SlideShare a Scribd company logo
- Mayo 2019
AI para mejorar la
productividad
• Adrian Diaz Cervera
• Alberto Diaz Martin
Dynamics Saturday Madrid 2019 - AI to improve productivity
Adrian Diaz Cervera
@adrianDiaz81
Alberto Diaz Martin
@adiazcan
La era de la distracción Coste de la distracción
50% de los trabajores no
saben que esperan de ellos2
50%
59% de los vendedores dicen
tener muchas herramientas de
ventas1
59%
Distracciones reducen
el rendimiento de los
vendedores un 14%1
1 Accenture
2 Gallup
¿Por qué
nuestros
empleados no
finalizan una
venta?
¿Quienés son
los
empleados
más
insatisfechos?
¿Por qué los
empleados no
encuentran el
contenido?
¿Qué está
impactando
en el
ambiente de
trabajo?
Entender el
POR QUÉ
detrás del
QUÉ
Entender los
patrones de
mis
empleados
Descubrir
comportamie
ntos
emergentes y
tendencias
Descubrir
patrones
inesperados
que inspieren
nuevas ideas
¿Qué uso
hacemos de
Dynamics
CRM?
¿Cuántas
actividades
tengo como
Owner?
¿Cuántas
actualizacione
s de Cuentas
hago?
¿Cuántas
actualizacione
s de
Contactos
hago?
La adopción
de Dynamics
es la
adecuada Detección de
anomalías en
el uso
Rendimiento
de uso vs
Ventas
Detección de
patrones uso
y
comportamie
nto
Log files
Spatial & GPS
coordinates
Data market feeds
eGov feeds
Weather
Text/image
Web 2.0Advertising
Mobile
Collaboration
eCommerce
Web logs
Digital Marketing
Search Marketing
Recommendations
8
Más “decision
makers”
BigData
Megabytes
Gigabytes
Terabytes
Petabytes
Data Complexity: Velocity, Variety
ERP/CRM
Payables
Payroll
Inventory
Contacts
Deal Tracking
Sales Pipeline
Click streams
Wikis, Blogs
Sensors/RFID/
Devices
Social Sentiment
Audio/Video
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Ingest Data
Events
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Sales
Marketing
Customer
Service
Dynamics Saturday Madrid 2019 - AI to improve productivity
© Microsoft Corporation
INGEST with API REST
Modelo conceptual
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Azure Functions
Sales
Marketing
Customer
Service
Webhooks
Dynamics CRM API REST
• OData 4.0 Web API
• Use Common Data Service Web
API
• Use AdalJS for Authentication
• Limit request x minutes
© Microsoft Corporation
Serverless con Azure Function
© Microsoft Corporation
Azure Functions model
© Microsoft Corporation
DEMO INGEST WITH AZURE FUNCTIONS
© Microsoft Corporation
INGEST with Azure Data Factory
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Azure Data Factory
Events
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Sales
Marketing
Customer
Service
Data Integration Service: Serverless, Scalable, Hybrid
Hybrid Pipeline Model
Seamlessly span: on prem, Azure, other clouds & SaaS
Run on-demand, scheduled, data-availability or on event
Data Movement @Scale
Cloud & Hybrid w/ 75+ connectors provided
Up to 1 GB/s
SSIS Package Execution
Lift existing SQL Server ETL to Azure
Use existing tools (SSMS, SSDT)
Author & Monitor
Programmability w/ multi-language SDK
Visual Tools
Azure
Dynamics Saturday Madrid 2019 - AI to improve productivity
© Microsoft Corporation
DEMO INGEST WITH AZURE DATA FACTORY
© Microsoft Corporation
Dataflow y Common Data Model
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Power BI Dataflow
Events
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Sales
Marketing
Customer
Service
© Microsoft Corporation
Dataflow
Azure Data
Factory
Azure
Databricks
Azure SQL
DW
Azure ML
CDM folder
Dynamics Saturday Madrid 2019 - AI to improve productivity
© Microsoft Corporation
CDM Folder
© Microsoft Corporation
DEMO INGEST WITH DATAFLOW
© Microsoft Corporation
Analysis with Azure Databricks
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Ingest Data
Events
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Sales
Marketing
Customer
Service
Apache Spark
• Unified, open source, parallel, data processing framework for Big
Data Analytics
Spark Core Engine
Spark SQL
Interactive
Queries
Yarn Mesos
Standalone
Scheduler
Spark MLlib
Machine
Learning
Spark
Streaming
Stream processing
GraphX
Graph
Computation
Databricks within Azure Landscape
DATABRICKS I/O SERVERLESS
Cloud storage
Data warehouses
Hadoop storage
IoT / streaming data
Rest APIs
Machine learning models
BI tools
Data exports
Data warehouses
Azure Databricks
Enhance Productivity
APACHE SPARK
MULTI-STAGE PIPELINES
DATA ENGINEER
JOB SCHEDULER NOTIFICATION & LOGS
DATA SCIENTIST BUSINESS ANALYST
Build on secure & trusted cloud Scale without limits
Optimized Databricks Runtime Engine
Collaborative Workspace
Deploy Production Jobs & Workflows
© Microsoft Corporation
DEMO ANALYSIS WITH DATABRICKS
© Microsoft Corporation
Operational Databases
ServeStore Prep and trainIngest
Batch data
Streaming data
Azure Kubernetes
service
Power BI
Azure analysis
services
Azure SQL data
warehouse
Cosmos DB, SQL DB
Azure Data Lake Storage
Ingest Data
Events
Azure Databricks
Azure Machine
Learning service
Apps
Model Serving
Ad-hoc Analysis
Operational
Databases
Sales
Marketing
Customer
Service
MongoDBTable API
Turnkey global
distribution
Elastic scale out
of storage & throughput
Guaranteed low latency
at the 99th percentile
Comprehensive
SLAs
Five well-defined
consistency models
Azure Cosmos DB
DocumentColumn-family
Key-value Graph
Core
(SQL)
API
Importante el modelo de datos
LastUserAdoptionScoring
TeamAdoptionScoring
UserAdoptionScoring
Importante el modelo de datos
Data model thinking on query performs
AI to generate de Data
Differents data sources from Office 365, Dynamics 365, …
LastUserAdoptionScoring
TeamAdoptionScoring
UserAdoptionScoring
© Microsoft Corporation
DEMO COSMO DB
Take away
• Extraer la información de Dynamics 365
• API REST
• Azure Data Factory
• Power BI Dataflow
• Modelar el Data Lake con CDM
• Crear un modelo de datos de análisis
¡Muchas gracias!

More Related Content

PDF
#askSAP Analytics Innovations Community Call: Innovation in Core BI Solutions...
PDF
Spike - pitch deck
PDF
Spike - Report for Degree of Bachelor of Business Administration/Management I...
PDF
Introduction to Analytics
PDF
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
PDF
Déjeuner Conférence - L'analyse prédictive agile avec SAP Predictive Analytic...
PDF
Why Companies Need New Approaches for Faster Time-to-Insight
PDF
Overcoming Technical SEO Challenges for Enterprise Sites | SearchLeeds 2019 |...
#askSAP Analytics Innovations Community Call: Innovation in Core BI Solutions...
Spike - pitch deck
Spike - Report for Degree of Bachelor of Business Administration/Management I...
Introduction to Analytics
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
Déjeuner Conférence - L'analyse prédictive agile avec SAP Predictive Analytic...
Why Companies Need New Approaches for Faster Time-to-Insight
Overcoming Technical SEO Challenges for Enterprise Sites | SearchLeeds 2019 |...

Similar to Dynamics Saturday Madrid 2019 - AI to improve productivity (20)

PDF
Data Discovery and BI - Is there Really a Difference?
PDF
Analytics Everywhere Workshop
PDF
Transitioning to-lean-at-infochimps
PPTX
Evolve18 | Klassjan Tukker | Adobe Cloud Platform: The heart of Adobe Experie...
PPTX
Overview on Azure Machine Learning
PPTX
Empower customer success at LinkedIn with advanced analytics and great visual...
PDF
It’s Not About Big Data – It’s About Big Insights - SAP Webinar - 20 Aug 201...
PDF
Data Visualization and the Art of Self-Reliance
PDF
Driving Customer Loyalty with Azure Machine Learning
 
PPTX
A developer's introduction to big data processing with Azure Databricks
PDF
Salesforce - Overview & Getting Started
PDF
Webinar: SAP BW Dinosaur to Agile Analytics Powerhouse
PDF
The ABCs of Treating Data as Product
PPTX
KNIME Meetup 2016-04-16
PDF
VNSG Congress 2014 SAP BIGdata Analytics vision & strategy
PDF
Sergio Juarez, Elemica – “From Big Data to Value: The Power of Master Data Ma...
PPTX
Kudu Forrester Webinar
PDF
SAP’s vision and strategy on BI & BIG (and small) data
PDF
How to add machine learning to your applications today
PDF
WEBINAR – DAM 2020 Report & Analysis along side the user perspective
Data Discovery and BI - Is there Really a Difference?
Analytics Everywhere Workshop
Transitioning to-lean-at-infochimps
Evolve18 | Klassjan Tukker | Adobe Cloud Platform: The heart of Adobe Experie...
Overview on Azure Machine Learning
Empower customer success at LinkedIn with advanced analytics and great visual...
It’s Not About Big Data – It’s About Big Insights - SAP Webinar - 20 Aug 201...
Data Visualization and the Art of Self-Reliance
Driving Customer Loyalty with Azure Machine Learning
 
A developer's introduction to big data processing with Azure Databricks
Salesforce - Overview & Getting Started
Webinar: SAP BW Dinosaur to Agile Analytics Powerhouse
The ABCs of Treating Data as Product
KNIME Meetup 2016-04-16
VNSG Congress 2014 SAP BIGdata Analytics vision & strategy
Sergio Juarez, Elemica – “From Big Data to Value: The Power of Master Data Ma...
Kudu Forrester Webinar
SAP’s vision and strategy on BI & BIG (and small) data
How to add machine learning to your applications today
WEBINAR – DAM 2020 Report & Analysis along side the user perspective
Ad

More from Alberto Diaz Martin (20)

PPTX
Microsoft 365 Virtual 2020 Spain - Microsoft Graph Search API
PPTX
DotNet Conf Valencia 2019 - Building cloud native apps with .NRT core 3.0 and...
PPTX
GAB 2019 - Graph as a data store
PPTX
DotNet Conf Madrid 2019 - Whats New in ML.NET
PPTX
DotNet Conf Madrid 2019 - ASP.NET Core 3
PPTX
SQL Saturday Madrid 2019 - Data model with Azure Cosmos DB
PPTX
SharePoint Saturday Madrid 2019 - Productivity based on AI
PPTX
TenerifeDev - NLPs and how to develop for Alexa and Google Assistant
PPTX
NetCoreConf Barcelona 2019 - DotNet Assistants
PPTX
Global Integration Bootcamp 2018 - Gobierno de APIs
PPTX
Gab 2018 seguridad y escalado en azure service fabric
PPTX
CrossDvlpu - REACT para desarrolladores de ASP.NET
PPTX
Dynamics 365 Saturday Madrid 2018 - Otro ALM es posible para Dynamics 365
PPTX
Azure4Research - Big Data Analytics con Hadoop, Spark y Power BI
PPTX
ENCAMINA - El flash de Inteligencia Artificial
PPTX
Ai & Data Analytics 2018 - Azure Databricks for data scientist
PPTX
Global AI Bootcamp Madrid - Azure Databricks
PPTX
TenerifeDev - Intro to Microservices
PPTX
TenerifeDev - Azure Service Fabric
PPTX
Commit Conf 2018 - Extiende al asistente
Microsoft 365 Virtual 2020 Spain - Microsoft Graph Search API
DotNet Conf Valencia 2019 - Building cloud native apps with .NRT core 3.0 and...
GAB 2019 - Graph as a data store
DotNet Conf Madrid 2019 - Whats New in ML.NET
DotNet Conf Madrid 2019 - ASP.NET Core 3
SQL Saturday Madrid 2019 - Data model with Azure Cosmos DB
SharePoint Saturday Madrid 2019 - Productivity based on AI
TenerifeDev - NLPs and how to develop for Alexa and Google Assistant
NetCoreConf Barcelona 2019 - DotNet Assistants
Global Integration Bootcamp 2018 - Gobierno de APIs
Gab 2018 seguridad y escalado en azure service fabric
CrossDvlpu - REACT para desarrolladores de ASP.NET
Dynamics 365 Saturday Madrid 2018 - Otro ALM es posible para Dynamics 365
Azure4Research - Big Data Analytics con Hadoop, Spark y Power BI
ENCAMINA - El flash de Inteligencia Artificial
Ai & Data Analytics 2018 - Azure Databricks for data scientist
Global AI Bootcamp Madrid - Azure Databricks
TenerifeDev - Intro to Microservices
TenerifeDev - Azure Service Fabric
Commit Conf 2018 - Extiende al asistente
Ad

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Approach and Philosophy of On baking technology
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
cuic standard and advanced reporting.pdf
PPTX
A Presentation on Artificial Intelligence
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Unlocking AI with Model Context Protocol (MCP)
PPT
Teaching material agriculture food technology
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Machine learning based COVID-19 study performance prediction
Reach Out and Touch Someone: Haptics and Empathic Computing
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Review of recent advances in non-invasive hemoglobin estimation
Dropbox Q2 2025 Financial Results & Investor Presentation
Approach and Philosophy of On baking technology
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
cuic standard and advanced reporting.pdf
A Presentation on Artificial Intelligence
Understanding_Digital_Forensics_Presentation.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
Unlocking AI with Model Context Protocol (MCP)
Teaching material agriculture food technology
The AUB Centre for AI in Media Proposal.docx
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Machine learning based COVID-19 study performance prediction

Dynamics Saturday Madrid 2019 - AI to improve productivity

  • 1. - Mayo 2019 AI para mejorar la productividad • Adrian Diaz Cervera • Alberto Diaz Martin
  • 5. La era de la distracción Coste de la distracción 50% de los trabajores no saben que esperan de ellos2 50% 59% de los vendedores dicen tener muchas herramientas de ventas1 59% Distracciones reducen el rendimiento de los vendedores un 14%1 1 Accenture 2 Gallup
  • 6. ¿Por qué nuestros empleados no finalizan una venta? ¿Quienés son los empleados más insatisfechos? ¿Por qué los empleados no encuentran el contenido? ¿Qué está impactando en el ambiente de trabajo? Entender el POR QUÉ detrás del QUÉ Entender los patrones de mis empleados Descubrir comportamie ntos emergentes y tendencias Descubrir patrones inesperados que inspieren nuevas ideas
  • 7. ¿Qué uso hacemos de Dynamics CRM? ¿Cuántas actividades tengo como Owner? ¿Cuántas actualizacione s de Cuentas hago? ¿Cuántas actualizacione s de Contactos hago? La adopción de Dynamics es la adecuada Detección de anomalías en el uso Rendimiento de uso vs Ventas Detección de patrones uso y comportamie nto
  • 8. Log files Spatial & GPS coordinates Data market feeds eGov feeds Weather Text/image Web 2.0Advertising Mobile Collaboration eCommerce Web logs Digital Marketing Search Marketing Recommendations 8 Más “decision makers” BigData Megabytes Gigabytes Terabytes Petabytes Data Complexity: Velocity, Variety ERP/CRM Payables Payroll Inventory Contacts Deal Tracking Sales Pipeline Click streams Wikis, Blogs Sensors/RFID/ Devices Social Sentiment Audio/Video
  • 9. ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Ingest Data Events Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Sales Marketing Customer Service
  • 12. Modelo conceptual ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Azure Functions Sales Marketing Customer Service Webhooks
  • 13. Dynamics CRM API REST • OData 4.0 Web API • Use Common Data Service Web API • Use AdalJS for Authentication • Limit request x minutes
  • 16. © Microsoft Corporation DEMO INGEST WITH AZURE FUNCTIONS
  • 17. © Microsoft Corporation INGEST with Azure Data Factory
  • 18. ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Azure Data Factory Events Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Sales Marketing Customer Service
  • 19. Data Integration Service: Serverless, Scalable, Hybrid Hybrid Pipeline Model Seamlessly span: on prem, Azure, other clouds & SaaS Run on-demand, scheduled, data-availability or on event Data Movement @Scale Cloud & Hybrid w/ 75+ connectors provided Up to 1 GB/s SSIS Package Execution Lift existing SQL Server ETL to Azure Use existing tools (SSMS, SSDT) Author & Monitor Programmability w/ multi-language SDK Visual Tools Azure
  • 21. © Microsoft Corporation DEMO INGEST WITH AZURE DATA FACTORY
  • 22. © Microsoft Corporation Dataflow y Common Data Model
  • 23. ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Power BI Dataflow Events Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Sales Marketing Customer Service
  • 24. © Microsoft Corporation Dataflow Azure Data Factory Azure Databricks Azure SQL DW Azure ML CDM folder
  • 27. © Microsoft Corporation DEMO INGEST WITH DATAFLOW
  • 28. © Microsoft Corporation Analysis with Azure Databricks
  • 29. ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Ingest Data Events Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Sales Marketing Customer Service
  • 30. Apache Spark • Unified, open source, parallel, data processing framework for Big Data Analytics Spark Core Engine Spark SQL Interactive Queries Yarn Mesos Standalone Scheduler Spark MLlib Machine Learning Spark Streaming Stream processing GraphX Graph Computation
  • 31. Databricks within Azure Landscape DATABRICKS I/O SERVERLESS Cloud storage Data warehouses Hadoop storage IoT / streaming data Rest APIs Machine learning models BI tools Data exports Data warehouses Azure Databricks Enhance Productivity APACHE SPARK MULTI-STAGE PIPELINES DATA ENGINEER JOB SCHEDULER NOTIFICATION & LOGS DATA SCIENTIST BUSINESS ANALYST Build on secure & trusted cloud Scale without limits Optimized Databricks Runtime Engine Collaborative Workspace Deploy Production Jobs & Workflows
  • 32. © Microsoft Corporation DEMO ANALYSIS WITH DATABRICKS
  • 34. ServeStore Prep and trainIngest Batch data Streaming data Azure Kubernetes service Power BI Azure analysis services Azure SQL data warehouse Cosmos DB, SQL DB Azure Data Lake Storage Ingest Data Events Azure Databricks Azure Machine Learning service Apps Model Serving Ad-hoc Analysis Operational Databases Sales Marketing Customer Service
  • 35. MongoDBTable API Turnkey global distribution Elastic scale out of storage & throughput Guaranteed low latency at the 99th percentile Comprehensive SLAs Five well-defined consistency models Azure Cosmos DB DocumentColumn-family Key-value Graph Core (SQL) API
  • 36. Importante el modelo de datos LastUserAdoptionScoring TeamAdoptionScoring UserAdoptionScoring
  • 37. Importante el modelo de datos Data model thinking on query performs AI to generate de Data Differents data sources from Office 365, Dynamics 365, … LastUserAdoptionScoring TeamAdoptionScoring UserAdoptionScoring
  • 39. Take away • Extraer la información de Dynamics 365 • API REST • Azure Data Factory • Power BI Dataflow • Modelar el Data Lake con CDM • Crear un modelo de datos de análisis