SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
- - - -
- - - -
• LQH QHML LC O HLHLF ME :D O J :DQTMOI EMO 1EEHBHDLQ
5LQDFDO -OHQGKDQHB LJ 5LEDODLBD
• .DLMHQ BMA IHOK LQ 7JHF .M /GDL 9DLFJMLF G 9 QQGDT
LF -LCODT MT OC OQTHF -C K 0KHQO 7 JDLHBGDLIM
MMFJD
• AKHQQQDC ML ( 0DB )
• GQQN , O HS MOF A ) ( ))
• HLQ don rZb a pif h lm ke
• DL MO2JMT 8HQD g c b
• a eki // ORS
• q X c g N M Pw
• bf
• o // e un
• . 8/8D 3 88H8/8D 3 99 8/8D ,8 8/8D
• e o h l s
• yt t
• zh B /8 B /8D B /02 8D 8D
• - 1B
• r
•
) (
• 0 -0 A Ge h
• ,8/4 0-0 M e h
• bg sl V A MA
• 042 k w Nn xs VMA
• k /4 41 0 89 f M t
A
• i
• 4 N 8 r
• k Go
( )
•
r = S(q Z)
00 1 2() 9 i
k a 5
0(2 /2
5
0(2
e
/2 S3(q
(i,k)
3 Z3) =
NX
j=1
S1(q
(i,j)
1 Z1)S2(q
(j,k)
2 Z2)
k r3 = r1r2
q
(i,k)
3 = Z3 + M
NX
j=1
(q
(i,j)
1 Z1)(q
(j,k)
2 Z2)
8b
M :=
S1S2
S3
M = 2 n
M0 (M0 2 [0.5, 1))
M 2 (0, 1)
/2 f231
M0
q
(i,k)
3 = Z3 + M
NX
j=1
(q
(i,j)
1 Z1)(q
(j,k)
2 Z2)
q
(i,k)
3 = Z3 + M
0
@NZ1Z2 Z1a
(k)
2 Z2¯a
(i)
1 +
NX
j=1
q
(i,j)
1 q
(j,k)
2
1
A
a
(k)
2 :=
NX
j=1
q
(j,k)
2 , ¯a
(i)
1 :=
NX
j=1
q
(i,j)
1
* + )
NX
j=1
q
(i,j)
1 q
(j,k)
2
( , 8 * 8 *
IMin
Sbias = S1S2, Zbias = 0
8 7 23 8 2 8 8 *
a l fh e w
o in a l t
ru in fh F
0 v g M e 0 n
L 8 *T c
1 = 9 /8 os
• s ixh wor
• 9,0 /8 ( , n d k
• p a
• b g e c b
• 9,0 /8 )0( 2 (8 tf
• )( 1 ( (80 l
• 9( 0 g e
[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
)
q(r; a, b, n) := round
✓
clamp(r; a, b) a
s(a, b, n)
◆
s(a, b, n) + a
s(a, b, n) :=
b a
n 1
clamp(r; a, b) := min(max(x, a), b)
l^ ec
.1,2/ l^ i
: 1:= 1= ;: 8 8 )2 = : 0) (
56=l^
1 9 : 2 91
1 = 1= ;:l^
[m .1,2/ b h ]
.1,2/ l^ 1 2 :
ag
S = s(a, b, n), Z = z(a, b, n)
•
• ) 0 1 9 3: 8 C 3: 8 C 33 9/ 3 3: 8 C
1 : 0 /: 3
• 1 3/ 3. / : : . / 1 3/ 3.3 /8. /
• 3: 8 C , 3 F L
• : 3 3 /: 3
• ) 0 1 9 3: 8 C 3: 8 C 08 0 9/ 3 3: 8 C 1 : 0 8
3 1 2 1 1928 :3. 3 3 3:13 92
(
[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
-
• D6 A A 6A8 A 9D9A 9 I F AF9 9D A 99C 19 D6
19FI D /4 (
• AF RN
• 0 98 D9 A D6 A A A F A6 19 D6 19FI D
A AF9 9D 2C9D6F A /4 (
• AF T PO -0 T LM 98 CD9 A AF9 9D FD6 A A
( )
[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

More Related Content

PDF
文献紹介:YOLO series:v1-v5, X, F, and YOWO
PPTX
Noisy Labels と戦う深層学習
PPTX
[DL輪読会]Objects as Points
PDF
論文紹介 "DARTS: Differentiable Architecture Search"
PPTX
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
PDF
PCAの最終形態GPLVMの解説
PPTX
Curriculum Learning (関東CV勉強会)
PPTX
モデル高速化百選
文献紹介:YOLO series:v1-v5, X, F, and YOWO
Noisy Labels と戦う深層学習
[DL輪読会]Objects as Points
論文紹介 "DARTS: Differentiable Architecture Search"
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
PCAの最終形態GPLVMの解説
Curriculum Learning (関東CV勉強会)
モデル高速化百選

What's hot (20)

PPTX
Graph convolution (スペクトルアプローチ)
PDF
時系列問題に対するCNNの有用性検証
PPTX
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
PDF
深層学習によるHuman Pose Estimationの基礎
PDF
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
PDF
機械学習は化学研究の"経験と勘"を合理化できるか?
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
PPTX
【DL輪読会】Scaling Laws for Neural Language Models
PPTX
Transformerを雰囲気で理解する
PPTX
[DL輪読会]Graph Convolutional Policy Network for Goal-Directed Molecular Graph G...
PDF
はじめてのKrylov部分空間法
PDF
[DL輪読会]画像を使ったSim2Realの現況
PPTX
【DL輪読会】大量API・ツールの扱いに特化したLLM
PPTX
次元の呪い
PDF
Tensorflow Liteの量子化アーキテクチャ
PDF
よくわかるフリストンの自由エネルギー原理
PPTX
[DL輪読会]Focal Loss for Dense Object Detection
PDF
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
PDF
モデルアーキテクチャ観点からのDeep Neural Network高速化
PDF
機械学習モデルの判断根拠の説明(Ver.2)
Graph convolution (スペクトルアプローチ)
時系列問題に対するCNNの有用性検証
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
深層学習によるHuman Pose Estimationの基礎
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
機械学習は化学研究の"経験と勘"を合理化できるか?
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】Scaling Laws for Neural Language Models
Transformerを雰囲気で理解する
[DL輪読会]Graph Convolutional Policy Network for Goal-Directed Molecular Graph G...
はじめてのKrylov部分空間法
[DL輪読会]画像を使ったSim2Realの現況
【DL輪読会】大量API・ツールの扱いに特化したLLM
次元の呪い
Tensorflow Liteの量子化アーキテクチャ
よくわかるフリストンの自由エネルギー原理
[DL輪読会]Focal Loss for Dense Object Detection
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
モデルアーキテクチャ観点からのDeep Neural Network高速化
機械学習モデルの判断根拠の説明(Ver.2)
Ad

Similar to [DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (20)

PDF
Functional Gradient Boosting based on Residual Network Perception
PDF
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
PDF
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
PDF
深層学習による非滑らかな関数の推定
PDF
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
PDF
Prelude to halide_public
PDF
Direct tall-and-skinny QR factorizations in MapReduce architectures
PDF
katagaitai CTF workshop #10 AESに対する相関電力解析
PDF
Tall-and-skinny QR factorizations in MapReduce architectures
PDF
[DL Hacks 実装]Attention is All You Need
PDF
Implementing 3D SPHARM Surfaces Registration on Cell B.E. Processor
PDF
機械学習と自動微分
PDF
On Repetitive Right Application of B-terms (for PPL 2019)
DOCX
A Course in Fuzzy Systems and Control Matlab Chapter Four
PDF
Model Based Fault Detection, Identification and Accommodation in Antilock Bra...
KEY
Numpy発表資料 tokyoscipy
KEY
Numpy発表資料
PDF
Control as Inference (強化学習とベイズ統計)
PDF
A research paper introduction of Universal transformers
PDF
ΠΛΗ31 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)
Functional Gradient Boosting based on Residual Network Perception
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
深層学習による非滑らかな関数の推定
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
Prelude to halide_public
Direct tall-and-skinny QR factorizations in MapReduce architectures
katagaitai CTF workshop #10 AESに対する相関電力解析
Tall-and-skinny QR factorizations in MapReduce architectures
[DL Hacks 実装]Attention is All You Need
Implementing 3D SPHARM Surfaces Registration on Cell B.E. Processor
機械学習と自動微分
On Repetitive Right Application of B-terms (for PPL 2019)
A Course in Fuzzy Systems and Control Matlab Chapter Four
Model Based Fault Detection, Identification and Accommodation in Antilock Bra...
Numpy発表資料 tokyoscipy
Numpy発表資料
Control as Inference (強化学習とベイズ統計)
A research paper introduction of Universal transformers
ΠΛΗ31 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
PPTX
【DL輪読会】事前学習用データセットについて
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
PPTX
【DL輪読会】マルチモーダル LLM
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
PPTX
【DL輪読会】Hopfield network 関連研究について
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
PPTX
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】事前学習用データセットについて
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】マルチモーダル LLM
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...

Recently uploaded (20)

PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Machine learning based COVID-19 study performance prediction
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Understanding_Digital_Forensics_Presentation.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Electronic commerce courselecture one. Pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Approach and Philosophy of On baking technology
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
KodekX | Application Modernization Development
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Machine learning based COVID-19 study performance prediction
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Understanding_Digital_Forensics_Presentation.pptx
The AUB Centre for AI in Media Proposal.docx
Electronic commerce courselecture one. Pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Approach and Philosophy of On baking technology
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
sap open course for s4hana steps from ECC to s4
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Network Security Unit 5.pdf for BCA BBA.
KodekX | Application Modernization Development
Spectral efficient network and resource selection model in 5G networks
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx

[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

  • 1. DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ - - - - - - - -
  • 2. • LQH QHML LC O HLHLF ME :D O J :DQTMOI EMO 1EEHBHDLQ 5LQDFDO -OHQGKDQHB LJ 5LEDODLBD • .DLMHQ BMA IHOK LQ 7JHF .M /GDL 9DLFJMLF G 9 QQGDT LF -LCODT MT OC OQTHF -C K 0KHQO 7 JDLHBGDLIM MMFJD • AKHQQQDC ML ( 0DB ) • GQQN , O HS MOF A ) ( )) • HLQ don rZb a pif h lm ke • DL MO2JMT 8HQD g c b
  • 3. • a eki // ORS • q X c g N M Pw • bf • o // e un • . 8/8D 3 88H8/8D 3 99 8/8D ,8 8/8D • e o h l s • yt t • zh B /8 B /8D B /02 8D 8D • - 1B • r • ) (
  • 4. • 0 -0 A Ge h • ,8/4 0-0 M e h • bg sl V A MA • 042 k w Nn xs VMA • k /4 41 0 89 f M t A • i • 4 N 8 r • k Go ( )
  • 5. • r = S(q Z) 00 1 2() 9 i k a 5 0(2 /2 5 0(2 e /2 S3(q (i,k) 3 Z3) = NX j=1 S1(q (i,j) 1 Z1)S2(q (j,k) 2 Z2) k r3 = r1r2 q (i,k) 3 = Z3 + M NX j=1 (q (i,j) 1 Z1)(q (j,k) 2 Z2) 8b M := S1S2 S3 M = 2 n M0 (M0 2 [0.5, 1)) M 2 (0, 1) /2 f231 M0
  • 6. q (i,k) 3 = Z3 + M NX j=1 (q (i,j) 1 Z1)(q (j,k) 2 Z2) q (i,k) 3 = Z3 + M 0 @NZ1Z2 Z1a (k) 2 Z2¯a (i) 1 + NX j=1 q (i,j) 1 q (j,k) 2 1 A a (k) 2 := NX j=1 q (j,k) 2 , ¯a (i) 1 := NX j=1 q (i,j) 1
  • 7. * + ) NX j=1 q (i,j) 1 q (j,k) 2 ( , 8 * 8 * IMin Sbias = S1S2, Zbias = 0 8 7 23 8 2 8 8 * a l fh e w o in a l t ru in fh F 0 v g M e 0 n L 8 *T c 1 = 9 /8 os
  • 8. • s ixh wor • 9,0 /8 ( , n d k • p a • b g e c b • 9,0 /8 )0( 2 (8 tf • )( 1 ( (80 l • 9( 0 g e
  • 10. ) q(r; a, b, n) := round ✓ clamp(r; a, b) a s(a, b, n) ◆ s(a, b, n) + a s(a, b, n) := b a n 1 clamp(r; a, b) := min(max(x, a), b) l^ ec .1,2/ l^ i : 1:= 1= ;: 8 8 )2 = : 0) ( 56=l^ 1 9 : 2 91 1 = 1= ;:l^ [m .1,2/ b h ] .1,2/ l^ 1 2 : ag S = s(a, b, n), Z = z(a, b, n)
  • 11. • • ) 0 1 9 3: 8 C 3: 8 C 33 9/ 3 3: 8 C 1 : 0 /: 3 • 1 3/ 3. / : : . / 1 3/ 3.3 /8. / • 3: 8 C , 3 F L • : 3 3 /: 3 • ) 0 1 9 3: 8 C 3: 8 C 08 0 9/ 3 3: 8 C 1 : 0 8 3 1 2 1 1928 :3. 3 3 3:13 92 (
  • 13. -
  • 14. • D6 A A 6A8 A 9D9A 9 I F AF9 9D A 99C 19 D6 19FI D /4 ( • AF RN • 0 98 D9 A D6 A A A F A6 19 D6 19FI D A AF9 9D 2C9D6F A /4 ( • AF T PO -0 T LM 98 CD9 A AF9 9D FD6 A A ( )