SlideShare a Scribd company logo
Eigen vector

                                    Yuji Oyamada

                                 1 HVRL,   Keio University
2 Chair   for Computer Aided Medical Procedure (CAMP), Technische Universit¨t M¨nchen
                                                                           a   u


                                    April 9, 2012
Prerequisities




Let b = Ax be a linear transformation system of n dimension.
A square matrix A is a function that transforms an n dimensional vector x
to another n dimensional vector b.




Y. Oyamada (Keio Univ. and TUM)       Eigen vector           April 9, 2012   2/7
Eigenvector




Eigen vector x is a non-zero vector that is imaged into a vector λx by A as

                                    Ax = λx,                                  (1)

where the scalar λ is called eigen value.




Y. Oyamada (Keio Univ. and TUM)      Eigen vector             April 9, 2012    3/7
Eigenvector (cont.)


Eq. (1) is equivalent to

                                  λx − Ax = 0 or λIx − Ax = 0

that is
                                                                         
                        λ − a11 −a12                       ···    −a1n      x1
                        −a21 λ − a22                      ···    −a2n   x2 
          (λI − A) x = 
                        ···
                                                                            = 0.           (2)
                                 ···                       ···     · · ·  · · ·
                         −am1   −am2                       ···   λ − amn    xn

This equation is homogeneous!




Y. Oyamada (Keio Univ. and TUM)             Eigen vector                      April 9, 2012    4/7
Homogeneous system
Homogeneous systems form as

                                         Ax = 0.

Homogeneous systems have at least trivial solution

                                           x=0

A non-trivial solution is any solution that

                                          x = 0.

Homogeneous systems have non-trivial solutions if and only if the
determinant of the coefficient matrix is equal to zero as

                                     det(A) = |A| = 0.


Y. Oyamada (Keio Univ. and TUM)           Eigen vector       April 9, 2012   5/7
Characteristic equation



Non-trivial solutoin of Eq. (2) should satisfy

                                  det (λI − A) = |λI − A| = 0.                     (3)

The expansion of the equation forms as

             φ(λ) = det (λI − A) = λn + cn−1 λn−1 + · · · + c1 λ + c0 .            (4)

This equation is called characteristic equation of matrix A.




Y. Oyamada (Keio Univ. and TUM)             Eigen vector           April 9, 2012    6/7
Eigenvalues and eigenvectors computation




   1   Compute eigenvalues {λi } by solving Eq. (3).
   2   Compute eigenvector xi by solving Eq. (2) for each eigenvalue λi .




Y. Oyamada (Keio Univ. and TUM)     Eigen vector                April 9, 2012   7/7

More Related Content

PPT
Перетворення графіків
PPTX
トーラスと平面の部分集合のホモロジー
PDF
Common derivatives integrals_reduced
PDF
CVIM#11 3. 最小化のための数値計算
PDF
03 poo
PDF
Predicting organic reaction outcomes with weisfeiler lehman network
PDF
深層学習オートエンコーダー
PDF
Apost2 exresolvidos retas-planos
Перетворення графіків
トーラスと平面の部分集合のホモロジー
Common derivatives integrals_reduced
CVIM#11 3. 最小化のための数値計算
03 poo
Predicting organic reaction outcomes with weisfeiler lehman network
深層学習オートエンコーダー
Apost2 exresolvidos retas-planos

What's hot (20)

PDF
PRML 3.3.3-3.4 ベイズ線形回帰とモデル選択 / Baysian Linear Regression and Model Comparison)
PPT
Кругові та стовпчасті діаграми
PPT
Застосування інтеграла (11 клас)
PDF
PRML 10.4 - 10.6
PDF
[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...
DOC
5 ___
PDF
VESTIBULAR UFPE 2014 - MATEMÁTICA - TODOS OS TIPOS
PDF
パターン認識 第10章 決定木
PDF
空間データのための回帰分析
PPTX
麻雀牌譜解析のすすめ byほしきゅー
PDF
オープンデータのためのスクレイピング
PDF
PRML 8.4-8.4.3
PPT
Похідна. Фізичний і геометричний зміст похідної
PDF
F#によるFunctional Programming入門
KEY
Funktion nollakohta
PPT
Функции
PDF
Prml 4.1.1
PDF
PRML ベイズロジスティック回帰
PDF
The LabPQR Color Space
PDF
パターン認識と機械学習 §8.3.4 有向グラフとの関係
PRML 3.3.3-3.4 ベイズ線形回帰とモデル選択 / Baysian Linear Regression and Model Comparison)
Кругові та стовпчасті діаграми
Застосування інтеграла (11 клас)
PRML 10.4 - 10.6
[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...
5 ___
VESTIBULAR UFPE 2014 - MATEMÁTICA - TODOS OS TIPOS
パターン認識 第10章 決定木
空間データのための回帰分析
麻雀牌譜解析のすすめ byほしきゅー
オープンデータのためのスクレイピング
PRML 8.4-8.4.3
Похідна. Фізичний і геометричний зміст похідної
F#によるFunctional Programming入門
Funktion nollakohta
Функции
Prml 4.1.1
PRML ベイズロジスティック回帰
The LabPQR Color Space
パターン認識と機械学習 §8.3.4 有向グラフとの関係
Ad

Viewers also liked (12)

PPT
Eigen values and eigenvectors
PDF
Eigenvalues and eigenvectors
PDF
Eigenvalues in a Nutshell
PDF
eigen valuesandeigenvectors
PPTX
B.tech semester i-unit-v_eigen values and eigen vectors
PPTX
Eigenvectors & Eigenvalues: The Road to Diagonalisation
PDF
Lesson14: Eigenvalues And Eigenvectors
PPT
Eigen values and eigen vectors engineering
PPTX
Maths-->>Eigenvalues and eigenvectors
PPTX
Eigen value and eigen vector
PPTX
Eigenvalue problems .ppt
PPTX
Eigenvalues and eigenvectors of symmetric matrices
Eigen values and eigenvectors
Eigenvalues and eigenvectors
Eigenvalues in a Nutshell
eigen valuesandeigenvectors
B.tech semester i-unit-v_eigen values and eigen vectors
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Lesson14: Eigenvalues And Eigenvectors
Eigen values and eigen vectors engineering
Maths-->>Eigenvalues and eigenvectors
Eigen value and eigen vector
Eigenvalue problems .ppt
Eigenvalues and eigenvectors of symmetric matrices
Ad

Similar to Eigen vector (20)

PPT
Eiganvalues ppt thais aljhdlakd;ahdlkjahlkjdslksdjalk
PPTX
Euler-and-Legendre-Equations-Foundations-in-Applied-Mathematics.pptx
PPT
Matrix and calculus-engg. maths.-ch8.ppt
PDF
Comparison Singular and Non-singular
PPTX
Tutorial on EM algorithm – Part 1
PDF
Applied numerical methods lec13
PDF
Lecture cochran
DOCX
Numerical solution of eigenvalues and applications 2
PDF
Deformation 1
PPTX
Eigenvalue problems-numerical methods.pptx
PPT
first order system
PDF
Week 1 [compatibility mode]
PDF
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
PDF
Eigen-Decomposition: Eigenvalues and Eigenvectors.pdf
PPTX
Presentation2
PDF
Graph theoretic approach to solve measurement placement problem for power system
PDF
Rayleigh Ritz Method 1 D Bar Problem.pdf
PPTX
eigenvalue
PDF
04_AJMS_167_18_RA.pdf
PDF
04_AJMS_167_18_RA.pdf
Eiganvalues ppt thais aljhdlakd;ahdlkjahlkjdslksdjalk
Euler-and-Legendre-Equations-Foundations-in-Applied-Mathematics.pptx
Matrix and calculus-engg. maths.-ch8.ppt
Comparison Singular and Non-singular
Tutorial on EM algorithm – Part 1
Applied numerical methods lec13
Lecture cochran
Numerical solution of eigenvalues and applications 2
Deformation 1
Eigenvalue problems-numerical methods.pptx
first order system
Week 1 [compatibility mode]
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
Eigen-Decomposition: Eigenvalues and Eigenvectors.pdf
Presentation2
Graph theoretic approach to solve measurement placement problem for power system
Rayleigh Ritz Method 1 D Bar Problem.pdf
eigenvalue
04_AJMS_167_18_RA.pdf
04_AJMS_167_18_RA.pdf

More from Yuji Oyamada (9)

PDF
Vision Based Analysis on Trajectories of Notes Representing Ideas Toward Work...
PDF
Deep Convolutional 3D Object Classification from a Single Depth Image and Its...
PDF
Single Camera Calibration Using Partially Visible Calibration Objects Based o...
PPTX
鳥取Python勉強会 第7回
PPTX
鳥取python勉強会 第1回
PPTX
鳥取python勉強会 第2回
PDF
Camera calibration
PDF
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
PDF
Bouguet's MatLab Camera Calibration Toolbox
Vision Based Analysis on Trajectories of Notes Representing Ideas Toward Work...
Deep Convolutional 3D Object Classification from a Single Depth Image and Its...
Single Camera Calibration Using Partially Visible Calibration Objects Based o...
鳥取Python勉強会 第7回
鳥取python勉強会 第1回
鳥取python勉強会 第2回
Camera calibration
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox

Eigen vector

  • 1. Eigen vector Yuji Oyamada 1 HVRL, Keio University 2 Chair for Computer Aided Medical Procedure (CAMP), Technische Universit¨t M¨nchen a u April 9, 2012
  • 2. Prerequisities Let b = Ax be a linear transformation system of n dimension. A square matrix A is a function that transforms an n dimensional vector x to another n dimensional vector b. Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 2/7
  • 3. Eigenvector Eigen vector x is a non-zero vector that is imaged into a vector λx by A as Ax = λx, (1) where the scalar λ is called eigen value. Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 3/7
  • 4. Eigenvector (cont.) Eq. (1) is equivalent to λx − Ax = 0 or λIx − Ax = 0 that is    λ − a11 −a12 ··· −a1n x1  −a21 λ − a22 ··· −a2n   x2  (λI − A) x =   ···    = 0. (2) ··· ··· · · ·  · · · −am1 −am2 ··· λ − amn xn This equation is homogeneous! Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 4/7
  • 5. Homogeneous system Homogeneous systems form as Ax = 0. Homogeneous systems have at least trivial solution x=0 A non-trivial solution is any solution that x = 0. Homogeneous systems have non-trivial solutions if and only if the determinant of the coefficient matrix is equal to zero as det(A) = |A| = 0. Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 5/7
  • 6. Characteristic equation Non-trivial solutoin of Eq. (2) should satisfy det (λI − A) = |λI − A| = 0. (3) The expansion of the equation forms as φ(λ) = det (λI − A) = λn + cn−1 λn−1 + · · · + c1 λ + c0 . (4) This equation is called characteristic equation of matrix A. Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 6/7
  • 7. Eigenvalues and eigenvectors computation 1 Compute eigenvalues {λi } by solving Eq. (3). 2 Compute eigenvector xi by solving Eq. (2) for each eigenvalue λi . Y. Oyamada (Keio Univ. and TUM) Eigen vector April 9, 2012 7/7