SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
“Semi-convolutional Operators for Instance Segmentation”
,
http://deeplearning.jp/
•
– )2 -
• -0 2182 21 ( - 2 iP
– O O O O t E
– npeE a r iP
•
– s o luE
– V rCmv S
2
•
•
3
https://engineering.matterport.com/splash-of-color-instance-
segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
•
• 2) &) &
– V P
–
• 2 ()
– C
– I
4
Propose & Verify
5
• &
– SM N
⭕ P P
❌ VR
SM C
[2017, K. He] Mask R-CNN
[2014 R. Girshick] Rich feature hierarchies for accurate object detection and semantic segmentation
P & V (RCNN)
M CVR
C a VR
VR , e
Ø C 232 . ,.
Ø N & & . 1 F S P 6
[2014 R. Girshick] Rich feature hierarchies for accurate object detection and semantic segmentation
P & V (Mask RCNN)
. 1
Ø 2 3 7
[2017 K. He] Mask R-CNN
Instance Coloring
•
– I C
⭕ (
⭕ ) D(
8
[2017 A. Kendall] Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
IC
•
•
9
[2017 A. Fathi] Semantic Instance Segmentation via Deep Metric Learning
IC
• N
• N
– R - -
• E
10
[2018 S. Kong] Recurrent Pixel Embedding for Instance Grouping
(参考) arXiveTimes (https://github.com/arXivTimes/arXivTimes/issues/628)
IC
11
2つの羊はほ
ぼ同じ見た目
CNNの演算の位置不変性により同
じ埋め込み表現となってしまいイ
ンスタンスを区別できない
位置不変でない演算方法を提案
(Semi-Convolutional Operation)
•
• I C & V
– N
– P& I
• P V S l O I
– & ( f vm t
– ) - I rp C
• o g i au I ceO O y
• au i ) ) O
Ø P n Os C
12
Semi-Convolutional Operation for IC (1)
•
•
•
• C
13
: X ! L⌦
(L 2 Rd
)<latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit>
Semi-Convolutional Operation for IC (2)
• a nvxC kN
– r l r a u C C
• c ( - - (- - -
– a u n i
– n N a u
• r lt a u C
– ) l muoCpNu
– l mupNe S
14
Semi-Convolutional Operation for IC (3)
•
• ()
15
Semi-Convolutional Operation for IC (4)
•
–
–
• 2
– 2
16
Steered bilateral filter
• 2 2 )
–
– 2 (
– 2
– ) )
17
1
.2
3
18
• O i
• 5 8 10 a S
• e
• c e R
• 10 1 5-10 2 51 C - 10 1 5-10 2 51 N 19
Mask RCNN
• M -
• + - C R
N a S
• + a
20
[2017 K. He] Mask R-CNN
• C C
• M
• R
• ) (
N 21
• 2
• A2 10
22
23
( )
• a v
– & ( o
– ) - V c y C
• p g eil r
• g I ) ) f
– p n V cg
– p s S c
• um OP fv t
24
• a e v R
• 2 1 P h w R
– . / & 0 1 0 0 A 8 0 2
2
– a c v
– dk R t ML C
– ] C C L h wR N C
• f g[ v R ML
– 0 8 P Vr[ uo
– s nl i
25
• K KO S 7AIE K KHPOEK H 4LAM OKMN KM NO A
7ACIA O OEK
• -EMNDE G E D A OPMA DEAM M DEAN KM PM OA K FA O
AOA OEK NAI OE NACIA O OEK
• 0 .A 2 NG
• 0A HH 2PHOE 8 NG 1A M E C NE C AMO E OS OK AECD
1KNNAN KM 7 A A -AKIAOMS 7AI OE N
• , ODE 7AI OE NO A 7ACIA O OEK E AAL 2AOME
1A M E C
• 7 0K C A PMMA O ERAH I A E C KM NO A -MKPLE C
26
Appendix: Hough Voting
• dn o u u H
– 1 . . a
– 1 l i 3 m s
• 2 u
o u s V
o u h et
g p
27
参考) 和歌山大学講義資料
http://www.wakayama-u.ac.jp/~wuhy/CV/CV2010/CV06.pdf

More Related Content

PDF
[DL輪読会]Large Scale GAN Training for High Fidelity Natural Image Synthesis
PDF
[DL輪読会]Tracking Emerges by Colorizing Videos
PDF
AtCoder Regular Contest 038 解説
PDF
180326basicknowledge
PDF
CODE FESTIVAL 2015 予選A 解説
PDF
CODE FESTIVAL 2015 解説
PDF
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
PDF
Jpa20150924matsushima
[DL輪読会]Large Scale GAN Training for High Fidelity Natural Image Synthesis
[DL輪読会]Tracking Emerges by Colorizing Videos
AtCoder Regular Contest 038 解説
180326basicknowledge
CODE FESTIVAL 2015 予選A 解説
CODE FESTIVAL 2015 解説
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
Jpa20150924matsushima

What's hot (14)

PDF
[DL Hacks 実装]Attention is All You Need
PDF
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
PDF
[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Ari...
PDF
20190225 DIY伝送装置
PDF
複数スタイルの融合と 部分的適用を可能とする Multi-style Feed-forward Networkの提案
PDF
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
PDF
【ECCV 2018】Learning to Segment via Cut-and-Paste
PDF
【修士論文紹介】ソーシャルメディアからの作用を考慮した金融市場の観測・予測モデルの提案
PDF
Edge trends mizuno
PDF
スマートフォンを用いた英単語学習の検討―GoogleFormとKahoot!を組み合わせた授業実践をふまえて―(中西淳・神谷健一・山内真理)
PDF
【ECCV 2018】How good is my GAN?
PDF
SysML meetup
PDF
複合現実感のためのコンピュータビジョン技術
PDF
Event:由 Salesforce 收購 Slack 觀察 SaaS 產業併購趨勢
[DL Hacks 実装]Attention is All You Need
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
[DL輪読会]Quantization and Training of Neural Networks for Efficient Integer-Ari...
20190225 DIY伝送装置
複数スタイルの融合と 部分的適用を可能とする Multi-style Feed-forward Networkの提案
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cook...
【ECCV 2018】Learning to Segment via Cut-and-Paste
【修士論文紹介】ソーシャルメディアからの作用を考慮した金融市場の観測・予測モデルの提案
Edge trends mizuno
スマートフォンを用いた英単語学習の検討―GoogleFormとKahoot!を組み合わせた授業実践をふまえて―(中西淳・神谷健一・山内真理)
【ECCV 2018】How good is my GAN?
SysML meetup
複合現実感のためのコンピュータビジョン技術
Event:由 Salesforce 收購 Slack 觀察 SaaS 產業併購趨勢
Ad

Similar to [DL輪読会]Semi-convolutional Operators for Instance Segmentation (20)

PDF
Cs231n 2017 lecture11 Detection and Segmentation
PDF
Object detection stanford
PPTX
fully convolutional networks for semantic segmentation
PDF
Cheatsheet convolutional-neural-networks
PDF
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
PDF
PDF
Object Segmentation (D2L7 Insight@DCU Machine Learning Workshop 2017)
PPTX
Introduction to CNN
PDF
Mask-RCNN for Instance Segmentation
PDF
Cs231n 2017 lecture10 Recurrent Neural Networks
PDF
IRJET- Identification of Scene Images using Convolutional Neural Networks - A...
PPTX
Review-image-segmentation-by-deep-learning
PDF
Recurrent Neural Network and natural languages processing.pdf
PDF
A probabilistic model for recursive factorized image features ppt
PDF
FCIS - Fully Instance-aware Semantic Segmentation -
PDF
A survey on the layers of convolutional Neural Network
PDF
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
PDF
super-cheatsheet-deep-learning.pdf
PPTX
Tensorflow a brief introduction 2nd Sess.pptx
PDF
Stochastic Computing Correlation Utilization in Convolutional Neural Network ...
Cs231n 2017 lecture11 Detection and Segmentation
Object detection stanford
fully convolutional networks for semantic segmentation
Cheatsheet convolutional-neural-networks
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Object Segmentation (D2L7 Insight@DCU Machine Learning Workshop 2017)
Introduction to CNN
Mask-RCNN for Instance Segmentation
Cs231n 2017 lecture10 Recurrent Neural Networks
IRJET- Identification of Scene Images using Convolutional Neural Networks - A...
Review-image-segmentation-by-deep-learning
Recurrent Neural Network and natural languages processing.pdf
A probabilistic model for recursive factorized image features ppt
FCIS - Fully Instance-aware Semantic Segmentation -
A survey on the layers of convolutional Neural Network
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
super-cheatsheet-deep-learning.pdf
Tensorflow a brief introduction 2nd Sess.pptx
Stochastic Computing Correlation Utilization in Convolutional Neural Network ...
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
PPTX
【DL輪読会】事前学習用データセットについて
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
PPTX
【DL輪読会】マルチモーダル LLM
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
PPTX
【DL輪読会】Hopfield network 関連研究について
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】事前学習用データセットについて
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】マルチモーダル LLM
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...

Recently uploaded (20)

PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
cuic standard and advanced reporting.pdf
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Modernizing your data center with Dell and AMD
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Electronic commerce courselecture one. Pdf
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Approach and Philosophy of On baking technology
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Diabetes mellitus diagnosis method based random forest with bat algorithm
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
cuic standard and advanced reporting.pdf
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Per capita expenditure prediction using model stacking based on satellite ima...
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Modernizing your data center with Dell and AMD
NewMind AI Monthly Chronicles - July 2025
Review of recent advances in non-invasive hemoglobin estimation
Electronic commerce courselecture one. Pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
Approach and Philosophy of On baking technology
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
“AI and Expert System Decision Support & Business Intelligence Systems”
Unlocking AI with Model Context Protocol (MCP)
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf

[DL輪読会]Semi-convolutional Operators for Instance Segmentation

  • 1. DEEP LEARNING JP [DL Papers] “Semi-convolutional Operators for Instance Segmentation” , http://deeplearning.jp/
  • 2. • – )2 - • -0 2182 21 ( - 2 iP – O O O O t E – npeE a r iP • – s o luE – V rCmv S 2
  • 4. • • 2) &) & – V P – • 2 () – C – I 4
  • 5. Propose & Verify 5 • & – SM N ⭕ P P ❌ VR SM C [2017, K. He] Mask R-CNN [2014 R. Girshick] Rich feature hierarchies for accurate object detection and semantic segmentation
  • 6. P & V (RCNN) M CVR C a VR VR , e Ø C 232 . ,. Ø N & & . 1 F S P 6 [2014 R. Girshick] Rich feature hierarchies for accurate object detection and semantic segmentation
  • 7. P & V (Mask RCNN) . 1 Ø 2 3 7 [2017 K. He] Mask R-CNN
  • 8. Instance Coloring • – I C ⭕ ( ⭕ ) D( 8 [2017 A. Kendall] Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
  • 9. IC • • 9 [2017 A. Fathi] Semantic Instance Segmentation via Deep Metric Learning
  • 10. IC • N • N – R - - • E 10 [2018 S. Kong] Recurrent Pixel Embedding for Instance Grouping (参考) arXiveTimes (https://github.com/arXivTimes/arXivTimes/issues/628)
  • 12. • P V S l O I – & ( f vm t – ) - I rp C • o g i au I ceO O y • au i ) ) O Ø P n Os C 12
  • 13. Semi-Convolutional Operation for IC (1) • • • • C 13 : X ! L⌦ (L 2 Rd )<latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit><latexit sha1_base64="EonYQ5G0ZK07MkJ3/smomCeY4Dg=">AAACu3ichVFNTxRBEH0MKDCorHox8TJxA8EL6SUkGI0JkYsHE5fFXTZhYNPTNLsNPR+Z6d0EJvMH+AMePGFijPEvePPCH/DA1ZvBGyRePFAzOwkqUavT3a9e1auu7vYirRLD2MmINTp27fr4xKQ9dePmrenK7TutJOzHQjZFqMO47fFEahXIplFGy3YUS+57Wq57eyt5fH0g40SFwSuzH8lNn3cDtaMEN0R1Ki233lOOmxcKHNfnpie4TtuZ45rw0n+RbaXuS192eWa7T/Jhz/0SdFxVij0vbWRb2w87lSqbZ4U5V0GtBFWUVg8r7+FiGyEE+vAhEcAQ1uBIaGygBoaIuE2kxMWEVBGXyGCTtk9ZkjI4sXu0dsnbKNmA/LxmUqgFnaJpxqR0MMO+sA/sjB2zj+wb+/nXWmlRI+9ln3ZvqJVRZ/rw3tqP/6p82g16l6p/9mywg0dFr4p6jwomv4UY6gcHr8/WHjdm0ln2lp1S/0fshH2mGwSDc/FuVTbewKYPqP353FdBa2G+Rnh1sbr8rPyKCdzHA8zRey9hGc9RR5PO/YSvOMV366klrF1LD1OtkVJzF7+Z1b8ApxWrPw==</latexit>
  • 14. Semi-Convolutional Operation for IC (2) • a nvxC kN – r l r a u C C • c ( - - (- - - – a u n i – n N a u • r lt a u C – ) l muoCpNu – l mupNe S 14
  • 15. Semi-Convolutional Operation for IC (3) • • () 15
  • 16. Semi-Convolutional Operation for IC (4) • – – • 2 – 2 16
  • 17. Steered bilateral filter • 2 2 ) – – 2 ( – 2 – ) ) 17
  • 19. • O i • 5 8 10 a S • e • c e R • 10 1 5-10 2 51 C - 10 1 5-10 2 51 N 19
  • 20. Mask RCNN • M - • + - C R N a S • + a 20 [2017 K. He] Mask R-CNN
  • 21. • C C • M • R • ) ( N 21
  • 22. • 2 • A2 10 22
  • 23. 23
  • 24. ( ) • a v – & ( o – ) - V c y C • p g eil r • g I ) ) f – p n V cg – p s S c • um OP fv t 24
  • 25. • a e v R • 2 1 P h w R – . / & 0 1 0 0 A 8 0 2 2 – a c v – dk R t ML C – ] C C L h wR N C • f g[ v R ML – 0 8 P Vr[ uo – s nl i 25
  • 26. • K KO S 7AIE K KHPOEK H 4LAM OKMN KM NO A 7ACIA O OEK • -EMNDE G E D A OPMA DEAM M DEAN KM PM OA K FA O AOA OEK NAI OE NACIA O OEK • 0 .A 2 NG • 0A HH 2PHOE 8 NG 1A M E C NE C AMO E OS OK AECD 1KNNAN KM 7 A A -AKIAOMS 7AI OE N • , ODE 7AI OE NO A 7ACIA O OEK E AAL 2AOME 1A M E C • 7 0K C A PMMA O ERAH I A E C KM NO A -MKPLE C 26
  • 27. Appendix: Hough Voting • dn o u u H – 1 . . a – 1 l i 3 m s • 2 u o u s V o u h et g p 27 参考) 和歌山大学講義資料 http://www.wakayama-u.ac.jp/~wuhy/CV/CV2010/CV06.pdf