SlideShare a Scribd company logo
Dynamic Shift Frequency Scaling of ATPG Patterns Aditya Ramachandran Open-Silicon Research Pvt.Ltd
Agenda Introduction Scan Shift Power Analysis Optimal Shift Frequency Calculation Generation of Scaled Patterns Results and Analysis Conclusion
Test time  directly  affects cost-per-part TEST TIME  TEST COST  COST-PER-PART UDSM Pattern count explosion Test time reduction is required now more than ever ! Introduction 130NM and above 90NM and below Stuck-at Transition Path-Delay Bridging Stuck-at
Background Test Time Reduction Reduction of Test Time ATPG Test Time  ≈   ( # of Patterns x Length ) / Frequency Pattern Compression Adaptive Scan More Scan Chains Increase!
Factors Affecting Shift Frequency TIMING POWER Scan Shift Setup Timing Last Shift Launch Methodologies Dynamic Power Dissipation! Power ~ Switching Activity Power ~  Frequency Increased Switching  ->  Lower Frequency Background Shift Frequency
Background Solution Power Dissipation is limiting Shift Frequency Lower Power Dissipation  Higher Shift Frequency Assertion #1 : Power Dissipation is pattern-dependent Assertion #2 : The difference is significant
Background Sample Power Analysis Results of Shift Power Analysis for Test Design   Leakage Dynamic
Background Solution Power Dissipation is limiting Shift Frequency Lower Power Dissipation  Higher Shift Frequency Assertion #1 : Power Dissipation is pattern-dependent Assertion #2 : The difference is significant  Solution Speed up low-power patterns
Scan Shift Power Analysis Flow Power Analysis Flow Simulation Create Saif Power Analysis Testbench Netlist VCD Saif Libraries - Synopsys VCS - Serial Patterns - vcd2saif - Per-Pattern saif - PrimePower - Saif-based flow
Optimal Shift Frequencies Step #1 STEP #1:  Calculate Frequency Bounds SHIFT POWER  <= FUNCTIONAL POWER Pdyn(new) + Plek <= Pfunc Pdyn(new) <= Pfunc - Plek  Pdyn(old) * Fshift(new)  <= (Pfunc – Plek) --------------------------------- Fshift(old)  Max Power  Minimum Shift Frequency Min Power  Maximum Shift Frequency
Optimal Shift Frequencies Step #1 Results STEP #1:  Calculate Frequency Bounds (Test Design) SHIFT POWER  <= FUNCTIONAL POWER 0.01102W * Fmin <= ( 0.032W – 8.3e-4W ) ---------------------- 10MHZ  0.0048W * Fmax <= (0.032W – 8.3e-4W) ---------------------- 10MHZ Fmin = 28MHZ Fmax = 65MHZ
Optimal Shift Frequencies Step #2 STEP #2:  Choose a Set of Shift Frequencies Fmin <= {F1, F2.., Fn} <= Fmax Reduces Complexity! For The Test Design: {28MHZ, 37MHZ, 52MHZ, 63MHZ} {35ns, 27ns, 19ns, 16ns}
Optimal Shift Frequencies Step #3 STEP #3:  Assign New Shift Frequency to Patterns Foreach Pattern: Assign Maximum Fi from {F1,F2,..Fn} such that:    Pshift(Fi) <= Pfunc
Optimal Shift Frequencies Step #3 Results STEP #3:  Assign New Shift Frequency to Patterns Shift Frequency Allocation (Test Design) TOTAL PATTERNS  701 28MHZ  8 37MHZ  54 52MHZ  477 63MHZ  159
Generation of Patterns Objectives Shift at multiple frequencies All else remain unchanged
Creation of STIL File Create STIL File WaveformTables for each Shift Frequency Use slowest shift table as Shift{} Waveform load_unload&quot; { W &quot;_default_WFT_&quot;; C { ...   }   Shift { V { &quot;_clk&quot; = ...; &quot;_si&quot; = #; &quot;_so&quot; = #; } } ... } load_unload&quot; { W &quot;_default_WFT_&quot;; C { ...   }   Shift { W &quot;_SlowShift_WFT_&quot;; V { &quot;_clk&quot; = ...; &quot;_si&quot; = #; &quot;_so&quot; = #; } } ... }
Generation of WGL In Tetramax Set DRC File to new STIL File Read in patterns in binary format Write out patterns in WGL format Customize (perl script) Change timeplates for the shift task of each pattern
Generation of WGL Example {  pattern 1 parallel_clock basic_scan  } {  load_unload  } vector(&quot;_default_WFT_&quot;) := [ 1 0 0.... ]; scan(&quot;_SlowShift_WFT_&quot;) := [ 1 1 0.... ],  ..... {  pattern 1 parallel_clock basic_scan  } {  load_unload  } vector(&quot;_default_WFT_&quot;) := [ 1 0 0.... ]; scan(&quot;_Shift17ns_WFT_&quot;) := [ 1 1 0.... ],  ..... Change timeplate for scan()
Verilog Testbench Write verilog testbench at highest shift frequency Hold is frequency-independent Setup met at highest shift will meet at lower frequencies In STIL File Set Shift Waveform to fastest shift In Tetramax Set DRC File to new STIL File Read in patterns in binary format Write out verilog testbench for verification
Generation of SDC Write SDC at highest shift frequency Hold is frequency-independent Setup met at highest shift will meet at lower frequencies In STIL File Set Shift Waveform to fastest shift In Tetramax Set DRC File to new STIL File Write SDC using  write_timing_constraints
Results and Analysis Test Design Information Test Design Parameters Max Scan Length : 4892 Fault Model : Stuck-at Number of Patterns : 701
Results and Analysis Effective Shift Frequency Effective Shift Frequency TOTAL PATTERNS  701 28MHZ  8 37MHZ  54 52MHZ  477 63MHZ  159 Effective Shift Frequency = 53MHZ
Reduction in Test Time Original Patterns @ 28MHZ Scaled Patterns @ 53MHZ Max scan length = 4892 Number of patterns = 701 Shift Period = 35ns Test Time  =~ 0.12 sec Max scan length = 4892 Number of patterns = 701 Shift Period = 19ns Test Time  =~ 0.06 sec Test Time is reduced by ~45%
Reduction in Test Cost Original Patterns @ 28MHZ Scaled Patterns @ 53MHZ Test Time  =~ 0.12 sec Test cost/sec = $0.0076 Shipping Volume = 10Million Total Cost = $91219 Test Time  =~ 0.06 sec Test cost/sec = $0.0076 Shipping Volume = 10Million Total Cost = $49597 Save $41,000 per 10M parts
Post-scaling Power Analysis
Advantages LOWER TEST TIME NO DESIGN CHANGES SCAN ARCHITECTURE INDEPENDENT POST-TAPEOUT/PRE-TAPEOUT
Conclusion What? Why? How? Multiple Shift Frequencies  for ATPG patterns within the same pattern set To Reduce Test Time without excessive power dissipation Increase Shift Frequency of Patterns with Low Power Dissipation

More Related Content

PPTX
Selaidechou
PPTX
Slurm @ 2018 LabTech
PDF
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
PDF
CS5229 Lecture 5: TCP and TRFC
PDF
Efficient Programs
PPTX
Polling server
PPT
Tracing Parallel Execution (UKOUG 2006)
Selaidechou
Slurm @ 2018 LabTech
3DoF Helicopter Trim , Deceleration manouver simulation, Stability
CS5229 Lecture 5: TCP and TRFC
Efficient Programs
Polling server
Tracing Parallel Execution (UKOUG 2006)

Viewers also liked (18)

PDF
Space-efficient Approximation Scheme for Maximum Matching in Sparse Graphs
PDF
Bannerman Castle Visitors Center Presentation
PDF
Unbounded Error Communication Complexity of XOR Functions
PPT
Wanderley finalizado
PDF
Adv_Low_Vis_Tech_B_English
PPTX
प्रदुषण के
PDF
Andhra media mafia 2
PPT
Mirostory2º
ODP
From Simulation to Online Gaming: the need for adaptive solutions
PDF
Scientific publications list Armin Elbers
PPTX
Futuro do software corporativo padrão - 18ª conferência anual ASUG 2015
PDF
Gentle Introduction To Lisp
PDF
Appreciative Enquiry : Presented by Sridharan Vembu
PDF
Matric Marksheet
PPT
Russia Ethiopia comparison in Construction and buildings, suggestions to deve...
PDF
Dissertation Skills Development and training Importance Sample
DOCX
descon cretificate
PDF
BLR EHS Media KIt 2017
Space-efficient Approximation Scheme for Maximum Matching in Sparse Graphs
Bannerman Castle Visitors Center Presentation
Unbounded Error Communication Complexity of XOR Functions
Wanderley finalizado
Adv_Low_Vis_Tech_B_English
प्रदुषण के
Andhra media mafia 2
Mirostory2º
From Simulation to Online Gaming: the need for adaptive solutions
Scientific publications list Armin Elbers
Futuro do software corporativo padrão - 18ª conferência anual ASUG 2015
Gentle Introduction To Lisp
Appreciative Enquiry : Presented by Sridharan Vembu
Matric Marksheet
Russia Ethiopia comparison in Construction and buildings, suggestions to deve...
Dissertation Skills Development and training Importance Sample
descon cretificate
BLR EHS Media KIt 2017
Ad

Similar to Dynamic Shift Frequency Scaling Of ATPG Patterns (20)

PDF
Ertss2010 multicore scheduling
PDF
Multicore scheduling in automotive ECUs
PPT
On using BS to improve the
PPTX
Physical design
PDF
Dt25720726
PPTX
Vlsi ii project presentation
PDF
Frame latency evaluation: when simulation and analysis alone are not enough
PDF
P358387
PPTX
Entreprise Augmentée : Réseau de capteurs pour se rapprocher du zéro erreur
PPTX
Condition Monitoring Architecture To Reduce Total Cost of Ownership
PDF
Reducing Silicon Real Estate and Switching Activity Using Low Power Test Patt...
PDF
Performance Evaluation of SAR Image Reconstruction on CPUs and GPUs
PPT
Cnc turning(Fanuc system)
PPT
Altera trcak g
PDF
An approach to Measure Transition Density of Binary Sequences for X-filling b...
PDF
NAS EP Algorithm
PPT
1.Timing.ppt to fing the paraenet sof time
PPT
Power Saving Design Techniques with Low Cost FPGAs
PDF
Nanometer Testing: Challenges and Solutions
PDF
Abraham q3 2008
Ertss2010 multicore scheduling
Multicore scheduling in automotive ECUs
On using BS to improve the
Physical design
Dt25720726
Vlsi ii project presentation
Frame latency evaluation: when simulation and analysis alone are not enough
P358387
Entreprise Augmentée : Réseau de capteurs pour se rapprocher du zéro erreur
Condition Monitoring Architecture To Reduce Total Cost of Ownership
Reducing Silicon Real Estate and Switching Activity Using Low Power Test Patt...
Performance Evaluation of SAR Image Reconstruction on CPUs and GPUs
Cnc turning(Fanuc system)
Altera trcak g
An approach to Measure Transition Density of Binary Sequences for X-filling b...
NAS EP Algorithm
1.Timing.ppt to fing the paraenet sof time
Power Saving Design Techniques with Low Cost FPGAs
Nanometer Testing: Challenges and Solutions
Abraham q3 2008
Ad

Recently uploaded (20)

PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPT
Teaching material agriculture food technology
PDF
Approach and Philosophy of On baking technology
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Encapsulation theory and applications.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Chapter 3 Spatial Domain Image Processing.pdf
Big Data Technologies - Introduction.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
MIND Revenue Release Quarter 2 2025 Press Release
Building Integrated photovoltaic BIPV_UPV.pdf
The Rise and Fall of 3GPP – Time for a Sabbatical?
Unlocking AI with Model Context Protocol (MCP)
20250228 LYD VKU AI Blended-Learning.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
The AUB Centre for AI in Media Proposal.docx
Digital-Transformation-Roadmap-for-Companies.pptx
Review of recent advances in non-invasive hemoglobin estimation
Dropbox Q2 2025 Financial Results & Investor Presentation
Teaching material agriculture food technology
Approach and Philosophy of On baking technology
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Understanding_Digital_Forensics_Presentation.pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
Encapsulation theory and applications.pdf

Dynamic Shift Frequency Scaling Of ATPG Patterns

  • 1. Dynamic Shift Frequency Scaling of ATPG Patterns Aditya Ramachandran Open-Silicon Research Pvt.Ltd
  • 2. Agenda Introduction Scan Shift Power Analysis Optimal Shift Frequency Calculation Generation of Scaled Patterns Results and Analysis Conclusion
  • 3. Test time directly affects cost-per-part TEST TIME TEST COST COST-PER-PART UDSM Pattern count explosion Test time reduction is required now more than ever ! Introduction 130NM and above 90NM and below Stuck-at Transition Path-Delay Bridging Stuck-at
  • 4. Background Test Time Reduction Reduction of Test Time ATPG Test Time ≈ ( # of Patterns x Length ) / Frequency Pattern Compression Adaptive Scan More Scan Chains Increase!
  • 5. Factors Affecting Shift Frequency TIMING POWER Scan Shift Setup Timing Last Shift Launch Methodologies Dynamic Power Dissipation! Power ~ Switching Activity Power ~ Frequency Increased Switching -> Lower Frequency Background Shift Frequency
  • 6. Background Solution Power Dissipation is limiting Shift Frequency Lower Power Dissipation Higher Shift Frequency Assertion #1 : Power Dissipation is pattern-dependent Assertion #2 : The difference is significant
  • 7. Background Sample Power Analysis Results of Shift Power Analysis for Test Design Leakage Dynamic
  • 8. Background Solution Power Dissipation is limiting Shift Frequency Lower Power Dissipation Higher Shift Frequency Assertion #1 : Power Dissipation is pattern-dependent Assertion #2 : The difference is significant Solution Speed up low-power patterns
  • 9. Scan Shift Power Analysis Flow Power Analysis Flow Simulation Create Saif Power Analysis Testbench Netlist VCD Saif Libraries - Synopsys VCS - Serial Patterns - vcd2saif - Per-Pattern saif - PrimePower - Saif-based flow
  • 10. Optimal Shift Frequencies Step #1 STEP #1: Calculate Frequency Bounds SHIFT POWER <= FUNCTIONAL POWER Pdyn(new) + Plek <= Pfunc Pdyn(new) <= Pfunc - Plek Pdyn(old) * Fshift(new) <= (Pfunc – Plek) --------------------------------- Fshift(old) Max Power Minimum Shift Frequency Min Power Maximum Shift Frequency
  • 11. Optimal Shift Frequencies Step #1 Results STEP #1: Calculate Frequency Bounds (Test Design) SHIFT POWER <= FUNCTIONAL POWER 0.01102W * Fmin <= ( 0.032W – 8.3e-4W ) ---------------------- 10MHZ 0.0048W * Fmax <= (0.032W – 8.3e-4W) ---------------------- 10MHZ Fmin = 28MHZ Fmax = 65MHZ
  • 12. Optimal Shift Frequencies Step #2 STEP #2: Choose a Set of Shift Frequencies Fmin <= {F1, F2.., Fn} <= Fmax Reduces Complexity! For The Test Design: {28MHZ, 37MHZ, 52MHZ, 63MHZ} {35ns, 27ns, 19ns, 16ns}
  • 13. Optimal Shift Frequencies Step #3 STEP #3: Assign New Shift Frequency to Patterns Foreach Pattern: Assign Maximum Fi from {F1,F2,..Fn} such that: Pshift(Fi) <= Pfunc
  • 14. Optimal Shift Frequencies Step #3 Results STEP #3: Assign New Shift Frequency to Patterns Shift Frequency Allocation (Test Design) TOTAL PATTERNS 701 28MHZ 8 37MHZ 54 52MHZ 477 63MHZ 159
  • 15. Generation of Patterns Objectives Shift at multiple frequencies All else remain unchanged
  • 16. Creation of STIL File Create STIL File WaveformTables for each Shift Frequency Use slowest shift table as Shift{} Waveform load_unload&quot; { W &quot;_default_WFT_&quot;; C { ... } Shift { V { &quot;_clk&quot; = ...; &quot;_si&quot; = #; &quot;_so&quot; = #; } } ... } load_unload&quot; { W &quot;_default_WFT_&quot;; C { ... } Shift { W &quot;_SlowShift_WFT_&quot;; V { &quot;_clk&quot; = ...; &quot;_si&quot; = #; &quot;_so&quot; = #; } } ... }
  • 17. Generation of WGL In Tetramax Set DRC File to new STIL File Read in patterns in binary format Write out patterns in WGL format Customize (perl script) Change timeplates for the shift task of each pattern
  • 18. Generation of WGL Example { pattern 1 parallel_clock basic_scan } { load_unload } vector(&quot;_default_WFT_&quot;) := [ 1 0 0.... ]; scan(&quot;_SlowShift_WFT_&quot;) := [ 1 1 0.... ], ..... { pattern 1 parallel_clock basic_scan } { load_unload } vector(&quot;_default_WFT_&quot;) := [ 1 0 0.... ]; scan(&quot;_Shift17ns_WFT_&quot;) := [ 1 1 0.... ], ..... Change timeplate for scan()
  • 19. Verilog Testbench Write verilog testbench at highest shift frequency Hold is frequency-independent Setup met at highest shift will meet at lower frequencies In STIL File Set Shift Waveform to fastest shift In Tetramax Set DRC File to new STIL File Read in patterns in binary format Write out verilog testbench for verification
  • 20. Generation of SDC Write SDC at highest shift frequency Hold is frequency-independent Setup met at highest shift will meet at lower frequencies In STIL File Set Shift Waveform to fastest shift In Tetramax Set DRC File to new STIL File Write SDC using write_timing_constraints
  • 21. Results and Analysis Test Design Information Test Design Parameters Max Scan Length : 4892 Fault Model : Stuck-at Number of Patterns : 701
  • 22. Results and Analysis Effective Shift Frequency Effective Shift Frequency TOTAL PATTERNS 701 28MHZ 8 37MHZ 54 52MHZ 477 63MHZ 159 Effective Shift Frequency = 53MHZ
  • 23. Reduction in Test Time Original Patterns @ 28MHZ Scaled Patterns @ 53MHZ Max scan length = 4892 Number of patterns = 701 Shift Period = 35ns Test Time =~ 0.12 sec Max scan length = 4892 Number of patterns = 701 Shift Period = 19ns Test Time =~ 0.06 sec Test Time is reduced by ~45%
  • 24. Reduction in Test Cost Original Patterns @ 28MHZ Scaled Patterns @ 53MHZ Test Time =~ 0.12 sec Test cost/sec = $0.0076 Shipping Volume = 10Million Total Cost = $91219 Test Time =~ 0.06 sec Test cost/sec = $0.0076 Shipping Volume = 10Million Total Cost = $49597 Save $41,000 per 10M parts
  • 26. Advantages LOWER TEST TIME NO DESIGN CHANGES SCAN ARCHITECTURE INDEPENDENT POST-TAPEOUT/PRE-TAPEOUT
  • 27. Conclusion What? Why? How? Multiple Shift Frequencies for ATPG patterns within the same pattern set To Reduce Test Time without excessive power dissipation Increase Shift Frequency of Patterns with Low Power Dissipation