SlideShare a Scribd company logo
DYNAMIC ROAD TRAFFIC
MODELING: SOME ELEMENTS
COSTESEQUE Guillaume
EQUIPE PROJET
ACUMES
Sophia-Antipolis Méditerranée
Traffic modeling: what for?
20/03/2015 - 2
u  For long term: infrastructure planning
Ø  How will the trips evolve in the next years/decades?
Ø  Where do public agencies have to invest money?
Ø  How to adapt public transports?
u  For short term: traffic management
Ø  How can we alleviate congestion burden?
Ø  How to know the traffic state on a network?
Ø  How can we inform road users in real time?
Static four steps model
20/03/2015 - 3
Dynamic traffic modeling: what for?
20/03/2015 - 4
u « Dynamic » è time is an important feature
u Dynamic Traffic Assignment:
Ø  Predict:
Ø  Departure time,
Ø  Route choice…
Ø  Dynamic Network Loading
Ø  Shortest path,
Ø  Equilibrium…
Ø  Consistent with traffic flow theory
Dynamic traffic modeling: what for?
20/03/2015 - 5
u « Dynamic » è time is an important feature
u Dynamic Traffic Assignment:
Ø  Predict:
Ø  Departure time,
Ø  Route choice…
Ø  Dynamic Network Loading
Ø  Shortest path,
Ø  Equilibrium…
Ø  Consistent with traffic flow theory
How?
20/03/2015 - 6
ModelInputs Outputs
Parameters
•  Demand
•  Supply
•  Initial and / or
boundary conditions
•  …
How?
20/03/2015 - 7
ModelInputs Outputs
Parameters
State of the
system
Noise
Noise
Feedback
How?
20/03/2015 - 8
ModelInputs Outputs
Parameters
State of the
system
Actuators Sensors
Micro or macro?
20/03/2015 - 9
u  Microscopic models
Ø  Track every vehicle trajectory
Ø  Car-following models
Ø  High computational cost
Ø  Small scales
u  Macroscopic models
Ø  Hydrodynamics analogy
Ø  Averaged quantities
Ø  Lower computational cost
Ø  Larger scales
Micro or macro?
20/03/2015 - 10
[Lebacque, 1993]
Uses of dynamic macroscopic modeling
20/03/2015 - 11
u  Estimation
Ø  Determine the current value of the state of the system
Ø  …knowing past inputs and outputs (measurements)
u  Forecast
Ø  Determine the future value of the state of the system
Ø  …knowing past outputs, past and future inputs
u  Optimal control
Ø  Determine the value of actuations to apply to achieve an
objective in the future
Ø  …knowing past and current value of the state of the system
Thanks for your attention
guillaume.costeseque@inria.fr
Inria Sophia-Antipolis Méditerranée
www.inria.fr

More Related Content

PPT
Te its 2017-lesson 17 signal synchronization part 1 v02
PDF
Simulation and optimization of dynamic ridesharing services
PDF
Streetmap.co.uk printer friendly page
PPTX
A Macroscopic Dynamic model integrated into Dynamic Traffic Assignment: advan...
PDF
A Unified Framework For Traffic Assignment Deriving Static And Quasi-Dynamic...
PPTX
Smart Mobility
PPTX
Traffic simulation and modelling
Te its 2017-lesson 17 signal synchronization part 1 v02
Simulation and optimization of dynamic ridesharing services
Streetmap.co.uk printer friendly page
A Macroscopic Dynamic model integrated into Dynamic Traffic Assignment: advan...
A Unified Framework For Traffic Assignment Deriving Static And Quasi-Dynamic...
Smart Mobility
Traffic simulation and modelling

Similar to Dynamic road traffic modeling: some elements (20)

PPTX
Prediction of traveller information and route choice
PPTX
Traffic Simulation Model
PDF
Urban Traffic Estimation & Optimization: An Overview
PPTX
inLab FIB Presentation at ICT2013EU
PDF
IRJET- Intelligent Traffic Management System
PDF
Minor Project review 2 - 6 Pages.pptx.pdf
PPTX
Application of a Markov chain traffic model to the Greater Philadelphia Region
PPTX
Traffic analysis with respect to pedestrian facilities
PDF
Intelligent Traffic Management System using Shortest Path
PDF
KA6423 P57600 Assignment 3
PDF
LC_Thesis_Final (1).pdf
PDF
Traffic Flow On Networks First Mauro Garavello Benedetto Piccoli
PPT
Modeling business management systems transportation
PPTX
Traffic Modelling & The Importance of modelling.pptx
PDF
Tutorial on Taffic Management and AI
PDF
Real time traffic management - challenges and solutions
PDF
A Review on Road Traffic Models for Intelligent Transportation System (ITS)
DOCX
Pergamon Transpn. Res.-B. Vol. 28B, No. 4, pp. 269-287, 19.docx
Prediction of traveller information and route choice
Traffic Simulation Model
Urban Traffic Estimation & Optimization: An Overview
inLab FIB Presentation at ICT2013EU
IRJET- Intelligent Traffic Management System
Minor Project review 2 - 6 Pages.pptx.pdf
Application of a Markov chain traffic model to the Greater Philadelphia Region
Traffic analysis with respect to pedestrian facilities
Intelligent Traffic Management System using Shortest Path
KA6423 P57600 Assignment 3
LC_Thesis_Final (1).pdf
Traffic Flow On Networks First Mauro Garavello Benedetto Piccoli
Modeling business management systems transportation
Traffic Modelling & The Importance of modelling.pptx
Tutorial on Taffic Management and AI
Real time traffic management - challenges and solutions
A Review on Road Traffic Models for Intelligent Transportation System (ITS)
Pergamon Transpn. Res.-B. Vol. 28B, No. 4, pp. 269-287, 19.docx
Ad

More from Guillaume Costeseque (20)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Some recent developments in the traffic flow variational formulation
PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Numerical methods for variational principles in traffic
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Some recent developments in the traffic flow variational formulation
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi approach for second order traffic flow models
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical methods for variational principles in traffic
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Geodesy 1.pptx...............................................
PPTX
Current and future trends in Computer Vision.pptx
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
PPT on Performance Review to get promotions
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
DOCX
573137875-Attendance-Management-System-original
PPTX
Internet of Things (IOT) - A guide to understanding
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Geodesy 1.pptx...............................................
Current and future trends in Computer Vision.pptx
Safety Seminar civil to be ensured for safe working.
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Fundamentals of safety and accident prevention -final (1).pptx
III.4.1.2_The_Space_Environment.p pdffdf
CYBER-CRIMES AND SECURITY A guide to understanding
Embodied AI: Ushering in the Next Era of Intelligent Systems
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPT on Performance Review to get promotions
UNIT 4 Total Quality Management .pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Automation-in-Manufacturing-Chapter-Introduction.pdf
573137875-Attendance-Management-System-original
Internet of Things (IOT) - A guide to understanding

Dynamic road traffic modeling: some elements

  • 1. DYNAMIC ROAD TRAFFIC MODELING: SOME ELEMENTS COSTESEQUE Guillaume EQUIPE PROJET ACUMES Sophia-Antipolis Méditerranée
  • 2. Traffic modeling: what for? 20/03/2015 - 2 u  For long term: infrastructure planning Ø  How will the trips evolve in the next years/decades? Ø  Where do public agencies have to invest money? Ø  How to adapt public transports? u  For short term: traffic management Ø  How can we alleviate congestion burden? Ø  How to know the traffic state on a network? Ø  How can we inform road users in real time?
  • 3. Static four steps model 20/03/2015 - 3
  • 4. Dynamic traffic modeling: what for? 20/03/2015 - 4 u « Dynamic » è time is an important feature u Dynamic Traffic Assignment: Ø  Predict: Ø  Departure time, Ø  Route choice… Ø  Dynamic Network Loading Ø  Shortest path, Ø  Equilibrium… Ø  Consistent with traffic flow theory
  • 5. Dynamic traffic modeling: what for? 20/03/2015 - 5 u « Dynamic » è time is an important feature u Dynamic Traffic Assignment: Ø  Predict: Ø  Departure time, Ø  Route choice… Ø  Dynamic Network Loading Ø  Shortest path, Ø  Equilibrium… Ø  Consistent with traffic flow theory
  • 6. How? 20/03/2015 - 6 ModelInputs Outputs Parameters
  • 7. •  Demand •  Supply •  Initial and / or boundary conditions •  … How? 20/03/2015 - 7 ModelInputs Outputs Parameters State of the system Noise Noise Feedback
  • 8. How? 20/03/2015 - 8 ModelInputs Outputs Parameters State of the system Actuators Sensors
  • 9. Micro or macro? 20/03/2015 - 9 u  Microscopic models Ø  Track every vehicle trajectory Ø  Car-following models Ø  High computational cost Ø  Small scales u  Macroscopic models Ø  Hydrodynamics analogy Ø  Averaged quantities Ø  Lower computational cost Ø  Larger scales
  • 10. Micro or macro? 20/03/2015 - 10 [Lebacque, 1993]
  • 11. Uses of dynamic macroscopic modeling 20/03/2015 - 11 u  Estimation Ø  Determine the current value of the state of the system Ø  …knowing past inputs and outputs (measurements) u  Forecast Ø  Determine the future value of the state of the system Ø  …knowing past outputs, past and future inputs u  Optimal control Ø  Determine the value of actuations to apply to achieve an objective in the future Ø  …knowing past and current value of the state of the system
  • 12. Thanks for your attention guillaume.costeseque@inria.fr Inria Sophia-Antipolis Méditerranée www.inria.fr