SlideShare a Scribd company logo
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (09)
Fast Fourier Transform
Assist. Prof. Amr E. Mohamed
FAST FOURIER TRANSFORM ALGORITHMS
 The basic idea behind the fast Fourier transform (FFT)
 Decompose the N-point DFT computation into computations of smaller-size DFTs
 Take advantage of the periodicity and symmetry of the complex number .
 Assuming that N is an even number. Divide the data sample into two groups by
decimation
2
1
2
,...1,0'
)1'2()'(
)'2()'(





 N
nfor
nxnv
nxnu
)...7()3();5()2();3()1();1()0(
)...6()3();4()2();2()1();0()0(
xvxvxvxv
xuxuxuxu


FAST FOURIER TRANSFORM ALGORITHMS
 Consider special case of N an integer power of 2
 Separate x[n] into two sequence of length N/2
 Even indexed samples in the first sequence
 Odd indexed samples in the other sequence
 Substitute variables n=2r for n even and n=2r+1 for odd
3
       









1
oddn
/2
1
evenn
/2
1
0
/2
][][][
N
knNj
N
knNj
N
n
knNj
enxenxenxkX 
 






















1
2
]12[]2[
1
2
0]12[]2[
12/
0r
)2/(
2/
12/
0r
)2/(
2/
12/
0r
2/
12/
0r
2/
Nk
N
WrxWWrx
N
kWrxWWrx
kX
N
Nkr
N
k
N
N
Nkr
N
N
rk
N
k
N
N
rk
N
Computation Complexity
 To calculate the DFT of N-Points discrete time signal, we need:
 (N-1)2 Complex Multiplications
 N(N-1) Complex Additions.
 To calculate the FFT of N-Points discrete time signal, we need:
 Complex Multiplications
 Complex Additions.
4
NlogN 2
Nlog
2
N
2
Decimation In Time
 8-point DFT example using decimation-in-time
 Two N/2-point DFTs
 2(N/2)2 complex multiplications
 2(N/2)2 complex additions
 Combining the DFT outputs
 N complex multiplications
 N complex additions
 Total complexity
 N2/2+N complex multiplications
 N2/2+N complex additions
 More efficient than direct DFT
 Repeat same process
 Divide N/2-point DFTs into
 Two N/4-point DFTs
 Combine outputs
5
6
 After two steps of decimation in time
On
the whiteboard
 Repeat until we’re left with two-point DFT’s
On
the whiteboard
Decimation In Time
7
Decimation-In-Time FFT Algorithm
 Final flow graph for 8-point decimation in time
On
the whiteboard
8

More Related Content

PDF
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
PDF
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
PDF
DSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
PDF
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
PDF
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
PDF
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
PDF
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
PDF
Dsp U Lec10 DFT And FFT
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
Dsp U Lec10 DFT And FFT

What's hot (20)

PDF
Digital Signal Processing
PDF
Decimation and Interpolation
PPTX
Dft,fft,windowing
PPTX
The discrete fourier transform (dsp) 4
PDF
DSP 08 _ Sheet Eight
PDF
DSP_FOEHU - Lec 07 - Digital Filters
PDF
DSP_FOEHU - Lec 10 - FIR Filter Design
PDF
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
PDF
Fast Fourier Transform
PDF
Dft and its applications
PDF
Chapter5 - The Discrete-Time Fourier Transform
PDF
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
PPTX
Impulse Response ppt
PPTX
D ecimation and interpolation
PDF
Dsp U Lec04 Discrete Time Signals & Systems
PDF
Lti system
PPTX
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
PPT
PDF
Ff tand matlab-wanjun huang
PPSX
Chapter 2 signals and spectra,
Digital Signal Processing
Decimation and Interpolation
Dft,fft,windowing
The discrete fourier transform (dsp) 4
DSP 08 _ Sheet Eight
DSP_FOEHU - Lec 07 - Digital Filters
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
Fast Fourier Transform
Dft and its applications
Chapter5 - The Discrete-Time Fourier Transform
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Impulse Response ppt
D ecimation and interpolation
Dsp U Lec04 Discrete Time Signals & Systems
Lti system
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
Ff tand matlab-wanjun huang
Chapter 2 signals and spectra,
Ad

Similar to DSP_FOEHU - Lec 09 - Fast Fourier Transform (20)

PPT
Fast Fourier Transform (FFT) Algorithms in DSP
PPTX
Digital signal processing parti cularly filter design ppt
PPTX
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
PPTX
Speech signal time frequency representation
PDF
Digital Signal Processing Lecture notes n.pdf
PPT
Circular conv_7767038.ppt
PPTX
The Discrete Fourier Transform by Group 7..pptx
PPTX
DSP .pptx
PPTX
Unit 2.pptx ki gjhybhhjbnugitgyyhhj yf. Y u
PPT
Edc-unit-ii.ppt
PPT
FourierTransform detailed power point presentation
PDF
zeropadding
PPTX
Radix-2 DIT FFT
PPTX
FTTs_App_2019_02333_01!09_42458_32_PM.pptx
PDF
signal homework
PDF
CRT(Chines Remainder Theoram) It part of the Machine Learning as wll Deep Lea...
PDF
RES701 Research Methodology_FFT
PPT
Introduction_to_fast_fourier_transform ppt
PDF
Design of FFT Processor
Fast Fourier Transform (FFT) Algorithms in DSP
Digital signal processing parti cularly filter design ppt
1 周期离散时间信号的频域分析1——离散傅立叶级数(dfs)(在线版)
Speech signal time frequency representation
Digital Signal Processing Lecture notes n.pdf
Circular conv_7767038.ppt
The Discrete Fourier Transform by Group 7..pptx
DSP .pptx
Unit 2.pptx ki gjhybhhjbnugitgyyhhj yf. Y u
Edc-unit-ii.ppt
FourierTransform detailed power point presentation
zeropadding
Radix-2 DIT FFT
FTTs_App_2019_02333_01!09_42458_32_PM.pptx
signal homework
CRT(Chines Remainder Theoram) It part of the Machine Learning as wll Deep Lea...
RES701 Research Methodology_FFT
Introduction_to_fast_fourier_transform ppt
Design of FFT Processor
Ad

More from Amr E. Mohamed (20)

PDF
Dcs lec03 - z-analysis of discrete time control systems
PDF
Dcs lec02 - z-transform
PDF
Dcs lec01 - introduction to discrete-time control systems
PDF
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
PDF
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
PDF
SE2018_Lec 17_ Coding
PDF
SE2018_Lec-22_-Continuous-Integration-Tools
PDF
SE2018_Lec 21_ Software Configuration Management (SCM)
PDF
SE2018_Lec 18_ Design Principles and Design Patterns
PDF
Selenium - Introduction
PPTX
SE2018_Lec 20_ Test-Driven Development (TDD)
PDF
SE2018_Lec 19_ Software Testing
PDF
DSP_2018_FOEHU - Lec 05 - Digital Filters
PDF
DSP_2018_FOEHU - Lec 04 - The z-Transform
PDF
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
PDF
SE2018_Lec 15_ Software Design
PDF
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
PDF
DSP_2018_FOEHU - Lec 0 - Course Outlines
PDF
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
PDF
SE18_Lec 13_ Project Planning
Dcs lec03 - z-analysis of discrete time control systems
Dcs lec02 - z-transform
Dcs lec01 - introduction to discrete-time control systems
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
SE2018_Lec 17_ Coding
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 18_ Design Principles and Design Patterns
Selenium - Introduction
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 19_ Software Testing
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
SE2018_Lec 15_ Software Design
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 0 - Course Outlines
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE18_Lec 13_ Project Planning

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
PPT on Performance Review to get promotions
PPTX
Construction Project Organization Group 2.pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
DOCX
573137875-Attendance-Management-System-original
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
web development for engineering and engineering
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPT
Project quality management in manufacturing
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Geodesy 1.pptx...............................................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Sustainable Sites - Green Building Construction
PPT on Performance Review to get promotions
Construction Project Organization Group 2.pptx
III.4.1.2_The_Space_Environment.p pdffdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CYBER-CRIMES AND SECURITY A guide to understanding
573137875-Attendance-Management-System-original
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
web development for engineering and engineering
Internet of Things (IOT) - A guide to understanding
Foundation to blockchain - A guide to Blockchain Tech
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
bas. eng. economics group 4 presentation 1.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Project quality management in manufacturing
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Automation-in-Manufacturing-Chapter-Introduction.pdf
Geodesy 1.pptx...............................................

DSP_FOEHU - Lec 09 - Fast Fourier Transform

  • 2. FAST FOURIER TRANSFORM ALGORITHMS  The basic idea behind the fast Fourier transform (FFT)  Decompose the N-point DFT computation into computations of smaller-size DFTs  Take advantage of the periodicity and symmetry of the complex number .  Assuming that N is an even number. Divide the data sample into two groups by decimation 2 1 2 ,...1,0' )1'2()'( )'2()'(       N nfor nxnv nxnu )...7()3();5()2();3()1();1()0( )...6()3();4()2();2()1();0()0( xvxvxvxv xuxuxuxu  
  • 3. FAST FOURIER TRANSFORM ALGORITHMS  Consider special case of N an integer power of 2  Separate x[n] into two sequence of length N/2  Even indexed samples in the first sequence  Odd indexed samples in the other sequence  Substitute variables n=2r for n even and n=2r+1 for odd 3                  1 oddn /2 1 evenn /2 1 0 /2 ][][][ N knNj N knNj N n knNj enxenxenxkX                          1 2 ]12[]2[ 1 2 0]12[]2[ 12/ 0r )2/( 2/ 12/ 0r )2/( 2/ 12/ 0r 2/ 12/ 0r 2/ Nk N WrxWWrx N kWrxWWrx kX N Nkr N k N N Nkr N N rk N k N N rk N
  • 4. Computation Complexity  To calculate the DFT of N-Points discrete time signal, we need:  (N-1)2 Complex Multiplications  N(N-1) Complex Additions.  To calculate the FFT of N-Points discrete time signal, we need:  Complex Multiplications  Complex Additions. 4 NlogN 2 Nlog 2 N 2
  • 5. Decimation In Time  8-point DFT example using decimation-in-time  Two N/2-point DFTs  2(N/2)2 complex multiplications  2(N/2)2 complex additions  Combining the DFT outputs  N complex multiplications  N complex additions  Total complexity  N2/2+N complex multiplications  N2/2+N complex additions  More efficient than direct DFT  Repeat same process  Divide N/2-point DFTs into  Two N/4-point DFTs  Combine outputs 5
  • 6. 6  After two steps of decimation in time On the whiteboard  Repeat until we’re left with two-point DFT’s On the whiteboard Decimation In Time
  • 7. 7 Decimation-In-Time FFT Algorithm  Final flow graph for 8-point decimation in time On the whiteboard
  • 8. 8