The document discusses the eigenvalue-eigenvector problem, which has applications in solving differential equations, modeling population growth, and calculating matrix powers. It provides mathematical background on homogeneous systems of equations where the eigenvalues are the roots of the characteristic polynomial. Iterative methods like the power method are presented for finding the dominant or lowest eigenvalue of a matrix. Physical examples of mass-spring systems are given where the eigenvalues correspond to vibration frequencies and the eigenvectors to mode shapes.