)
6(b)6(a)
6(c)
6(d)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 174
1.5V, W/L=3 6(c). Z-shaped curve obtained through simulation of MFG circuit Vref2=0V, Vref1=500mV,
1V, 1.5V, W/L=3 6(d). Slope tuning of trapezoidal MF Vref1=1.5V, Vref2=2V, W/L=5,3.
If I1>I2 in the MAX circuit, M1 and M2 transistors will be in the saturation region, M3 and M4 will be
in triode and cutoff regions respectively because of current mirror circuits. Thus, M1 current I1
would mirror in to the output. The MIN circuit operation is very similar to the MAX circuit, with the
difference that the currents I1 and I2 are being stolen from the transistors M1 and M3. Therefore, in
the MIN circuit, the branch from which we steal lesser current would mirror its current into the
output. These circuits can work with low power supply; the minimum power supply for these
circuits is calculated from (15).
Since there are a large number of MIN circuits used in a fuzzy controller, power consumption of
chip will be decreased significantly with these MIN circuits working on low voltage. Size of each
MIN depends upon the number of inputs only and we can increase the number of inputs of these
circuits only by adding two transistors for each input such as M1 and M2. The design presented
here targets 2 inputs, and therefore, two inputs MIN circuits are required. Inputs to each MIN
circuit are the outputs of two MFGs from the fuzzifier block, which correspond to the antecedent
part of the rule in consideration and the output of each MIN is the firing rule strength wi of that
rule.
Simulation results of a two input MIN circuit are given in Figs. 8 (a) and (b). Fig. 8 (a) is the DC
output characteristic for different values of I2 and Fig. 8 (b) is the transient response for two
different shapes of I1 and I2. Fig. 9 (a) and (b) are the DC output characteristics and transient
response respectively for a two input MAX circuit.
FIGURE 7 (a): MIN circuit. FIGURE 7 (b): MAX circuit.
FIGURE 8: (a). DC response of MIN circuit with two inputs
(b). Transient response of MIN circuit with two inputs
3.2.3. Scalar Circuit
Scalar circuit provides many current sources of scaled value of the input current. Scalar circuit is
based on current mirror as shown in Fig. 10. Iin is the input current and Io1, Io2,…, Ioi are the output
)(min 2 SatDSGSDD VVV += (15)
7(a) 7(b)
8(b)8(a)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 175
currents of 1st
, 2nd
, and ith
stage mirrors, respectively. Since, transistor M1 is in saturation region,
Iin can be written as (16).
Current through the ith
current mirror can be written as (17).
FIGURE 9: (a). DC response of MAX circuit with two inputs
(b). Transient response of MAX circuit with two inputs.
From (16) and (17), Ioi can be simplified to (18).
Where, αi is the scaling factor of the ith stage current mirror, given by (19).
Response of the scalar circuit is shown in Fig. 11 for different values of α (0.5, 1, and 2).
FIGURE 10: Scalar circuit FIGURE 11: Response of Scalar circuit (for α =0.5, 1, and 2).
3.2.4. Multiplier-Divider Circuit
Multiplier-divider circuit shown in Fig. 12 is used in the defuzzifier section [15]. It works on the
principle of translinear circuits where all the transistors are operating in saturation region. The
output of the circuit can be expressed as (20)
Block diagram of the defuzzification scheme followed here is shown in Fig. 13. It consists of
scalar circuits in the first stage. The scalar takes the rule strength wi calculated from the MIN
circuit as the input current, and generates the weighted rule strength αiwi. Outputs of all scalars
are wired to produce the sum of these weighted rule strengths. The resultant current output I of
the current mirror is given by (21).
2
)()/(5.0 TGSinin VVLWKI −= (16)
2
)()/(5.0 TGSioi VVLWKI −= (17)
inioi II α= (18)
in
i
i
LW
LW
)/(
)/(
=α
(19)
2
1
b
bin
out
I
II
I =
(20)
9(a) 9(b)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 176
Inputs to the multiplier-divider circuits are the corresponding values of the weighted rule strengths
αi wi, the corresponding consequent zi, and the sum I. Each multiplier-divider circuit multiplies αi wi
with corresponding zi, and divides by I. The outputs of all multiplier-divider circuits are wired to
give the global defuzzified output, as given in (5).
FIGURE 12: Multiplier-Divider circuit.
Multiplier/
Divider
Multiplier/
Divider
Multiplier/
Divider
Scalar
α1
Scalar
α2
Scalar
αn
Current
Mirror
w1
wn
w2
α1w1
α2w2
αn wn
z1
z2
zn
∑ αi wi
Defuzzified
output
Current
Mirror
wi=rule firing strength
αi=rule weight
zi=rule consequent
FIGURE 13: Block diagram of Defuzzifier.
The performance of Multiplier-Divider circuit is tested as a multiplier by fixing the values of Iin and
Ib2, and sweeping the values of Ib1. Fig. 14 (a) shows the simulation run for three different values
of Iin viz. 10µA, 12µA, 15µA, Ib2 fixed at 10µA, and Ib1 swept across from 5µA to 40µA. The same
circuit is tested as a divider by fixing the values of Iin and Ib1, and sweeping the values of Ib2. Fig
14 (b) shows the simulation run for three different values of Iin viz. 5µA, 10µA, 15µA, Ib1 fixed at
10µA, and Ib2 swept across from 5µA to 40µA.
∑=
i
iiwI α (21)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 177
FIGURE 14: (a). Multiplier-Divider circuit acting as multiplier (Iin =10µA, 12µA, 15µA, Ib2 = 10µA).
(b). Multiplier-Divider circuit acting as divider (Iin =5µA, 10µA, 15µA, Ib1 = 10µA).
3.2.5 Averager Circuit
The averager circuit computes the average of the defuzzified outputs of two T1 FLSs, which is the
final defuzzified output of the IT2 FLS. The averager circuit works on the principle of current
mirror. Defuzzified outputs of both the T1 FLSs are wired so that the sum of both becomes the
drain current of M1 as shown in Fig. 15 and as represented by (22). Sizes of M1 and M2 are
related by (23).
Current output from M2 is the average of the two input currents I1 and I2, where I1 is the output
current from T1 FLS (UMFs) and I2 is the output current from T1 FLS (LMFs). Thus, this circuit
gives the average of the two T1 FLSs. Fig. 16 shows the simulation result of Averager circuit.
FIGURE 15: Averager circuit FIGURE 16: Response of Averager circuit.
4. ANALOG IT2 FUZZY LOGIC CONTROLLER CHIP
In this section, fuzzy functional blocks which have been described in the previous section, are
combined into an IT2 fuzzy chip and the arrangement is shown in Fig. 17. Current mirrors are
used wherever required to change the current directions. Both T1 FLSs differ only in the designs
of their fuzzifiers, specifically, the sizes of the differential pair MOS transistors of the MFGs. For
generating two different slopes corresponding to the UMFs and LMFs of the FOUs, W/L=4 and
W/L=3 respectively are selected. Designs of all other modules viz. MIN, scalar, defuzzifier are
same in both T1 FLSs of the IT2 fuzzy chip.
211 IIID += (22)
12 )/(
2
1
)/( LWLW =
(23)
Therefore,
2
21
2
II
ID
+
=
(24)
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 178
FIGURE 17: Arrangement of Fuzzy functional blocks for IT2 Fuzzy Chip realization
FIGURE 18: UMFs and LMFs of 3 FOUs for one variable obtained through simulation of fuzzifier circuit
W/L=4 for UMFs, 3 for LMFs
TABLE 1: On-chip Voltage and Current sources.
Input1
Outpu
Input1
z1
Vref1 Vref2
MFG
Vref1 Vref2
MFG
Vref1 Vref2
MFG
MIN
Vref1 Vref2
MFG
Vref1 Vref2
MFG
Vref1 Vref2
MFG
MIN
MIN
MIN
MIN
MIN
MIN
MIN
(3,2)
MIN
Scalar – α1
Scalar – α2
Scalar – α3
Scalar – α4
Scalar – α5
Scalar – α6
Scalar – α7
Scalar – α8
Scalar – α9
Multiplier-Divider
z9
Multiplier-Divider
Current Mirror
CurrentMirror
z1
Vref1 Vref2
MFG
Vref1 Vref2
MFG
Vref1 Vref2
MFG
MIN
Vref1 Vref2
MFG
Vref1 Vref2
MFG
Vref1 Vref2
MFG
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
Scalar – α1
Scalar – α2
Scalar – α3
Scalar – α4
Scalar – α5
Scalar – α6
Scalar – α7
Scalar – α8
Scalar – α9
Multiplier-Divider
z9
Multiplier-Divider
Current Mirror
CurrentMirror
Averager
Input2Input2
T1 FLS
(UMFs)
T1 FLS
(LMFs)
Current
Sources
10µA
20µA
30µA
40µA
50µA
Voltage
Sources
0.9V
1.0V
1.2V
2.1V
2.2V
2.4V
2.5V
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 179
LMFs Vref1 Vref2
1 1 5
2 2.2 1.0
3 0 2.4
TABLE 2: Reference Voltage (V) Settings
Pins Details Number of
Pins
VDD 1
GND 1
Inputs 2
Output 1
Consequents 5
On-chip Current Sources 5
On-chip Reference Voltage Sources 7
Vref1 and Vref2 for all the MFGs for T1 FLS
(UMFs) and T1 FLS (LMFs)
2*[2*3+2*3]
24
Total 46
TABLE 3: External pins of IT2 Fuzzy Logic Controller Chip
4.1. Pulse Response of IT2 Fuzzy Logic Controller Chip
In order to determine the speed of the chip, a square pulse is applied to one input, while the other
input is set to 0V. The input MFs for this test are shown in Fig. 18. Rule base for both T1 FLSs is
taken arbitrarily and is listed in Table 4 in indexed form. The numbers in the input and output
columns refer to the index number of membership functions.
Results of this test obtained through Cadence Spectre Simulation are shown in Fig. 19. The
response of this chip to pulse input shows a maximum delay of 50ns. This corresponds to a
speed of 20 MFLIPS (mega fuzzy logic inferences per second) including the defuzzification
process. Since, rule by rule architecture has been followed in this realization; the fuzzy inferences
are performed in parallel. Hence, the inference speed is independent of the number of rules and
number of MFs. This speed is in a good range for most applications. The chip occupies an area
of 0.32 mm
2
.
Rule
Number
Input
#1
Input
#2
Output
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 4
7 3 1 3
8 3 2 4
9 3 3 5
TABLE 4: Fuzzy Rule base in Indexed form
UMFs Vref1 Vref2
1 0.9 5
2 2.1 1.2
3 0 2.5
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 180
FIGURE 19: Pulse response of the IT2 Fuzzy Logic Controller Chip
The comparison of the proposed design with the existing designs on different target technologies
is presented in Table 5. The proposed design has achieved a considerable high speed along with
a significant reduction in power and area. Although the achieved speed is less than the FPGA
based design [18], however, a severe limitation of FPGA based implementation is that it requires
external memory that grows with resolution, number of inputs, and number of MFs.
References [17] [18] [21] Proposed
Target
Technology
Microcontroller FPGA 0.35 µm
(Digital CMOS)
0.18 µm
(Analog CMOS)
Design
Specifications
2 inputs with 2
sets per input,
4 rules,
4 consequents
2 inputs,
1 output,
9 rules
2 inputs,
1 output,
64 rules
2 inputs with 2
fuzzy sets per
input,
1 output,
9 rules
Power Not Specified Not Specified Not Specified 20 mW
Area - - 5957 µm x 5954
µm (35.46 mm
2
)
0.32 mm
2
Speed (FLIPS) 29.17 (Inference
time: 34.28 ms)
30 x 10
6
3.125 x 10
6
20 x 10
6
Additional
Memory
Requirements
RAM: 1024 bytes
Flash: 4096 bytes
Highly Memory
Intensive
- No Additional
Memory Required
TABLE 5: Comparison of the Proposed Design with previous work
5. CONCLUSIONS
We have presented here the design of an analog CMOS IT2 fuzzy logic controller chip in 0.18µm
technology. The design is based on the realization methodology of averaging of two T1 FLSs.
The basic fuzzy functional blocks viz. fuzzifier, inference engine, defuzzifier and averager, all are
analog circuits. General features of analog fuzzy circuits are high speed, low power and small
size. Furthermore, due to parallelism in the architectures of the fuzzifier and the inference engine,
the speed of the chip is independent of the number of inputs and the number of rules. However,
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 181
the power consumption will increase with the number of inputs and the number of MFs used to
fuzzify each input.
The shapes and positions of the MFs are tunable through IC control pins. The rule base is also
programmable through control pins provided on IC. Further some references voltage sources and
reference consequent current sources are designed on chip. The chip has a speed of 20 MFLIPS
and power consumption of 20mW and it occupies an area of 0.32mm2
. The chip features are
listed in Table 6.
TABLE 6: IT2 Fuzzy Logic Controller Chip Features
6. ACKNOWLEDGMENT
We would like to thank Government of India for providing facilities to our institute under SMDP-II
project. This work has been carried out using lab facilities created under SMDP-II at Electronics &
Communication Engineering Department provided by Ministry of Communication and Information
Technology, New Delhi, Government of India.
7. REFERENCES
[1] J.M. Mendel and R.I. John, “Type-2 Fuzzy Sets Made Simple”, IEEE Transaction on Fuzzy
Systems, vol. 10, no. 2, 2002, pp. 117–127.
[2] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using type-2
fuzzy adaptive filters”, IEEE Trans. Fuzzy Syst., vol. 8, no. 5, 2000, pp. 551–563.
[3] Q. Liang and J. M. Mendel, “MPEG VBR video traffic modeling and classification using fuzzy
technique”, IEEE Trans. Fuzzy Syst., vol. 9, no. 1, 2001, pp. 183–193.
[4] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Inf. Sci., vol. 170, no. 2–4, 2005,
pp. 409–418.
[5] J. Zeng and Z. Q. Liu, “Type-2 fuzzy hidden Markov models and their application to speech
recognition”, IEEE Trans. Fuzzy Syst., vol. 14, no. 3, 2006, pp. 454–467.
[6] P. Melin and O. Castillo, “A new method for adaptive control of nonlinear plants using type-2
fuzzy logic and neural networks”, J. Gen. Syst., vol. 33, no. 2/3, 2004, pp. 289–304.
[7] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile
robots”, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, 2004, pp. 524–539.
[8] Baturone, Barriga, Carlos Jimenez-Fernandez and Diego, R. Lopez, Microelectronic Design
of Fuzzy-Logic Based Systems, CRC Press, 2000.
Description Features
Technology 0.18µm
No. of Inputs 2 (3 MFs each)
No. of Outputs 1 (5 singletons)
No. of pins 46
Supply Voltage 3.3V
Power Consumption 20 mW
Inference speed 20MFLIPS
Area 0.32mm2
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 182
[9] H. Eichfeld, T. Künemund, and M. Menke, “A 12b general-purpose fuzzy logic controller
chip”, IEEE Trans. Fuzzy Syst., vol. 4, no. 4, 1996, pp. 460–475.
[10] M.J. Patyra, J.L. Grantner and K. Koster, “Digital fuzzy logic controller: Design and
implementation”, IEEE Trans. Fuzzy Syst., vol. 4, no. 4, 1996, pp. 439–459.
[11] J.M. Jou, P.Y. Chen and S.F. Yang, “An adaptive fuzzy logic controller: Its VLSI architecture
and applications”, IEEE Trans. Very Large Scale Integr. Syst., vol. 8, no. 1, 2000 pp. 52–
60.
[12] V. Salapura, “A fuzzy RISC processor”, IEEE Trans. Fuzzy Syst., vol. 8, no. 6, 2000, pp.
781–790.
[13] D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system”,
IEEE Trans. Ind. Electron., vol. 47, no. 3, 2000, pp. 703–715.
[14] Y. Ota and B. Wilamowski, “CMOS implementation of a Voltage-mode fuzzy Min-Max
Controller”, Journal of Circuits, Systems, and Computers, Vol. 6, No. 2, 1996, pp. 171-184.
[15] M.F. Azeem, K.P. Govila, “Design of Analog CMOS Based Fuzzy Inference System”, IEEE
International Conference on Fuzzy Systems, Vancouver, 2006, pp. 1715-1720.
[16] V. F. Dinavari, A. Khoei, K. Hadidi, M. Soleimani, H. Mojarad, “Design of a Current-Mode
Analog CMOS Fuzzy Logic Controller”, IEEE Eurocon, St. Petersburg, 2009, pp. 211-217.
[17] J. Bulla, G. Sierra and M. Melgarejo “Implementing a Simple Microcontroller-Based Interval
Type-2 Fuzzy Processor”, Proceedings of 51
st
Midwest Symposium on Circuits and
Systems (MWSCAS), Knoxville (TN), 2008, pp. 69-72.
[18] M. A. Melgarejo and C. A. Pena-Reyes, “Hardware architecture and FPGA implementation
of a type-2 fuzzy system”, Proc. ACM GLSVLSI, Boston, MA, 2004, pp. 458–461.
[19] M. A. Melgarejo, R. A. Garcia and C. A. Pena-Reyes, “Pro-two: A hardware based platform
for real time type-2 fuzzy inference”, Proc. IEEE Int. Conf. Fuzzy Syst., vol. 2, 2004, pp.
977–982.
[20] M. Melgarejo and C. A. Pena-Reyes, “Implementing interval type-2 fuzzy processors”, IEEE
Comput. Intell. Mag., vol. 2, no. 1, 2007, pp. 63–71.
[21] S. H. Huang and Y. R. Chen, “VLSI implementation of type-2 fuzzy inference processor”,
Proc. IEEE Int. Symp. Circuits Syst., vol. 4, 2005, pp. 3307–3310.
[22] H. Hagras, “A Type-2 Fuzzy Logic Controller for Autonomous Mobile Robots”, in Proceeding
of IEEE FUZZ Conference, Budapest, Hungary, July 2004, pp. 965-970.
[23] Q. Liang, N. N. Karnik, and J. M. Mendel, “Connection admission control in ATM networks
using survey-based type-2 fuzzy logic systems”, IEEE Trans. Syst., Man, Cybern., C, Appl.
Rev., vol. 30, no. 3, 2000, pp. 329–339.
[24] Q. Liang and J. M. Mendel, “Overcoming time-varying co-channel interference using type-2
fuzzy adaptive filter”, IEEE Trans. Circuits and Systems II: Analog and Digital Signal
Processing, vol. 47, No. 12, 2000, pp. 1419–1428.
[25] Mamta Khosla, R K Sarin, Moin Uddin, Arun Khosla and Satvir Singh, Realizing Interval
Type-2 Fuzzy Systems with Type-1 Fuzzy Systems. Book Chapter for Book titled Cross-
Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin
International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 183
Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing
Technologies, IGI Global, USA. (Accepted for Publication).
[26] Roberto Sepúlveda, Oscar Castillo, Patricia Melin, Oscar Montiel, “An Efficient
Computational Method to Implement Type-2 Fuzzy Logic in Control Applications”, Analysis
and Design of Intelligent Systems using Soft Computing Techniques, Springer, 2007, pp.
45-52.
[27] Roberto Sepúlveda, Oscar Montiel, Gabriel Lizárraga, Oscar Castillo, “Modeling and
Simulation of the Defuzzification Stage of a Type-2 Fuzzy Controller Using the Xilinx
System Generator and Simulink”, Evolutionary Design of Intelligent Systems in Modeling,
Simulation and Control, Springer, 2009, pp. 309-325.
[28] Jerry M. Mendel, “Type-2 fuzzy sets and Systems: an Overview”, IEEE Computational
Intelligence Magazine, 2007, pp. 20-29.
[29] Qilian Liang and Jerry M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and
Design”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 5, 2000, pp.535-550.
[30] J. M. Mendel, R. I. John, and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple”,
IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, 2006, pp. 808-821.
[31] Mamta Khosla, R K Sarin, Moin Uddin and Ajay Sharma, “Analog Realization of Fuzzifier for
IT2 Fuzzy Processor,” 3rd International Conference on Electronics Computer Technology-
ICECT 2011, Kanyakumari, pp 239-245.
[32] Y. Ota and B. Wilamowski, “Current-mode CMOS Implementation of a Fuzzy Min-Max
Network”, Proc. World Congr. Neural Networks, vol. II, 1995, pp. 480 - 483.

More Related Content

PDF
Implementation of Type-2 Fuzzy Logic Controller in PMSM Drives Using DSP
PDF
H344250
PDF
PDF
Nfa user's manual v2.2
PDF
VHDL Implementation of Flexible Multiband Divider
PDF
High secure buffer based physical unclonable functions (PUF’s) for device aut...
PPT
Basic processing unit by aniket bhute
PDF
U proc ovw
Implementation of Type-2 Fuzzy Logic Controller in PMSM Drives Using DSP
H344250
Nfa user's manual v2.2
VHDL Implementation of Flexible Multiband Divider
High secure buffer based physical unclonable functions (PUF’s) for device aut...
Basic processing unit by aniket bhute
U proc ovw

What's hot (16)

PDF
Bm36382385
PDF
Computer engineering - overview of microprocessors
PPTX
Pipelining and vector processing
PPT
CO By Rakesh Roshan
PPT
2.computer org.
PPT
Control unit-implementation
DOCX
OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES (HDLs)
PDF
Intelligent speed control_3_1
PPT
Unit 3 basic processing unit
DOCX
Cache Design for an Alpha Microprocessor
PDF
Realization of high performance run time loadable mips soft-core processor
PPTX
Architectural support for High Level Language
PPT
Unit 2 ca- control unit
PPTX
Addressing sequencing
PDF
16-bit Microprocessor Design (2005)
PDF
Ch8 (1) morris mano
Bm36382385
Computer engineering - overview of microprocessors
Pipelining and vector processing
CO By Rakesh Roshan
2.computer org.
Control unit-implementation
OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES (HDLs)
Intelligent speed control_3_1
Unit 3 basic processing unit
Cache Design for an Alpha Microprocessor
Realization of high performance run time loadable mips soft-core processor
Architectural support for High Level Language
Unit 2 ca- control unit
Addressing sequencing
16-bit Microprocessor Design (2005)
Ch8 (1) morris mano
Ad

Viewers also liked (20)

PPTX
IC Mask Design - IC Layout Acceleration Tool - DAC Conference, June 2010
PPTX
Multithreading Fundamentals
PPTX
Design and simulation of sayeh processor using verilog copy 1445752708332
PPTX
Trigate transistors and future processors
PDF
Aicd cmos layouts
PPT
Analog Layout and Process Concern
PDF
Ehud tzuri 3 d challanges new
PDF
Vlsi design-manual
PDF
Full custom Ic design Implementation of low power priority encoder
PPT
Atm Simulator
PDF
Layout Design Comparison of CMOS and Gate
PPT
PPT
Lab inv l
PPTX
tri gate transistors
PDF
RISC AND CISC PROCESSOR
PPT
Risc processors
PDF
Layout rules
PPTX
3D or Tri-gate transistors
PDF
VTU ECE 7th sem VLSI lab manual
PPTX
finfet & dg-fet technology
IC Mask Design - IC Layout Acceleration Tool - DAC Conference, June 2010
Multithreading Fundamentals
Design and simulation of sayeh processor using verilog copy 1445752708332
Trigate transistors and future processors
Aicd cmos layouts
Analog Layout and Process Concern
Ehud tzuri 3 d challanges new
Vlsi design-manual
Full custom Ic design Implementation of low power priority encoder
Atm Simulator
Layout Design Comparison of CMOS and Gate
Lab inv l
tri gate transistors
RISC AND CISC PROCESSOR
Risc processors
Layout rules
3D or Tri-gate transistors
VTU ECE 7th sem VLSI lab manual
finfet & dg-fet technology
Ad

Similar to Design of an Analog CMOS based Interval Type-2 Fuzzy Logic Controller Chip (20)

PDF
Interval type-2 fuzzy logic system for remote vital signs monitoring and shoc...
PDF
International Journal of Fuzzy Logic Systems (IJFLS)
PDF
fuzzy control in matlab fuzzy control in matlab
PDF
Stability enhancement of power system
PDF
STABILITY ENHANCEMENT OF POWER SYSTEM USING TYPE-2 FUZZY LOGIC POWER SYSTEM S...
PDF
An optimal general type-2 fuzzy controller for Urban Traffic Network
PPT
Ch04 t2fs
PDF
F046023747
PDF
Fuzzy Logic Controller for Modern Power Systems
PPTX
Fuzzy logic system
PDF
An Intelligent Call Admission Controller for Guaranteed QoS in 4G Mobile Netw...
PDF
Full parameterization process
PDF
AN INTELLIGENT CALL ADMISSION CONTROLLER FOR GUARANTEED QOS IN 4G MOBILE NETW...
PDF
INTERVAL TYPE-2 INTUITIONISTIC FUZZY LOGIC SYSTEM FOR TIME SERIES AND IDENTIF...
PDF
International Journal of Fuzzy Logic Systems (IJFLS)
PDF
International Journal of Fuzzy Logic Systems (IJFLS)
PDF
Interval Type-2 Intuitionistic Fuzzy Logic System for Time Series and Identif...
PDF
International Journal of Fuzzy Logic Systems (IJFLS)
PDF
Design Of Analog Fuzzy Logic Controllers In Cmos Technologies 2003th Edition ...
Interval type-2 fuzzy logic system for remote vital signs monitoring and shoc...
International Journal of Fuzzy Logic Systems (IJFLS)
fuzzy control in matlab fuzzy control in matlab
Stability enhancement of power system
STABILITY ENHANCEMENT OF POWER SYSTEM USING TYPE-2 FUZZY LOGIC POWER SYSTEM S...
An optimal general type-2 fuzzy controller for Urban Traffic Network
Ch04 t2fs
F046023747
Fuzzy Logic Controller for Modern Power Systems
Fuzzy logic system
An Intelligent Call Admission Controller for Guaranteed QoS in 4G Mobile Netw...
Full parameterization process
AN INTELLIGENT CALL ADMISSION CONTROLLER FOR GUARANTEED QOS IN 4G MOBILE NETW...
INTERVAL TYPE-2 INTUITIONISTIC FUZZY LOGIC SYSTEM FOR TIME SERIES AND IDENTIF...
International Journal of Fuzzy Logic Systems (IJFLS)
International Journal of Fuzzy Logic Systems (IJFLS)
Interval Type-2 Intuitionistic Fuzzy Logic System for Time Series and Identif...
International Journal of Fuzzy Logic Systems (IJFLS)
Design Of Analog Fuzzy Logic Controllers In Cmos Technologies 2003th Edition ...

More from Waqas Tariq (20)

PDF
The Use of Java Swing’s Components to Develop a Widget
PDF
3D Human Hand Posture Reconstruction Using a Single 2D Image
PDF
Camera as Mouse and Keyboard for Handicap Person with Troubleshooting Ability...
PDF
A Proposed Web Accessibility Framework for the Arab Disabled
PDF
Real Time Blinking Detection Based on Gabor Filter
PDF
Computer Input with Human Eyes-Only Using Two Purkinje Images Which Works in ...
PDF
Toward a More Robust Usability concept with Perceived Enjoyment in the contex...
PDF
Collaborative Learning of Organisational Knolwedge
PDF
A PNML extension for the HCI design
PDF
Development of Sign Signal Translation System Based on Altera’s FPGA DE2 Board
PDF
An overview on Advanced Research Works on Brain-Computer Interface
PDF
Exploring the Relationship Between Mobile Phone and Senior Citizens: A Malays...
PDF
Principles of Good Screen Design in Websites
PDF
Progress of Virtual Teams in Albania
PDF
Cognitive Approach Towards the Maintenance of Web-Sites Through Quality Evalu...
PDF
USEFul: A Framework to Mainstream Web Site Usability through Automated Evalua...
PDF
Robot Arm Utilized Having Meal Support System Based on Computer Input by Huma...
PDF
Dynamic Construction of Telugu Speech Corpus for Voice Enabled Text Editor
PDF
An Improved Approach for Word Ambiguity Removal
PDF
Parameters Optimization for Improving ASR Performance in Adverse Real World N...
The Use of Java Swing’s Components to Develop a Widget
3D Human Hand Posture Reconstruction Using a Single 2D Image
Camera as Mouse and Keyboard for Handicap Person with Troubleshooting Ability...
A Proposed Web Accessibility Framework for the Arab Disabled
Real Time Blinking Detection Based on Gabor Filter
Computer Input with Human Eyes-Only Using Two Purkinje Images Which Works in ...
Toward a More Robust Usability concept with Perceived Enjoyment in the contex...
Collaborative Learning of Organisational Knolwedge
A PNML extension for the HCI design
Development of Sign Signal Translation System Based on Altera’s FPGA DE2 Board
An overview on Advanced Research Works on Brain-Computer Interface
Exploring the Relationship Between Mobile Phone and Senior Citizens: A Malays...
Principles of Good Screen Design in Websites
Progress of Virtual Teams in Albania
Cognitive Approach Towards the Maintenance of Web-Sites Through Quality Evalu...
USEFul: A Framework to Mainstream Web Site Usability through Automated Evalua...
Robot Arm Utilized Having Meal Support System Based on Computer Input by Huma...
Dynamic Construction of Telugu Speech Corpus for Voice Enabled Text Editor
An Improved Approach for Word Ambiguity Removal
Parameters Optimization for Improving ASR Performance in Adverse Real World N...

Recently uploaded (20)

PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Institutional Correction lecture only . . .
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Complications of Minimal Access Surgery at WLH
PPTX
master seminar digital applications in india
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Final Presentation General Medicine 03-08-2024.pptx
VCE English Exam - Section C Student Revision Booklet
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Institutional Correction lecture only . . .
O5-L3 Freight Transport Ops (International) V1.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Abdominal Access Techniques with Prof. Dr. R K Mishra
Supply Chain Operations Speaking Notes -ICLT Program
TR - Agricultural Crops Production NC III.pdf
Sports Quiz easy sports quiz sports quiz
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
O7-L3 Supply Chain Operations - ICLT Program
2.FourierTransform-ShortQuestionswithAnswers.pdf
Complications of Minimal Access Surgery at WLH
master seminar digital applications in india
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Cell Types and Its function , kingdom of life
FourierSeries-QuestionsWithAnswers(Part-A).pdf

Design of an Analog CMOS based Interval Type-2 Fuzzy Logic Controller Chip

  • 1. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 167 Design of an Analog CMOS Based Interval Type-2 Fuzzy Logic Controller Chip Mamta Khosla khoslam@nitj.ac.in Associate professor Department of Electronics and Communication Engineering Dr B R Ambekdar National Institute of Technology Jalandhar – 144011. India Rakesh Kumar Sarin sarinrk@nitj.ac.in Professor Department of Electronics and Communication Engineering Dr B R Ambekdar National Institute of Technology Jalandhar – 144011. India Moin Uddin prof_moin@yahoo.com Pro Vice Chancellor Delhi Technological University Delhi – 110042. India Abstract We propose the design of an analog Interval Type-2 (IT2) fuzzy logic controller chip that is based on the realization approach of averaging of two Type-1 Fuzzy Logic Systems (T1 FLSs). The fuzzifier is realized using transconductance mode membership function generator circuits. The membership functions are made tunable by setting some reference voltages on the IC pins. The inference is realized using current mode MIN circuits. The consequents are also tunable by providing five reference current sources on chip. Defuzzification of both the T1 FLSs is based on weighted average method realized through scalar and multiplier-divider circuits. An analog current-mode averager circuit is used for obtaining the defuzzified output of the IT2 fuzzy logic controller chip. The chip is designed for two inputs, one output and nine tunable fuzzy rules and is realized in 0.18 µm technology. Cadence Virtuoso Schematic/Layout Editor has been used for the chip design and the performances of all the circuits are confirmed through the simulations carried out using Cadence Spectre tool. The proposed architecture has an operation speed of 20 MFLIPS and a power consumption of 20mW. The whole chip occupies an area of 0.32 mm 2 . As compared to the previous designs, the proposed design has achieved a considerable high speed along with a significant reduction in power and area. Keywords: Type-2 Fuzzy logic Systems, Interval Type-2 Fuzzy Logic Systems, Footprint of Uncertainty, CMOS, Current Mirror. 1. INTRODUCTION Type-1 fuzzy logic has been the most popular form of fuzzy logic, and has been successfully used in various domains. However, there are various sources of uncertainties facing T1 FLSs, which are usually present in most of the real world applications. T1 FLSs cannot fully model and handle these uncertainties since they use precise and crisp Type-1 Fuzzy Sets (T1 FSs). However, Type-2 Fuzzy Logic Systems (T2 FLSs), which use Type-2 FSs (T2 FSs) characterized by fuzzy membership functions (MFs), have an additional third dimension. This third dimension and Footprint of Uncertainty (FOU) provide additional design degrees of freedom for T2 FLSs to directly model and handle uncertainties [1]. Thus, T2 FLSs are expected to perform better than their traditional counter parts.
  • 2. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 168 Although T2 FLSs have been used successfully in a number of applications [2-7], their design and implementation is comparatively more difficult, time consuming and slower than T1 FLSs. This is attributed to their much higher computational complexities, difficulty in visualization and use, and non availability of suitable software tools. Thus, the designers cannot reap the benefits of T2 FLSs. Whereas, T1 FLSs are much simpler to design, simulate and realize, and their popularity has been greatly aided by the Graphical User Interface (GUI) based software tools like Fuzzy Logic Toolbox for MATLAB. Hardware implementation of T1 FLSs is a well-known area [8]. The approaches for implementing these systems cover technologies like microcontrollers, FPGAs, digital and analog VLSI among others [8]-[16]. On the other hand, the hardware realization of T2 FLSs is a relatively nascent research area and a few digital implementations reported in literature have been around microcontrollers, FPGAs etc. [17]-[20]. Digital VLSI implementation was presented by Huang and Chen [21] where the T2 FLS was designed at the transistor level on a single chip based on 0.35 µm technology. Particularly, these implementations have focused on Interval Type-2 Fuzzy Logic Systems (IT2 FLSs), which are a special case of the T2 FLSs and are computationally much simpler than general T2 FLSs. Furthermore, many researchers have validated that IT2 FLS outperforms T1 FLS [2, 22-24]. In this paper, we have designed an analog IT2 fuzzy chip, which is based on the realization methodology of averaging of two T1 FLSs. This methodology has been validated though two case studies by the authors [25] and has also been adopted for the implementation of IT2 FLSs on FPGAs [26, 27]. To the best of our knowledge, there is no report of an analog CMOS based hardware realization of an IT2 FLS in the literature. Analog implementation is superior to digital implementation in terms of processing speed, power dissipation and chip size. The main drawback of analog circuits is their comparatively low accuracy than the digital circuits, which however, is not a severe limitation in view of the typical demands of most fuzzy applications. The main processing stages of the IT2 FLS viz. fuzzification, rule inference, defuzzification all are realized using analog circuits designed in UMC 180 MMRF CMOS (180nm 1P/6M 3.3V) technology. The workings of all the modules are verified through the simulations carried out in Cadence Spectre tool. The synthesis of the modules as a two input, one output, nine rules FLS is simulated and the results demonstrate an inference speed of 20MFLIPS and power consumption of 20mW. The paper is organized in five sections. Section 2 briefly describes the IT2 FSs and the working of IT2 FLSs. In Section 3, we discuss the design of the IT2 processor in detail; the realization methodology followed for designing IT2 FLS using T1 FLSs is discussed; the circuits of all the analog modules used in the design and their simulation results are presented under this section. In Section 4, the design and performance of analog IT2 fuzzy chip is presented, that has been obtained by combining the various modules presented in Section 3. Finally, Section 5 concludes the paper. 2. OVERVIEW OF IT2 FSS AND IT2 FLSS 2.1 Generalized T2 FSs and Interval T2 FSs A T2 FS can be informally defined as a fuzzy set that is characterized by a fuzzy or non-crisp membership function. This means there is uncertainty in the primary membership grades of a T2 MF, which introduces a third dimension to the MF, defined by the secondary membership grades [28, 29]. Such a T2 FS, denoted by à can be expressed mathematically as in (1) ]}10[,|),(),,{( ~ ~ ⊆∈∀= xA JXxuxuxA µ (1)
  • 3. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 169 Where, ),(Ã uxµ is the T2 MF, 1),(0and ~ ≤≤ uxA µ ; x, the primary variable, has domain X; u U∈ , the secondary variable, has domain xJ at each x X∈ ; xJ is called the primary membership of x and ]1,0[⊆∈ xJu Uncertainty in the primary memberships of a T2 FS consists of a bounded region which is called the Footprint of Uncertainty (FOU). All the embedded FSs of FOU are T1 FSs and their union covers the entire FOU, [1] as in (2) U Xx xJAFOU ∈ =) ~ ( (2) IT2 is a special case of a T2 FS where all the secondary membership grades equal one. IT2 FS is completely characterized by its 2-D FOU that is bound by a Lower MF (LMF) and an Upper MF (UMF), )(~ xA µ and )(~ xAµ , respectively, both of which are T1 MFs. The FOU of an IT2 FS is described in terms of these MFs, as in (3). U Xx AA xxAFOU ∈ = )](),([) ~ ( ~~ µµ (3) IT2 FSs are the most widely used T2 FSs to date, used in almost all applications because all calculations are easy to perform. Because of the computational complexity of using a general T2 FLS, most designers only use IT2 FSs in a T2 FLS, the result being an IT2 FLS. LMF and UMF together are popularly used in most of research papers to represent IT2 FLSs [28]. 2.2 Working of IT2 FLS A general block diagram for a T2 FLS is depicted in Fig. 1 [28]. It is very similar to a T1 FLS, the major structural difference being that the defuzzifier block of a T1 FLS is replaced by the Output Processing block in a T2 FLS. This block consists of a Type-Reduction sub-module followed by a Defuzzifier. FIGURE 1: A T2 FLS block diagram. An IT2 FLS is an FLS, where all of the consequent and antecedent T2 FSs are IT2 FSs. Hence, the working of an IT2 FLS is also similar to that of a general T2 FLS, as depicted in Fig.1. The IT2 FLS works as follows: the crisp inputs are first fuzzified into IT2 FSs, which then activate the inference engine and the rule base to produce output IT2 FSs. These IT2 FSs are then processed by a type-reducer. Type-reduction basically represents mapping of T2 FS into a T1 FS that is called a type-reduced set. A defuzzifier then defuzzifies the type-reduced set to produce crisp outputs [29]. 3. DESIGN OF ANALOG MODULES FOR IT2 FLS 3.1 Realization Methodology for IT2 FLS with T1 FLSs As mentioned in Section II, an IT2 FS can be completely characterized by its 2-D FOU, which in turn can be represented in terms of two T1 FSs. There are two approaches for obtaining these T1 FSs and the corresponding T1 FLSs as shown in Fig 2.
  • 4. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 170 a) In the first approach, one T1 FLS can be formed with the LMFs of all the input and output IT2 FSs and the second T1 FLS with their corresponding UMFs. UMF and LMF are the outer and inner envelopes of the FOU respectively as shown in Fig 2. b) In the second approach, one T1 FLS can be obtained with the Left FSs of all the input and output IT2 FSs and the second T1 FLS with their corresponding Right FSs. These Left and Right FSs are represented with bold red and blue lines respectively in Fig 2. FIGURE 2: FOU of an IT2 FS. Authors have proposed and validated [25] that IT2 FLS can be realized with the average of two T1 FLSs, where two T1 FLSs were formed based on the first approach as described above. For validation, this methodology was applied on (i) an arbitrary system of two inputs, one output and nine rules, and (ii) the Mackey-Glass time-series forecasting. In the second case study, T1 FLS was evolved using Particle Swarm Optimization (PSO) algorithm for the Mackey-Glass time- series data with added noise, and was then upgraded to IT2 FLS by adding FOU. Further, four experiments were conducted in the second case study for four different noise levels. For each case study, a comparative study of the results of the average of two T1 FLSs and the corresponding IT2 FLS, obtained through computer simulations in MATLAB environment validated that IT2 FLS performance is equivalent to the average of two T1 FLSs; that proves the effectiveness of the realization approach. The design of IT2 fuzzy logic controller chip presented in this paper is based on the architecture shown in Fig. 3. This architecture uses two T1 FLSs to emulate an IT2 FLS and uses the first approach for obtaining two T1 FLSs. Here, the first T1 FLS is constructed using UMFs and the second one with the LMFs so as to emulate the FOUs of all IT2 FSs in an IT2 FLS. The fuzzification, fuzzy inference and defuzzification are done as traditionally for two T1 FLSs and the outputs are then averaged to yield the final output of the IT2 FLS. The advantage of using this realization methodology is that it avoids the complications and intensive computations required for type reduction. FIGURE 3: Realization Methodology for IT2 FLS with T1 FLSs. Interval Type-2 FLS Crisp Input Type-1 FLS (UMFs) Type-1 FLS (LMFs) Average Crisp Output
  • 5. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 171 3.2 Analog Functional Blocks of IT2 FLS In this section, we describe the complete structure of the designed IT2 fuzzy processor in detail. A zero order TSK fuzzy model is used for implementing each T1 FLS i.e. the rule consequents are constant values called singletons and each rule has the format described in (4). In the above, x and y are input variables, A and B are linguistic variables of x and y, defined by FSs. Furthermore, z is an output variable and c is some constant. The output is computed from a weighted average represented by (5), in which each consequent value zi is weighted by the activation degree wi of its corresponding rule, iα being the weight associated to ith rule. The complete schematic arrangement for the hardware implementation of the IT2 FLS is shown in Fig. 4. It has the following functional blocks: a) Fuzzifier block fuzzifies the inputs and it contains membership function generators (MFGs) that generate MFs of different shapes viz. Z, trapezoidal, triangle and S. b) MIN circuit is used in the inference engine for computing the activation degree of each rule. c) Scalar circuits are used to weight the singleton consequents. d) Multiplier-Divider circuits are used for calculating the defuzzified output of each T1 FLS. e) Averager circuit calculates the defuzzified output of the IT2 processor by computing the average of the two defuzzified values obtained from both T1 FLSs. In the present work, an IT2 fuzzy chip for two input variables, partitioned into three FSs, and one output having five singletons is designed. Therefore, each T1 FLS viz. the T1 FLS (UMFs) and the T1 FLS (LMFs), have 2 inputs (3 MFs for each input) and 1 output (5 singletons). We use MIN method for the inference engine of T1 FLSs. For the defuzzification of each T1 FLS, weighted average method is used. Detailed description of the circuits used for each functional block of the IT2 fuzzy chip is given below. 3.2.1 Fuzzifier Circuit [31] Fuzzifier, which converts a crisp input to a fuzzy set, is the first stage in a fuzzy controller. We have used transconductance mode CMOS based circuits for implementing the fuzzifier block and its schematic is shown in Fig. 5. It consists of two differential amplifiers with one PMOS current mirror load. Vref1 and Vref2 are the control voltages that are fed to one input of each differential pair. And VIN is applied to the second inputs of both the differential pairs. Iout can be written as in (6). IF (x is A) AND (y is B) THEN z = c (4) ∑ ∑ = i ii i i ii w zw Output α α (5) 42 DDout III += (6) Since all transistors in this circuit operate in saturation region i.e. VGS>VT and VDS>VGS-VT for each MOS transistor, therefore their drain currents can be defined by (7) and (8). )( 2 1 12,1 TGSD VVKI −= (7) )( 2 2 24,3 TGSD VVKI −= (8) parameteructancetranscondtheis, 2 )/( , 2 )/( where 2 2 1 1 K LWK K LWK K == ref2INGSref1INGS VVVandVVV 21 −=−= 1)/( LW =size of M1 & M2, 2)/( LW =size of M3 & M4
  • 6. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 172 FIGURE 4: Functional Blocks of IT2 FLS. For MOS transistors operating in saturation region, the drain currents can be approximated in a quadratic form [14]. So (7) and (8) are written in quadratic from and are given in (9) and (10) respectively. + sign for ID1 and ID3 − sign for ID2 and ID4 Where α1, α2, β1 and β2 are defined as in (11) and (12) Using the values of ID2 and ID4 as obtained from above equations and putting them in (6), the output current of the circuit can be written as (13) Thus α and β are the two control parameters of this circuit, which tune the position and slope of the MF respectively. The values of these parameters should be so chosen as to obtain the desired shape of the MF. Αs suggested by (11), the value of α can be varied by varying the value of Vref for each differential pair. Similarly (12) suggests that β can be changed by changing the (W/L) of the differential pairs. The results from Cadence Spectre simulation run for trapezoidal, S and Z shapes implemented by the fuzzifier circuit are shown in Figs. 6 (a) to (d). For trapezoidal and triangular shapes, the characteristics of Iout are shifted up because two currents ID2 and ID4 are added up. Suitable current mirrors are used to scale output currents of all MFGs in the same range. Figs. 6 (b) and 6 (c) show how the programmability of Z and S shaped MFs can be affected by varying the difference in Vref1 and Vref2. Fig. 6 (d) shows the slope tuning of a trapezoidal MF. By varying (W/L)1, the left hand slope of this curve changes and by varying (W/L)2, the right hand slope of the curve changes. Thus by varying both the (W/L) ratios together, the width of the curve can be changed. Similarly, the slopes of Z and S MFs can be changed. When symmetrical MFs are desired, the (W/L)1 must match (W/L)2. All MFs are symmetrical in the current design. 2 22 2 1 2 11 1 2,1 αββ α −±= S D I I (9) 2 22 2 2 2 22 2 4,3 αββ α −±= S D I I (10) , 21 21 T refIN T refIN V VV V VV − = − = αα (11) 2 , 2 2 2 1 1       =      = L W I VK L W I VK S T S T ββ (12) 2 2 2 2 2 2 2 22 22 1 2 11 1 αββ α αββ α −−−−= Sout II (13) MFG MIN MIN Scalar Scalar T1 FLS (LMFs) Fuzzifier Rule Inference Defuzzifier Crisp Inputs MFG Crisp Outputs T1 FLS (UMFs) Multiplier- Divider Multiplier- Divider Averager
  • 7. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 173 FIGURE 5: Membership Function Generator (MFG) circuit. 3.2.2. MIN-MAX Circuits The most popular fuzzy logic operators used to compute the inference of a rule are logical “AND” and logical “OR”. MIN and MAX modules can be used to implement the AND and OR operations respectively. We have used current mode MIN circuits to implement the rule base. One MIN is required for calculating the inference of each rule. The circuit schematics of a two-input MIN is shown in Fig. 7 (a) [16]. It consists of MAX circuit block as shown in Fig. 7 (b) with extra current sources to complement the directions of currents [32]. Transistors M1 and M3 are source follower transistors. M2 and M4 are current sensor transistors that can sink high current. The value of VBias, which is applied to M1, M3 and M5 transistor gates, is calculated from (14). Where, VGS= Transistor gate-source voltage, and ∆=overdrive voltage FIGURE 6: (a). Trapezoidal curve obtained through simulation of MFG circuit Vref1=1.5V, Vref2=2V, W/L=5 6(b). S-shaped curve obtained through simulation of MFG circuit Vref1=0V, Vref2=1V, 1.3V, 4,23,1 VVV GSBias ∆+= (14) 6(b)6(a) 6(c) 6(d)
  • 8. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 174 1.5V, W/L=3 6(c). Z-shaped curve obtained through simulation of MFG circuit Vref2=0V, Vref1=500mV, 1V, 1.5V, W/L=3 6(d). Slope tuning of trapezoidal MF Vref1=1.5V, Vref2=2V, W/L=5,3. If I1>I2 in the MAX circuit, M1 and M2 transistors will be in the saturation region, M3 and M4 will be in triode and cutoff regions respectively because of current mirror circuits. Thus, M1 current I1 would mirror in to the output. The MIN circuit operation is very similar to the MAX circuit, with the difference that the currents I1 and I2 are being stolen from the transistors M1 and M3. Therefore, in the MIN circuit, the branch from which we steal lesser current would mirror its current into the output. These circuits can work with low power supply; the minimum power supply for these circuits is calculated from (15). Since there are a large number of MIN circuits used in a fuzzy controller, power consumption of chip will be decreased significantly with these MIN circuits working on low voltage. Size of each MIN depends upon the number of inputs only and we can increase the number of inputs of these circuits only by adding two transistors for each input such as M1 and M2. The design presented here targets 2 inputs, and therefore, two inputs MIN circuits are required. Inputs to each MIN circuit are the outputs of two MFGs from the fuzzifier block, which correspond to the antecedent part of the rule in consideration and the output of each MIN is the firing rule strength wi of that rule. Simulation results of a two input MIN circuit are given in Figs. 8 (a) and (b). Fig. 8 (a) is the DC output characteristic for different values of I2 and Fig. 8 (b) is the transient response for two different shapes of I1 and I2. Fig. 9 (a) and (b) are the DC output characteristics and transient response respectively for a two input MAX circuit. FIGURE 7 (a): MIN circuit. FIGURE 7 (b): MAX circuit. FIGURE 8: (a). DC response of MIN circuit with two inputs (b). Transient response of MIN circuit with two inputs 3.2.3. Scalar Circuit Scalar circuit provides many current sources of scaled value of the input current. Scalar circuit is based on current mirror as shown in Fig. 10. Iin is the input current and Io1, Io2,…, Ioi are the output )(min 2 SatDSGSDD VVV += (15) 7(a) 7(b) 8(b)8(a)
  • 9. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 175 currents of 1st , 2nd , and ith stage mirrors, respectively. Since, transistor M1 is in saturation region, Iin can be written as (16). Current through the ith current mirror can be written as (17). FIGURE 9: (a). DC response of MAX circuit with two inputs (b). Transient response of MAX circuit with two inputs. From (16) and (17), Ioi can be simplified to (18). Where, αi is the scaling factor of the ith stage current mirror, given by (19). Response of the scalar circuit is shown in Fig. 11 for different values of α (0.5, 1, and 2). FIGURE 10: Scalar circuit FIGURE 11: Response of Scalar circuit (for α =0.5, 1, and 2). 3.2.4. Multiplier-Divider Circuit Multiplier-divider circuit shown in Fig. 12 is used in the defuzzifier section [15]. It works on the principle of translinear circuits where all the transistors are operating in saturation region. The output of the circuit can be expressed as (20) Block diagram of the defuzzification scheme followed here is shown in Fig. 13. It consists of scalar circuits in the first stage. The scalar takes the rule strength wi calculated from the MIN circuit as the input current, and generates the weighted rule strength αiwi. Outputs of all scalars are wired to produce the sum of these weighted rule strengths. The resultant current output I of the current mirror is given by (21). 2 )()/(5.0 TGSinin VVLWKI −= (16) 2 )()/(5.0 TGSioi VVLWKI −= (17) inioi II α= (18) in i i LW LW )/( )/( =α (19) 2 1 b bin out I II I = (20) 9(a) 9(b)
  • 10. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 176 Inputs to the multiplier-divider circuits are the corresponding values of the weighted rule strengths αi wi, the corresponding consequent zi, and the sum I. Each multiplier-divider circuit multiplies αi wi with corresponding zi, and divides by I. The outputs of all multiplier-divider circuits are wired to give the global defuzzified output, as given in (5). FIGURE 12: Multiplier-Divider circuit. Multiplier/ Divider Multiplier/ Divider Multiplier/ Divider Scalar α1 Scalar α2 Scalar αn Current Mirror w1 wn w2 α1w1 α2w2 αn wn z1 z2 zn ∑ αi wi Defuzzified output Current Mirror wi=rule firing strength αi=rule weight zi=rule consequent FIGURE 13: Block diagram of Defuzzifier. The performance of Multiplier-Divider circuit is tested as a multiplier by fixing the values of Iin and Ib2, and sweeping the values of Ib1. Fig. 14 (a) shows the simulation run for three different values of Iin viz. 10µA, 12µA, 15µA, Ib2 fixed at 10µA, and Ib1 swept across from 5µA to 40µA. The same circuit is tested as a divider by fixing the values of Iin and Ib1, and sweeping the values of Ib2. Fig 14 (b) shows the simulation run for three different values of Iin viz. 5µA, 10µA, 15µA, Ib1 fixed at 10µA, and Ib2 swept across from 5µA to 40µA. ∑= i iiwI α (21)
  • 11. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 177 FIGURE 14: (a). Multiplier-Divider circuit acting as multiplier (Iin =10µA, 12µA, 15µA, Ib2 = 10µA). (b). Multiplier-Divider circuit acting as divider (Iin =5µA, 10µA, 15µA, Ib1 = 10µA). 3.2.5 Averager Circuit The averager circuit computes the average of the defuzzified outputs of two T1 FLSs, which is the final defuzzified output of the IT2 FLS. The averager circuit works on the principle of current mirror. Defuzzified outputs of both the T1 FLSs are wired so that the sum of both becomes the drain current of M1 as shown in Fig. 15 and as represented by (22). Sizes of M1 and M2 are related by (23). Current output from M2 is the average of the two input currents I1 and I2, where I1 is the output current from T1 FLS (UMFs) and I2 is the output current from T1 FLS (LMFs). Thus, this circuit gives the average of the two T1 FLSs. Fig. 16 shows the simulation result of Averager circuit. FIGURE 15: Averager circuit FIGURE 16: Response of Averager circuit. 4. ANALOG IT2 FUZZY LOGIC CONTROLLER CHIP In this section, fuzzy functional blocks which have been described in the previous section, are combined into an IT2 fuzzy chip and the arrangement is shown in Fig. 17. Current mirrors are used wherever required to change the current directions. Both T1 FLSs differ only in the designs of their fuzzifiers, specifically, the sizes of the differential pair MOS transistors of the MFGs. For generating two different slopes corresponding to the UMFs and LMFs of the FOUs, W/L=4 and W/L=3 respectively are selected. Designs of all other modules viz. MIN, scalar, defuzzifier are same in both T1 FLSs of the IT2 fuzzy chip. 211 IIID += (22) 12 )/( 2 1 )/( LWLW = (23) Therefore, 2 21 2 II ID + = (24)
  • 12. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 178 FIGURE 17: Arrangement of Fuzzy functional blocks for IT2 Fuzzy Chip realization FIGURE 18: UMFs and LMFs of 3 FOUs for one variable obtained through simulation of fuzzifier circuit W/L=4 for UMFs, 3 for LMFs TABLE 1: On-chip Voltage and Current sources. Input1 Outpu Input1 z1 Vref1 Vref2 MFG Vref1 Vref2 MFG Vref1 Vref2 MFG MIN Vref1 Vref2 MFG Vref1 Vref2 MFG Vref1 Vref2 MFG MIN MIN MIN MIN MIN MIN MIN (3,2) MIN Scalar – α1 Scalar – α2 Scalar – α3 Scalar – α4 Scalar – α5 Scalar – α6 Scalar – α7 Scalar – α8 Scalar – α9 Multiplier-Divider z9 Multiplier-Divider Current Mirror CurrentMirror z1 Vref1 Vref2 MFG Vref1 Vref2 MFG Vref1 Vref2 MFG MIN Vref1 Vref2 MFG Vref1 Vref2 MFG Vref1 Vref2 MFG MIN MIN MIN MIN MIN MIN MIN MIN Scalar – α1 Scalar – α2 Scalar – α3 Scalar – α4 Scalar – α5 Scalar – α6 Scalar – α7 Scalar – α8 Scalar – α9 Multiplier-Divider z9 Multiplier-Divider Current Mirror CurrentMirror Averager Input2Input2 T1 FLS (UMFs) T1 FLS (LMFs) Current Sources 10µA 20µA 30µA 40µA 50µA Voltage Sources 0.9V 1.0V 1.2V 2.1V 2.2V 2.4V 2.5V
  • 13. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 179 LMFs Vref1 Vref2 1 1 5 2 2.2 1.0 3 0 2.4 TABLE 2: Reference Voltage (V) Settings Pins Details Number of Pins VDD 1 GND 1 Inputs 2 Output 1 Consequents 5 On-chip Current Sources 5 On-chip Reference Voltage Sources 7 Vref1 and Vref2 for all the MFGs for T1 FLS (UMFs) and T1 FLS (LMFs) 2*[2*3+2*3] 24 Total 46 TABLE 3: External pins of IT2 Fuzzy Logic Controller Chip 4.1. Pulse Response of IT2 Fuzzy Logic Controller Chip In order to determine the speed of the chip, a square pulse is applied to one input, while the other input is set to 0V. The input MFs for this test are shown in Fig. 18. Rule base for both T1 FLSs is taken arbitrarily and is listed in Table 4 in indexed form. The numbers in the input and output columns refer to the index number of membership functions. Results of this test obtained through Cadence Spectre Simulation are shown in Fig. 19. The response of this chip to pulse input shows a maximum delay of 50ns. This corresponds to a speed of 20 MFLIPS (mega fuzzy logic inferences per second) including the defuzzification process. Since, rule by rule architecture has been followed in this realization; the fuzzy inferences are performed in parallel. Hence, the inference speed is independent of the number of rules and number of MFs. This speed is in a good range for most applications. The chip occupies an area of 0.32 mm 2 . Rule Number Input #1 Input #2 Output 1 1 1 1 2 1 2 2 3 1 3 3 4 2 1 2 5 2 2 3 6 2 3 4 7 3 1 3 8 3 2 4 9 3 3 5 TABLE 4: Fuzzy Rule base in Indexed form UMFs Vref1 Vref2 1 0.9 5 2 2.1 1.2 3 0 2.5
  • 14. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 180 FIGURE 19: Pulse response of the IT2 Fuzzy Logic Controller Chip The comparison of the proposed design with the existing designs on different target technologies is presented in Table 5. The proposed design has achieved a considerable high speed along with a significant reduction in power and area. Although the achieved speed is less than the FPGA based design [18], however, a severe limitation of FPGA based implementation is that it requires external memory that grows with resolution, number of inputs, and number of MFs. References [17] [18] [21] Proposed Target Technology Microcontroller FPGA 0.35 µm (Digital CMOS) 0.18 µm (Analog CMOS) Design Specifications 2 inputs with 2 sets per input, 4 rules, 4 consequents 2 inputs, 1 output, 9 rules 2 inputs, 1 output, 64 rules 2 inputs with 2 fuzzy sets per input, 1 output, 9 rules Power Not Specified Not Specified Not Specified 20 mW Area - - 5957 µm x 5954 µm (35.46 mm 2 ) 0.32 mm 2 Speed (FLIPS) 29.17 (Inference time: 34.28 ms) 30 x 10 6 3.125 x 10 6 20 x 10 6 Additional Memory Requirements RAM: 1024 bytes Flash: 4096 bytes Highly Memory Intensive - No Additional Memory Required TABLE 5: Comparison of the Proposed Design with previous work 5. CONCLUSIONS We have presented here the design of an analog CMOS IT2 fuzzy logic controller chip in 0.18µm technology. The design is based on the realization methodology of averaging of two T1 FLSs. The basic fuzzy functional blocks viz. fuzzifier, inference engine, defuzzifier and averager, all are analog circuits. General features of analog fuzzy circuits are high speed, low power and small size. Furthermore, due to parallelism in the architectures of the fuzzifier and the inference engine, the speed of the chip is independent of the number of inputs and the number of rules. However,
  • 15. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 181 the power consumption will increase with the number of inputs and the number of MFs used to fuzzify each input. The shapes and positions of the MFs are tunable through IC control pins. The rule base is also programmable through control pins provided on IC. Further some references voltage sources and reference consequent current sources are designed on chip. The chip has a speed of 20 MFLIPS and power consumption of 20mW and it occupies an area of 0.32mm2 . The chip features are listed in Table 6. TABLE 6: IT2 Fuzzy Logic Controller Chip Features 6. ACKNOWLEDGMENT We would like to thank Government of India for providing facilities to our institute under SMDP-II project. This work has been carried out using lab facilities created under SMDP-II at Electronics & Communication Engineering Department provided by Ministry of Communication and Information Technology, New Delhi, Government of India. 7. REFERENCES [1] J.M. Mendel and R.I. John, “Type-2 Fuzzy Sets Made Simple”, IEEE Transaction on Fuzzy Systems, vol. 10, no. 2, 2002, pp. 117–127. [2] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters”, IEEE Trans. Fuzzy Syst., vol. 8, no. 5, 2000, pp. 551–563. [3] Q. Liang and J. M. Mendel, “MPEG VBR video traffic modeling and classification using fuzzy technique”, IEEE Trans. Fuzzy Syst., vol. 9, no. 1, 2001, pp. 183–193. [4] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Inf. Sci., vol. 170, no. 2–4, 2005, pp. 409–418. [5] J. Zeng and Z. Q. Liu, “Type-2 fuzzy hidden Markov models and their application to speech recognition”, IEEE Trans. Fuzzy Syst., vol. 14, no. 3, 2006, pp. 454–467. [6] P. Melin and O. Castillo, “A new method for adaptive control of nonlinear plants using type-2 fuzzy logic and neural networks”, J. Gen. Syst., vol. 33, no. 2/3, 2004, pp. 289–304. [7] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots”, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, 2004, pp. 524–539. [8] Baturone, Barriga, Carlos Jimenez-Fernandez and Diego, R. Lopez, Microelectronic Design of Fuzzy-Logic Based Systems, CRC Press, 2000. Description Features Technology 0.18µm No. of Inputs 2 (3 MFs each) No. of Outputs 1 (5 singletons) No. of pins 46 Supply Voltage 3.3V Power Consumption 20 mW Inference speed 20MFLIPS Area 0.32mm2
  • 16. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 182 [9] H. Eichfeld, T. Künemund, and M. Menke, “A 12b general-purpose fuzzy logic controller chip”, IEEE Trans. Fuzzy Syst., vol. 4, no. 4, 1996, pp. 460–475. [10] M.J. Patyra, J.L. Grantner and K. Koster, “Digital fuzzy logic controller: Design and implementation”, IEEE Trans. Fuzzy Syst., vol. 4, no. 4, 1996, pp. 439–459. [11] J.M. Jou, P.Y. Chen and S.F. Yang, “An adaptive fuzzy logic controller: Its VLSI architecture and applications”, IEEE Trans. Very Large Scale Integr. Syst., vol. 8, no. 1, 2000 pp. 52– 60. [12] V. Salapura, “A fuzzy RISC processor”, IEEE Trans. Fuzzy Syst., vol. 8, no. 6, 2000, pp. 781–790. [13] D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system”, IEEE Trans. Ind. Electron., vol. 47, no. 3, 2000, pp. 703–715. [14] Y. Ota and B. Wilamowski, “CMOS implementation of a Voltage-mode fuzzy Min-Max Controller”, Journal of Circuits, Systems, and Computers, Vol. 6, No. 2, 1996, pp. 171-184. [15] M.F. Azeem, K.P. Govila, “Design of Analog CMOS Based Fuzzy Inference System”, IEEE International Conference on Fuzzy Systems, Vancouver, 2006, pp. 1715-1720. [16] V. F. Dinavari, A. Khoei, K. Hadidi, M. Soleimani, H. Mojarad, “Design of a Current-Mode Analog CMOS Fuzzy Logic Controller”, IEEE Eurocon, St. Petersburg, 2009, pp. 211-217. [17] J. Bulla, G. Sierra and M. Melgarejo “Implementing a Simple Microcontroller-Based Interval Type-2 Fuzzy Processor”, Proceedings of 51 st Midwest Symposium on Circuits and Systems (MWSCAS), Knoxville (TN), 2008, pp. 69-72. [18] M. A. Melgarejo and C. A. Pena-Reyes, “Hardware architecture and FPGA implementation of a type-2 fuzzy system”, Proc. ACM GLSVLSI, Boston, MA, 2004, pp. 458–461. [19] M. A. Melgarejo, R. A. Garcia and C. A. Pena-Reyes, “Pro-two: A hardware based platform for real time type-2 fuzzy inference”, Proc. IEEE Int. Conf. Fuzzy Syst., vol. 2, 2004, pp. 977–982. [20] M. Melgarejo and C. A. Pena-Reyes, “Implementing interval type-2 fuzzy processors”, IEEE Comput. Intell. Mag., vol. 2, no. 1, 2007, pp. 63–71. [21] S. H. Huang and Y. R. Chen, “VLSI implementation of type-2 fuzzy inference processor”, Proc. IEEE Int. Symp. Circuits Syst., vol. 4, 2005, pp. 3307–3310. [22] H. Hagras, “A Type-2 Fuzzy Logic Controller for Autonomous Mobile Robots”, in Proceeding of IEEE FUZZ Conference, Budapest, Hungary, July 2004, pp. 965-970. [23] Q. Liang, N. N. Karnik, and J. M. Mendel, “Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems”, IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 30, no. 3, 2000, pp. 329–339. [24] Q. Liang and J. M. Mendel, “Overcoming time-varying co-channel interference using type-2 fuzzy adaptive filter”, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, No. 12, 2000, pp. 1419–1428. [25] Mamta Khosla, R K Sarin, Moin Uddin, Arun Khosla and Satvir Singh, Realizing Interval Type-2 Fuzzy Systems with Type-1 Fuzzy Systems. Book Chapter for Book titled Cross-
  • 17. Mamta Khosla, Rakesh Kumar Sarin & Moin Uddin International Journal of Artificial Intelligence and Expert Systems, Volume (2) : Issue (4) : 2011 183 Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies, IGI Global, USA. (Accepted for Publication). [26] Roberto Sepúlveda, Oscar Castillo, Patricia Melin, Oscar Montiel, “An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications”, Analysis and Design of Intelligent Systems using Soft Computing Techniques, Springer, 2007, pp. 45-52. [27] Roberto Sepúlveda, Oscar Montiel, Gabriel Lizárraga, Oscar Castillo, “Modeling and Simulation of the Defuzzification Stage of a Type-2 Fuzzy Controller Using the Xilinx System Generator and Simulink”, Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, Springer, 2009, pp. 309-325. [28] Jerry M. Mendel, “Type-2 fuzzy sets and Systems: an Overview”, IEEE Computational Intelligence Magazine, 2007, pp. 20-29. [29] Qilian Liang and Jerry M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 5, 2000, pp.535-550. [30] J. M. Mendel, R. I. John, and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple”, IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, 2006, pp. 808-821. [31] Mamta Khosla, R K Sarin, Moin Uddin and Ajay Sharma, “Analog Realization of Fuzzifier for IT2 Fuzzy Processor,” 3rd International Conference on Electronics Computer Technology- ICECT 2011, Kanyakumari, pp 239-245. [32] Y. Ota and B. Wilamowski, “Current-mode CMOS Implementation of a Fuzzy Min-Max Network”, Proc. World Congr. Neural Networks, vol. II, 1995, pp. 480 - 483.