SlideShare a Scribd company logo
Eigenvalue – Eigenvector Problem
EIGENVALUES & EIGENVECTORS
The eigenvalue problem is a problem of considerable
theoretical interest and wide-ranging application.
For example, this problem is crucial in solving systems of
differential equations, analyzing population growth models,
and calculating powers of matrices (in order to define the
exponential matrix (A100)).
Other areas such as physics, sociology, biology, economics
and statistics have focused considerable attention on
“eigenvalues” and “eigenvectors”-their applications and their
computations
Applied numerical methods lec13
Eigenvalue Problems
(Mathematical Background)
 
 
  0xaxaxa
0xaxaxa
0xaxaxλa
nnn2n21n1
n1n222121
n1n212111









   0XA
The roots of polynomial D(λ) are the eigenvalues of the eigen system
A solution {X} to [A]{X} = λ{X} is an eigen vector
(homogeneous system)
      0 XIA 
       IA   tDeterminanD
(eigen system)
Applied numerical methods lec13
Example 1
Applied numerical methods lec13
CW
Example 2
Applied numerical methods lec13
Applied numerical methods lec13
Applied numerical methods lec13
Applied numerical methods lec13
Applied numerical methods lec13
15
The Power Method
(An iterative approach for determining the largest eigenvalue)
Example (3):
Iteration 1: initialization [x1, x2, x3]T = [1 1 1]T
Iteration 2: A [1 0 1]T
Iteration 3: A [1 -1 1]T
Iteration 4: A [-0.75 1 -0.75]T
Iteration 4: A [-0.714 1 -0.714]T
(Exact solution = 6.070)
Class Work: Use the power method to find the dominant eigenvalue and
eigenvector for the matrix
Applied numerical methods lec13
Applied numerical methods lec13
Example 4
Applied numerical methods lec13
21
Power Method for Lowest Eigenvalue
(An iterative approach for determining the lowest eigenvalue)
 












422028101410
281056202810
141028104220
1
...
...
...
A










































7510
1
7510
1241
8840
1241
8840
1
1
1
422028101410
281056202810
141028104220
.
.
.
.
.
.
...
...
...
Example (5):
Iteration 1:
Iteration 3:
Exact solution is 0.955 which is the reciprocal of the smallest eigenvalue,
1.0472 of [A].
Iteration 2:










































7150
1
7150
9840
7040
9840
7040
7510
1
7510
422028101410
281056202810
141028104220
.
.
.
.
.
.
.
.
...
...
...










































7090
1
7090
9640
6840
9640
6840
7150
1
7150
422028101410
281056202810
141028104220
.
.
.
.
.
.
.
.
...
...
...
Idea: The largest eigenvalue of [A]-1 is the reciprocal of the lowest
eigenvalue of [A]
 













 5563
422077810
778155632810
077815563
7781 .
..
...
..
.A
Faddeev-Leverrier Method for Eigenvalues
Applied numerical methods lec13
Applied numerical methods lec13
Applied numerical methods lec13
Applied numerical methods lec13
Use Faddeev’s Method to find the eigenvalues of the following matrix
Eigenvalue Problems
(Physical Background 1)
 1212
1
2
1 xxkkx
dt
xd
m 
 tsinAx ii 
Mass-spring system
Analytical solution
(vibration theory)
  2122
2
2
2 kxxxk
dt
xd
m 
k k
Ai = the amplitude of the vibration of mass i
and ω = the frequency of the vibration, which is
equal to ω = 2π/Tp, where Tp is the period.
1
2
3
 tsin-Ax 2
ii  4
To Find A1, A2, and :
Substitute equations 3 and 4 into 1 and 2
0AA
0AA
21
21














2
22
1
2
1
2
2


m
k
m
k
m
k
m
k
The eigenvalues to this system are the
correct frequency , and the eigenvectors
are the correct A1 and A2.
take 2 as λ
0AA
0AA
21
21














2
22
1
2
1
2
2


m
k
m
k
m
k
m
k
The eigenvalues to this system are the
correct frequency , and the
eigenvectors are the correct A1 and A2.
take 2 as λ
 
 
  0xaxaxa
0xaxaxa
0xaxaxλa
nnn2n21n1
n1n222121
n1n212111









   0XA (homogeneous system)
      0 XIA  (eigen system)
30
Eigenvalue Problems
(An instance of mass-spring problem)
0AA
0AA
21
21














2
22
1
2
1
2
2


m
k
m
k
m
k
m
k
 
 




modeseconds
modefirsts
-
-
1
1
2362
8733
.
.

k=200 N/m
First mode: A1 = -A2
Second mode: A1 = A2
 
  0AA
0AA
21
21


2
2
105
510

m1=m2=40 kg
A unique set of values cannot be obtained
for the unknowns. However, their ratios can
be specified by substituting the eigenvalues
back into the equations. For example, for
the first mode (ω2 = 15 s−2), Al=−A2. For the
second mode (ω2 = 5 s−2), A1 = A2.
Note:
Eigenvalue Problems
(Physical Background 2)
Applied numerical methods lec13
Applied numerical methods lec13
Eigenvalue Problems
(Physical Background 3)
Applied numerical methods lec13
Special Problem 5
Home Work
1.
2.
3.

More Related Content

PPTX
Solving system of linear equations
PDF
Higher order differential equations
PDF
Advanced Engineering Mathematics Solutions Manual.pdf
PDF
Question bank Engineering Mathematics- ii
PPT
6 7 irrotational flow
PDF
Energy methods for damped systems
PDF
Numarical values highlighted
PPT
introduction to Numerical Analysis
Solving system of linear equations
Higher order differential equations
Advanced Engineering Mathematics Solutions Manual.pdf
Question bank Engineering Mathematics- ii
6 7 irrotational flow
Energy methods for damped systems
Numarical values highlighted
introduction to Numerical Analysis

What's hot (20)

PDF
applications of second order differential equations
PDF
Chapter 18(beams of composite materials)
PPT
Eigen value , eigen vectors, caley hamilton theorem
PPT
Persamaan Differensial Biasa 2014
DOCX
signal and system Lecture 2
PDF
Eigenvalues and eigenvectors
PDF
Newton's Forward/Backward Difference Interpolation
PDF
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
PPTX
A brief introduction to finite difference method
PDF
Galerkin method
PDF
Fluid tutorial 3_ans dr.waleed. 01004444149
PDF
Capitulo 6, 7ma edición
PPTX
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
PDF
Higher Differential Equation
PPT
Systems of linear equations and augmented matrices
PDF
Lecture-4 Reduction of Quadratic Form.pdf
PPTX
Special Cases in Simplex Method
PPTX
Vector spaces
PDF
Khảo Sát Hàm Số Có Lời Giải
PPT
Linear algebra03fallleturenotes01
applications of second order differential equations
Chapter 18(beams of composite materials)
Eigen value , eigen vectors, caley hamilton theorem
Persamaan Differensial Biasa 2014
signal and system Lecture 2
Eigenvalues and eigenvectors
Newton's Forward/Backward Difference Interpolation
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
A brief introduction to finite difference method
Galerkin method
Fluid tutorial 3_ans dr.waleed. 01004444149
Capitulo 6, 7ma edición
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
Higher Differential Equation
Systems of linear equations and augmented matrices
Lecture-4 Reduction of Quadratic Form.pdf
Special Cases in Simplex Method
Vector spaces
Khảo Sát Hàm Số Có Lời Giải
Linear algebra03fallleturenotes01
Ad

Viewers also liked (20)

PDF
Lesson14: Eigenvalues And Eigenvectors
PPTX
Maths-->>Eigenvalues and eigenvectors
PDF
Eigenvalues and Eigenvectors (Tacoma Narrows Bridge video included)
PPT
Eigen values and eigen vectors engineering
PPTX
Eigenvalues and eigenvectors of symmetric matrices
PPT
Eigenvalues and Eigenvectors
PPT
Eighan values and diagonalization
PPTX
Eigenvectors & Eigenvalues: The Road to Diagonalisation
PPT
Free Video Lecture For Mba, Mca, Btech, BBA, In india
PDF
Eigen value and vectors
PDF
Phy 310 chapter 3
PPT
Artificial reefs
PPTX
B.tech semester i-unit-v_eigen values and eigen vectors
PDF
02 2d systems matrix
PDF
Multiple Degree of Freedom (MDOF) Systems
PPTX
system linear equations and matrices
PPTX
Eigen value and eigen vector
PPTX
Vibration Analysis
PPT
PPTX
Eigenvalue problems .ppt
Lesson14: Eigenvalues And Eigenvectors
Maths-->>Eigenvalues and eigenvectors
Eigenvalues and Eigenvectors (Tacoma Narrows Bridge video included)
Eigen values and eigen vectors engineering
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and Eigenvectors
Eighan values and diagonalization
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Free Video Lecture For Mba, Mca, Btech, BBA, In india
Eigen value and vectors
Phy 310 chapter 3
Artificial reefs
B.tech semester i-unit-v_eigen values and eigen vectors
02 2d systems matrix
Multiple Degree of Freedom (MDOF) Systems
system linear equations and matrices
Eigen value and eigen vector
Vibration Analysis
Eigenvalue problems .ppt
Ad

Similar to Applied numerical methods lec13 (20)

PPTX
Eigen value and Eigen Vector.pptx
PDF
Random Matrix Theory and Machine Learning - Part 3
DOCX
Numerical solution of eigenvalues and applications 2
PDF
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
PPT
Matrix and calculus-engg. maths.-ch8.ppt
PDF
Eigenvalue eigenvector slides
ODP
Seismic data processing (mathematical foundations)
PPTX
Power method
PDF
project report(1)
PPT
Rdnd2008
PDF
Lecture 4 sapienza 2017
PPT
Ch07 8
PPT
Ph 101-9 QUANTUM MACHANICS
PDF
Graph theoretic approach to solve measurement placement problem for power system
PDF
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
DOC
Lsd ee n
PPT
MATLAB ODE
PPT
signal and systems basics for engineering
PPT
Intro to control system and introduction to block diagram used in it
Eigen value and Eigen Vector.pptx
Random Matrix Theory and Machine Learning - Part 3
Numerical solution of eigenvalues and applications 2
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
Matrix and calculus-engg. maths.-ch8.ppt
Eigenvalue eigenvector slides
Seismic data processing (mathematical foundations)
Power method
project report(1)
Rdnd2008
Lecture 4 sapienza 2017
Ch07 8
Ph 101-9 QUANTUM MACHANICS
Graph theoretic approach to solve measurement placement problem for power system
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Lsd ee n
MATLAB ODE
signal and systems basics for engineering
Intro to control system and introduction to block diagram used in it

More from Yasser Ahmed (14)

PDF
Novel approach of bidirectional diffuser-augmented channels system for enhanc...
PDF
Applied numerical methods lec14
PDF
Applied numerical methods lec12
PDF
Applied numerical methods lec11
PDF
Applied numerical methods lec10
PDF
Applied numerical methods lec9
PDF
Applied numerical methods lec8
PDF
Applied numerical methods lec7
PDF
Applied numerical methods lec6
PDF
Applied numerical methods lec5
PDF
Applied numerical methods lec4
PDF
Applied numerical methods lec3
PDF
Applied numerical methods lec2
PDF
Applied numerical methods lec1
Novel approach of bidirectional diffuser-augmented channels system for enhanc...
Applied numerical methods lec14
Applied numerical methods lec12
Applied numerical methods lec11
Applied numerical methods lec10
Applied numerical methods lec9
Applied numerical methods lec8
Applied numerical methods lec7
Applied numerical methods lec6
Applied numerical methods lec5
Applied numerical methods lec4
Applied numerical methods lec3
Applied numerical methods lec2
Applied numerical methods lec1

Recently uploaded (20)

PPTX
additive manufacturing of ss316l using mig welding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
composite construction of structures.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Welding lecture in detail for understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
CH1 Production IntroductoryConcepts.pptx
additive manufacturing of ss316l using mig welding
Model Code of Practice - Construction Work - 21102022 .pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
Operating System & Kernel Study Guide-1 - converted.pdf
composite construction of structures.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT 4 Total Quality Management .pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Internet of Things (IOT) - A guide to understanding
bas. eng. economics group 4 presentation 1.pptx
Mechanical Engineering MATERIALS Selection
Lecture Notes Electrical Wiring System Components
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Welding lecture in detail for understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
CH1 Production IntroductoryConcepts.pptx

Applied numerical methods lec13

  • 2. EIGENVALUES & EIGENVECTORS The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application. For example, this problem is crucial in solving systems of differential equations, analyzing population growth models, and calculating powers of matrices (in order to define the exponential matrix (A100)). Other areas such as physics, sociology, biology, economics and statistics have focused considerable attention on “eigenvalues” and “eigenvectors”-their applications and their computations
  • 4. Eigenvalue Problems (Mathematical Background)       0xaxaxa 0xaxaxa 0xaxaxλa nnn2n21n1 n1n222121 n1n212111             0XA The roots of polynomial D(λ) are the eigenvalues of the eigen system A solution {X} to [A]{X} = λ{X} is an eigen vector (homogeneous system)       0 XIA         IA   tDeterminanD (eigen system)
  • 8. CW
  • 15. 15 The Power Method (An iterative approach for determining the largest eigenvalue) Example (3): Iteration 1: initialization [x1, x2, x3]T = [1 1 1]T Iteration 2: A [1 0 1]T Iteration 3: A [1 -1 1]T Iteration 4: A [-0.75 1 -0.75]T Iteration 4: A [-0.714 1 -0.714]T (Exact solution = 6.070)
  • 16. Class Work: Use the power method to find the dominant eigenvalue and eigenvector for the matrix
  • 21. 21 Power Method for Lowest Eigenvalue (An iterative approach for determining the lowest eigenvalue)               422028101410 281056202810 141028104220 1 ... ... ... A                                           7510 1 7510 1241 8840 1241 8840 1 1 1 422028101410 281056202810 141028104220 . . . . . . ... ... ... Example (5): Iteration 1: Iteration 3: Exact solution is 0.955 which is the reciprocal of the smallest eigenvalue, 1.0472 of [A]. Iteration 2:                                           7150 1 7150 9840 7040 9840 7040 7510 1 7510 422028101410 281056202810 141028104220 . . . . . . . . ... ... ...                                           7090 1 7090 9640 6840 9640 6840 7150 1 7150 422028101410 281056202810 141028104220 . . . . . . . . ... ... ... Idea: The largest eigenvalue of [A]-1 is the reciprocal of the lowest eigenvalue of [A]                 5563 422077810 778155632810 077815563 7781 . .. ... .. .A
  • 27. Use Faddeev’s Method to find the eigenvalues of the following matrix
  • 28. Eigenvalue Problems (Physical Background 1)  1212 1 2 1 xxkkx dt xd m   tsinAx ii  Mass-spring system Analytical solution (vibration theory)   2122 2 2 2 kxxxk dt xd m  k k Ai = the amplitude of the vibration of mass i and ω = the frequency of the vibration, which is equal to ω = 2π/Tp, where Tp is the period. 1 2 3  tsin-Ax 2 ii  4 To Find A1, A2, and : Substitute equations 3 and 4 into 1 and 2 0AA 0AA 21 21               2 22 1 2 1 2 2   m k m k m k m k The eigenvalues to this system are the correct frequency , and the eigenvectors are the correct A1 and A2. take 2 as λ
  • 29. 0AA 0AA 21 21               2 22 1 2 1 2 2   m k m k m k m k The eigenvalues to this system are the correct frequency , and the eigenvectors are the correct A1 and A2. take 2 as λ       0xaxaxa 0xaxaxa 0xaxaxλa nnn2n21n1 n1n222121 n1n212111             0XA (homogeneous system)       0 XIA  (eigen system)
  • 30. 30 Eigenvalue Problems (An instance of mass-spring problem) 0AA 0AA 21 21               2 22 1 2 1 2 2   m k m k m k m k         modeseconds modefirsts - - 1 1 2362 8733 . .  k=200 N/m First mode: A1 = -A2 Second mode: A1 = A2     0AA 0AA 21 21   2 2 105 510  m1=m2=40 kg
  • 31. A unique set of values cannot be obtained for the unknowns. However, their ratios can be specified by substituting the eigenvalues back into the equations. For example, for the first mode (ω2 = 15 s−2), Al=−A2. For the second mode (ω2 = 5 s−2), A1 = A2. Note: